Bioactive Plant Compounds as Alternatives Against Antifungal Resistance in the Candida Strains
Abstract
1. Introduction
2. Candida spp.
3. Antifungal Agents and Resistance Mechanisms
3.1. Azoles
3.2. Polyenes
3.3. Echinocandins
3.4. Pyrimidines
4. Medicinal Plants
4.1. Polyphenols Activity
4.2. Terpene Activity
4.3. Alkaloid Activity
5. Innovative Technological Approaches for Assessing and Enhancing Antifungal Efficacy
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef] [PubMed]
- Ryder, N.S.; Dupont, M.-C. Inhibition of squalene epoxidase by allylamine antimycotic compounds. Biochem. J. 1985, 230, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ami, R.; Kontoyiannis, D.P. Resistance to Antifungal Drugs. Infect. Dis. Clin. N. Am. 2021, 35, 279–311. [Google Scholar] [CrossRef]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef]
- Carmo, A.; Rocha, M.; Pereirinha, P.; Tome, R.; Costa, E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics 2023, 12, 884. [Google Scholar] [CrossRef]
- Khan, A.; Moni, S.S.; Ali, M.; Mohan, S.; Jan, H.; Rasool, S.; Kamal, M.A.; Alshahrani, S.; Halawi, M.; Alhazmi, H.A. Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review. Curr. Mol. Pharmacol. 2023, 16, 15–42. [Google Scholar] [CrossRef]
- Sanchez Armengol, E.; Harmanci, M.; Laffleur, F. Current strategies to determine antifungal and antimicrobial activity of natural compounds. Microbiol. Res. 2021, 252, 126867. [Google Scholar] [CrossRef]
- Moraes, D.C.; Ferreira-Pereira, A. Insights on the anticandidal activity of non-antifungal drugs. J. Mycol. Med. 2019, 29, 253–259. [Google Scholar] [CrossRef]
- Ekiert, H.M.; Szopa, A. Biological Activities of Natural Products. Molecules 2020, 25, 5769. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Liu, Y.; Liu, Y.; Lv, R.; Sun, W.; Ding, W.; Cai, Y.; Li, W.; Liu, X.; Qu, W. Candida albicans biofilms: Antifungal resistance, immune evasion, and emerging therapeutic strategies. Int. J. Antimicrob. Agents 2022, 60, 106673. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Rice, L.B. Antifungal Agents Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance. Clin. Microbiol. Rev. 1999, 12, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef]
- Negri, M.; Goncalves, V.; Silva, S.; Henriques, M.; Azeredo, J.; Oliveira, R. Crystal violet staining to quantify Candida adhesion to epithelial cells. Br. J. Biomed. Sci. 2010, 67, 120–125. [Google Scholar] [CrossRef]
- Ramos, L.S.; Fernandes, M.F.; Santos, H.L.C.; Picao, R.C.; Branquinha, M.H.; Santos, A.L.S. Candida spp. isolated from recreational coastal waters of Rio de Janeiro—Brazil: Focus on antifungal resistance and virulence attributes. Sci. Total Environ. 2024, 947, 174662. [Google Scholar] [CrossRef]
- Czajka, K.M.; Venkataraman, K.; Brabant-Kirwan, D.; Santi, S.A.; Verschoor, C.; Appanna, V.D.; Singh, R.; Saunders, D.P.; Tharmalingam, S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023, 12, 2655. [Google Scholar] [CrossRef]
- Paiva, J.A.; Pereira, J.M. Treatment of invasive candidiasis in the era of Candida resistance. Curr. Opin. Crit. Care 2023, 29, 457–462. [Google Scholar] [CrossRef]
- Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Evolution, mechanisms and impact. Curr. Opin. Microbiol. 2018, 45, 70–76. [Google Scholar] [CrossRef]
- Hokken, M.W.J.; Zwaan, B.J.; Melchers, W.J.G.; Verweij, P.E. Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genet. Biol. 2019, 132, 103254. [Google Scholar] [CrossRef] [PubMed]
- Senna, J.P.; Barradas, T.N.; Cardoso, S.; Castiglione, T.C.; Serpe, M.J.; Silva, K.; Mansur, C.R.E. Dual alginate-lipid nanocarriers as oral delivery systems for amphotericin B. Colloids Surf. B Biointerfaces 2018, 166, 187–194. [Google Scholar] [CrossRef]
- Smith-Craven, M.M.; Dening, T.J.; Basra, A.K.; Hageman, M.J. Enhanced Dissolution of Amphotericin B through Development of Amorphous Solid Dispersions Containing Polymer and Surfactants. J. Pharm. Sci. 2024, 113, 2454–2463. [Google Scholar] [CrossRef]
- Li, J.; Coste, A.T.; Bachmann, D.; Sanglard, D.; Lamoth, F. Deciphering the Mrr1 Mdr1 Pathway in Azole Resistance of Candida auris. Antimicrob. Agents Chemother. 2022, 66, e00067-22. [Google Scholar] [CrossRef] [PubMed]
- Teo, J.Q.; Lee, S.J.; Tan, A.L.; Lim, R.S.; Cai, Y.; Lim, T.P.; Kwa, A.L. Molecular mechanisms of azole resistance in Candida bloodstream isolates. BMC Infect. Dis. 2019, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Deshpande, L.M.; Davis, A.P.; Carvalhaes, C.G.; Pfaller, M.A. Azole resistance in Candida glabrata clinical isolates from global surveillance is associated with efflux overexpression. J. Glob. Antimicrob. Resist. 2022, 29, 371–377. [Google Scholar] [CrossRef]
- Carolus, H.; Pierson, S.; Muñoz, J.F.; Subotic, A.; Cruz, R.B.; Cuomo, C.A.; Van Dijck, P. Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. mBio 2021, 12, e03333-20. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef]
- Sitterle, E.; Coste, A.T.; Obadia, T.; Maufrais, C.; Chauvel, M.; Sertour, N.; Sanglard, D.; Puel, A.; D’Enfert, C.; Bougnoux, M.E. Large-scale genome mining allows identification of neutral polymorphisms and novel resistance mutations in genes involved in Candida albicans resistance to azoles and echinocandins. J. Antimicrob. Chemother. 2020, 75, 835–848. [Google Scholar] [CrossRef]
- Hou, X.; Healey, K.R.; Shor, E.; Kordalewska, M.; Ortigosa, C.J.; Paderu, P.; Xiao, M.; Wang, H.; Zhao, Y.; Lin, L.Y.; et al. Novel FKS1 and FKS2 modifications in a high-level echinocandin resistant clinical isolate of Candida glabrata. Emerg. Microbes Infect. 2019, 8, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Bing, J.; Du, H.; Guo, P.; Hu, T.; Xiao, M.; Lu, S.; Nobile, C.J.; Chu, H.; Huang, G. Candida auris-associated hospitalizations and outbreaks, China, 2018–2023. Emerg. Microbes Infect. 2024, 13, 2302843. [Google Scholar] [CrossRef]
- Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Posteraro, B.; Lass-Florl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58 (Suppl. 2), 2–13. [Google Scholar] [CrossRef]
- Li, H.; Kong, Y.; Hu, W.; Zhang, S.; Wang, W.; Yang, M.; Luo, Y. Litsea cubeba Essential Oil: Component Analysis, Anti-Candida albicans Activity and Mechanism Based on Molecular Docking. J. Oleo Sci. 2022, 71, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Sardi, J.C.; Gullo, F.P.; Freires, I.A.; Pitangui, N.S.; Segalla, M.P.; Fusco-Almeida, A.M.; Rosalen, P.L.; Regasini, L.O.; Mendes-Giannini, M.J. Synthesis, antifungal activity of caffeic acid derivative esters, and their synergism with fluconazole and nystatin against Candida spp. Diagn. Microbiol. Infect. Dis. 2016, 86, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jha, A. Antifungals Used Against Candidiasis. In Anticandidal Agents; Elsevier: Amsterdam, The Netherlands, 2017; pp. 11–39. [Google Scholar]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Perlin, D.S. Echinocandin Resistance in Candida. Clin. Infect. Dis. 2015, 61 (Suppl. 6), S612–S617. [Google Scholar] [CrossRef]
- Campos, L.M.; Lemos, A.S.O.; Diniz, I.O.M.; Carvalho, L.A.; Silva, T.P.; Dib, P.R.B.; Hottz, E.D.; Chedier, L.M.; Melo, R.C.N.; Fabri, R.L. Antifungal Annona muricata L. (soursop) extract targets the cell envelope of multi-drug resistant Candida albicans. J. Ethnopharmacol. 2023, 301, 115856. [Google Scholar] [CrossRef]
- Lass-Florl, C.; Steixner, S. The changing epidemiology of fungal infections. Mol. Asp. Med. 2023, 94, 101215. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022, 27, 8367. [Google Scholar] [CrossRef]
- Barone, R.P.; Knittel, D.K.; Ooka, J.K.; Porter, L.N.; Smith, N.T.; Owens, D.K. The production of plant natural products beneficial to humanity by metabolic engineering. Curr. Plant Biol. 2020, 24, 100121. [Google Scholar] [CrossRef]
- Romanowski, S.; Eustaquio, A.S. Synthetic biology for natural product drug production and engineering. Curr. Opin. Chem. Biol. 2020, 58, 137–145. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Y.; Wen, J.; Zhao, Y.; Zeng, J.; Guo, Y. A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur. J. Pharmacol. 2020, 888, 173578. [Google Scholar] [CrossRef]
- Goel, B.; Jain, S.K. Semisynthesis: Bridging natural products and novel anticancer therapies. Eur. J. Med. Chem. Rep. 2024, 12, 100218. [Google Scholar] [CrossRef]
- Ferreira, M.R.A.; Santiago, R.R.; Langassner, S.M.Z.; Palazzo de Mello, J.C.; Svidzinski, T.I.E.; Soares, L.A.L. Antifungal activity of medicinal plants from Northeastern Brazil. J. Med. Plants Res. 2013, 7, 3008–3013. [Google Scholar] [CrossRef]
- Souza-Melo, W.O.; Figueiredo-Junior, E.C.; Freire, J.C.P.; Costa, B.P.; Lira, A.B.; Freires, I.A.; Cavalcanti, Y.W.; Lopes, W.S.; Tavares, J.F.; Pessoa, H.L.F.; et al. Phytochemistry, antifungal and antioxidant activity, and cytotoxicity of byrsonima gardneriana (A. Juss) extract. Arch. Oral Biol. 2021, 123, 104994. [Google Scholar] [CrossRef]
- Chopra, B.; Dhingra, A.K. Natural products A lead for drug discovery and development. Phytother. Res. 2021, 35, 4660–4702. [Google Scholar] [CrossRef] [PubMed]
- Guerra, R.N.M.; Oliveira, A.S.; Farias, J.R.; Franco, D.C.G.; Santos, P.G.; Barbosa, N.T.; Muniz, S.B.; Abreu, A.G.; Nascimento, F.R.F. Anacardiaceae Family: Effect of Isolated Compounds and Other Identified Phytochemicals Against Clinically Relevant Candida Species—A Short Review. Antibiotics 2025, 14, 308. [Google Scholar] [CrossRef]
- Siqueira, M.F.F.; Massaut, K.B.; Thiel, P.R.; Pires, J.B.; Zavareze, E.D.R.; Gandra, E.A.; da Silva, W.P.; Fiorentini, A.M. Development and characterization of active cellulose acetate films with antifungal properties of Thymus vulgaris essential oil for cheese applications: Antifungal potential film with Thymus vulgaris essential oil against cheese fungi. Braz. J. Microbiol. 2025, 56, 1003–1016. [Google Scholar] [CrossRef]
- Sookkhee, S.; Khamnoi, P.; Sastraruji, T.; Boonkum, S.; Wikan, N.; Nimlamool, W. Synergistic Inhibition of Synbiotic Cultures among Lactobacilli and Plant Extracts Against Vaginal Discharge Causing Candida albicans. Nutrients 2024, 16, 1372. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—A review. Food Res. Int. 2015, 77, 221–235. [Google Scholar] [CrossRef]
- Jaiswal, N.; Kumar, A. HPLC in the discovery of plant phenolics as antifungal molecules against Candida infection related biofilms. Microchem. J. 2022, 179, 107572. [Google Scholar] [CrossRef]
- Lima, W.G.; Araujo, M.G.F.; Brito, J.C.M.; Castilho, R.O.; Cardoso, V.N.; Fernandes, S.O.A. Antifungal effect of hydroethanolic extract of Fridericia chica (Bonpl.) L. G. Lohmann leaves and its therapeutic use in a vulvovaginal candidosis model. J. Med. Mycol. 2022, 32, 101255. [Google Scholar] [CrossRef]
- Cid-Chevecich, C.; Muller-Sepulveda, A.; Jara, J.A.; Lopez-Munoz, R.; Santander, R.; Budini, M.; Escobar, A.; Quijada, R.; Criollo, A.; Diaz-Dosque, M.; et al. Origanum vulgare L. essential oil inhibits virulence patterns of Candida spp. and potentiates the effects of fluconazole and nystatin in vitro. BMC Complement. Med. Ther. 2022, 22, 39. [Google Scholar] [CrossRef] [PubMed]
- Harley, B.K.; Quagraine, A.M.; Neglo, D.; Aggrey, M.O.; Orman, E.; Mireku-Gyimah, N.A.; Amengor, C.D.; Jato, J.; Saaka, Y.; Fleischer, T.C. Metabolite profiling, antifungal, biofilm formation prevention and disruption of mature biofilm activities of Erythrina senegalensis stem bark extract against Candida albicans and Candida glabrata. PLoS ONE 2022, 17, e0278096. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.; de Oliveira Bento, A.; Lourenco, E.M.G.; Ferreira, M.R.A.; Oliveira, W.N.; Soares, L.A.L.; Barbosa, E.G.; Rocha, H.A.O.; Chaves, G.M. Mechanism of action and synergistic effect of Eugenia uniflora extract in Candida spp. PLoS ONE 2024, 19, e0303878. [Google Scholar] [CrossRef]
- da Costa Cordeiro, B.M.P.; de Lima Santos, N.D.; Ferreira, M.R.A.; de Araujo, L.C.C.; Junior, A.R.C.; da Conceicao Santos, A.D.; de Oliveira, A.P.; da Silva, A.G.; da Silva Falcao, E.P.; Dos Santos Correia, M.T.; et al. Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. BMC Complement. Altern. Med. 2018, 18, 284. [Google Scholar] [CrossRef] [PubMed]
- Bvumbi, C.; Chi, G.F.; Stevens, M.Y.; Mombeshora, M.; Mukanganyama, S. The Effects of Tormentic Acid and Extracts from Callistemon citrinus on Candida albicans and Candida tropicalis Growth and Inhibition of Ergosterol Biosynthesis in Candida albicans. Sci. World J. 2021, 2021, 8856147. [Google Scholar] [CrossRef]
- Essid, R.; Ayed, A.; Djebali, K.; Saad, H.; Srasra, M.; Othmani, Y.; Fares, N.; Jallouli, S.; Abid, I.; Alothman, M.R.; et al. Anti-Candida and Anti-Leishmanial Activities of Encapsulated Cinnamomum verum Essential Oil in Chitosan Nanoparticles. Molecules 2023, 28, 5681. [Google Scholar] [CrossRef]
- Torabi, I.; Sharififar, F.; Izadi, A.; Mousavi, S.A.A. Inhibitory effects of different fractions separated from standardized extract of Myrtus communis L. against nystatin-susceptible and nystatin-resistant Candida albicans isolated from HIV positive patients. Helyon 2022, 8, e09073. [Google Scholar] [CrossRef]
- Malveira, E.A.; Souza, P.F.N.; Neto, N.A.S.; Aguiar, T.K.B.; Rodrigues, N.S.; Henrique, C.W.B.; Silva, A.F.B.; Lima, L.B.; Albuquerque, C.C.; Freitas, C.D.T. Essential Oil from Croton blanchetianus Leaves: Anticandidal Potential and Mechanisms of Action. J. Fungi 2022, 8, 1147. [Google Scholar] [CrossRef]
- Martínez, O.I.C.; Ortíz, A.A.; Patino, G.S. Antifungal potential of isoespintanol extracted from Oxandra xylopioides diels (Annonaceae) against intrahospital isolations of Candida spp. Heliyon 2022, 8, e11110. [Google Scholar] [CrossRef]
- Bravo-Chaucanés, C.P.; Vargas-Casanova, Y.; Chitiva-Chitiva, L.C.; Ceballos-Garzon, A.; Modesti-Costa, G.; Parra-Giraldo, C.M. Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation. J. Fungi 2022, 8, 784. [Google Scholar] [CrossRef]
- Sá, F.A.d.S.; Silva, T.C.; Andrade, W.M.; Ávila, R.I.d.; Valadares, M.C.; Costa, C.R.; Santos, A.S.; Feitas, V.A.Q.; Paula, J.R.d.; Silva, M.d.R.R. Antifungal activity of the ethanolic extract and flavonoid avicularin from Myrcia tomentosa (Aubl.) DC. on virulence factors of Candida species. J. Herb. Med. 2023, 38, 100643. [Google Scholar] [CrossRef]
- da Silva, M.L.Q.; de Sousa, G.R.; de Sousa, N.F.; dos Santos, A.T.L.; Coutinho, H.D.M.; Filho, J.M.B.; de Souza Ferrari, J.; Scotti, M.T.; da Rocha, J.B.T.; Morais-Braga, M.F.B. In vitro inhibitory activity of Riparins against Candida spp. strains and in silico interaction with multi-drug-resistance proteins. Process Biochem. 2024, 142, 46–61. [Google Scholar] [CrossRef]
- Lemos, A.S.O.; Florencio, J.R.; Pinto, N.C.C.; Campos, L.M.; Silva, T.P.; Grazul, R.M.; Pinto, P.F.; Tavares, G.D.; Scio, E.; Apolonio, A.C.M.; et al. Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida tropicalis Strain. Front. Microbiol. 2020, 11, 1525. [Google Scholar] [CrossRef] [PubMed]
- Tenorio, C.J.L.; Dantas, T.D.S.; Abreu, L.S.; Ferreira, M.R.A.; Soares, L.A.L. Influence of Major Polyphenols on the Anti-Candida Activity of Eugenia uniflora Leaves: Isolation, LC-ESI-HRMS/MS Characterization and In Vitro Evaluation. Molecules 2024, 29, 2761. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Z.J.; Mei, L.N.; Shen, J.S.; He, X.C.; Luo, X.D. Anti-Candida albicans effect and mechanism of Pachysandra axillaris Franch. J. Ethnopharmacol. 2025, 340, 119284. [Google Scholar] [CrossRef]
- Costa, A.R.; José Weverton, A.-B.; Gonçalves da Silva, T.; Pereira, P.S.; Fernanda de Oliveira Borba, E.; Braga, A.L.; Alencar Fonseca, V.J.; Almeida de Menezes, S.; Henrique da Silva, F.S.; Augusta de Sousa Fernandes, P.; et al. Phytochemical profile and anti-Candida and cytotoxic potential of Anacardium occidentale L. (cashew tree). Biocatal. Agric. Biotechnol. 2021, 37, 102192. [Google Scholar] [CrossRef]
- Harley, B.K.; Neglo, D.; Tawiah, P.; Pipim, M.A.; Mireku-Gyimah, N.A.; Tettey, C.O.; Amengor, C.D.; Fleischer, T.C.; Waikhom, S.D. Bioactive triterpenoids from Solanum torvum fruits with antifungal, resistance modulatory and anti-biofilm formation activities against fluconazole-resistant Candida albicans strains. PLoS ONE 2021, 16, e0260956. [Google Scholar] [CrossRef]
- Kamal, L.Z.M.; Adam, M.A.A.; Shahpudin, S.N.M.; Shuib, A.N.; Sandai, R.; Hassan, N.M.; Tabana, Y.; Basri, D.F.; Than, L.T.L.; Sandai, D. Identification of Alkaloid Compounds Arborinine and Graveoline from Ruta angustifolia (L.) Pers for their Antifungal Potential against Isocitrate lyase (ICL1) gene of Candida albicans. Mycopathologia 2021, 186, 221–236. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Cheng, H.; Li, Y.; Zhou, G. Chelerythrine, a major ingredient isolated from Macleaya cordata (Willd.) R. Br. (Papaveraceae), inhibits fluconazole-resistant Candida albicans biofilms. J. Herb. Med. 2023, 42, 100752. [Google Scholar] [CrossRef]
- Meccatti, V.M.; Santos, L.F.; de Carvalho, L.S.; Souza, C.B.; Carvalho, C.A.T.; Marcucci, M.C.; Abu Hasna, A.; de Oliveira, L.D. Antifungal Action of Herbal Plants’ Glycolic Extracts against Candida Species. Molecules 2023, 28, 2857. [Google Scholar] [CrossRef]
- Mendonca, A.M.S.; Monteiro, C.A.; Moraes-Neto, R.N.; Monteiro, A.S.; Mondego-Oliveira, R.; Nascimento, C.E.C.; da Silva, L.C.N.; Lima-Neto, L.G.; Carvalho, R.C.; de Sousa, E.M. Ethyl Acetate Fraction of Punica granatum and Its Galloyl-HHDP-Glucose Compound, Alone or in Combination with Fluconazole, Have Antifungal and Antivirulence Properties Against Candida spp. Antibiotics 2022, 11, 265. [Google Scholar] [CrossRef] [PubMed]
- Menezes, R.P.; Bessa, M.A.S.; Siqueira, C.P.; Teixeira, S.C.; Ferro, E.A.V.; Martins, M.M.; Cunha, L.C.S.; Martins, C.H.G. Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics 2022, 11, 1154. [Google Scholar] [CrossRef]
- Soliman, M.F.; Shetaia, Y.M.; Tayel, A.A.; Munshi, A.M.; Alatawi, F.A.; Alsieni, M.A.; Al-Saman, M.A. Exploring the Antifungal Activity and Action of Saussurea costus Root Extracts against Candida albicans and Non-Albicans Species. Antibiotics 2022, 11, 327. [Google Scholar] [CrossRef]
- Wang, B.; Tan, H.; Sun, X.; Lin, Z.; Chen, X.; Han, H.; Wang, M.; Wang, Z.; Chen, X.; Deng, Y.; et al. Inhibition of Candida albicans virulence by moscatin from Dendrobium nobile lindl. Microb. Pathog. 2024, 197, 107089. [Google Scholar] [CrossRef] [PubMed]
- Lafraxo, S.; El Barnossi, A.; El Moussaoui, A.; Bourhia, M.; Salamatullah, A.M.; Alzahrani, A.; Ait Akka, A.; Choubbane, A.; Akhazzane, M.; Aboul-Soud, M.A.M.; et al. Essential Oils from Leaves of Juniperus thurifera L., Exhibiting Antioxidant, Antifungal and Antibacterial Activities Against Antibiotic-Resistant Microbes. Horticulturae 2022, 8, 321. [Google Scholar] [CrossRef]
- Shen, J.S.; Wang, Z.J.; Duan, Y.; Mei, L.N.; Zhu, Y.Y.; Wei, M.Z.; Wang, X.H.; Luo, X.D. Antifungal bioactivity of Sarcococca hookeriana var. digyna Franch. against fluconazole-resistant Candida albicans in vitro and in vivo. J. Ethnopharmacol. 2024, 333, 118473. [Google Scholar] [CrossRef]
- Retore, Y.I.; Lucini, F.; Rial, R.C.; Cardoso, C.A.L.; Souza, P.F.N.; Simionatto, S.; Rossato, L. Antifungal activity of Caryocar brasiliense camb. Alone or along with antifungal agents against multidrug-resistant Candida auris. J. Ethnopharmacol. 2024, 330, 118240. [Google Scholar] [CrossRef]
- Mugayi, L.C.; Mukanganyama, S. Antimycobacterial and Antifungal Activities of Leaf Extracts From Trichilia emetica. Scientifica 2024, 2024, 8784390. [Google Scholar] [CrossRef]
- Kaushal, N.; Singh, M.; Singh Sangwan, R. Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res. Int. 2022, 157, 111442. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Jin, Y.S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett. 2019, 29, 126589. [Google Scholar] [CrossRef]
- Rosa, S.O.; Almeida-Apolonio, A.A.; Santos, J.; Leite, C.D.R.; Cupozak-Pinheiro, W.J.; Cardoso, C.A.L.; Castro, T.L.A.; Ferreira, D.G.; Negri, M.; Oliveira, K.M.P. Synergistic potential of Bauhinia holophylla leaf extracts with conventional antifungals in the inhibition of Candida albicans: A new approach for the treatment of oral candidiasis. Arch. Oral Biol. 2024, 170, 106133. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Liu, Z.; Zhu, Z.; Cao, Y. Activity of thonningianin A against Candida albicans in vitro and in vivo. Appl. Microbiol. Biotechnol. 2024, 108, 96. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and Medicinal Uses of Terpenes. In Medicinal Plants; Springer: Cham, Switzerland, 2019; pp. 333–359. [Google Scholar]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef]
- Karunanithi, P.S.; Zerbe, P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. Front. Plant Sci. 2019, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Brown, R.; Kollner, T.G.; Fu, J.; Chen, X.; Wong, G.K.; Gershenzon, J.; Peters, R.J.; Chen, F. Origin and early evolution of the plant terpene synthase family. Proc. Natl. Acad. Sci. USA 2022, 119, e2100361119. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Tian, W.; Cui, X.; Tu, P.; Li, J.; Shi, S.; Liu, X. Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics 2022, 11, 1380. [Google Scholar] [CrossRef]
- Zahara, K.; Bibi, Y.; Masood, S.; Nisa, S.; Qayyum, A.; Ishaque, M.; Shahzad, K.; Ahmed, W.; Shah, Z.H.; Alsamadany, H.; et al. Using HPLC-DAD and GC-MS Analysis Isolation and Identification of Anticandida Compounds from Gui Zhen Cao Herbs (Genus Bidens): An Important Chinese Medicinal Formulation. Molecules 2021, 26, 5820. [Google Scholar] [CrossRef]
- Benziane, M.Y.; Bendahou, M.; Benbelaid, F.; Khadir, A.; Belhadef, H.; Benaissa, A.; Ouslimani, S.; Mahdi, F.; Muselli, A. Efficacy of endemic Algerian essential oils against single and mixed biofilms of Candida albicans and Candida glabrata. Arch. Oral Biol. 2023, 145, 105584. [Google Scholar] [CrossRef]
- Liu, R.; Huang, L.; Feng, X.; Wang, D.; Gunarathne, R.; Kong, Q.; Lu, J.; Ren, X. Unraveling the effective inhibition of α-terpinol and terpene-4-ol against Aspergillus carbonarius: Antifungal mechanism, ochratoxin A biosynthesis inhibition and degradation perspectives. Food Res. Int. 2024, 194, 114915. [Google Scholar] [CrossRef] [PubMed]
- Vasundhara, M.; Reddy, M.S.; Kumar, A. Secondary Metabolites From Endophytic Fungi and Their Biological Activities. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 237–258. [Google Scholar]
- Gur’eva, Y.A.; Zalevskaya, O.A.; Shevchenko, O.G.; Slepukhin, P.A.; Makarov, V.A.; Kuchin, A.V. Copper(II) complexes with terpene derivatives of ethylenediamine: Synthesis, and antibacterial, antifungal and antioxidant activity. RSC Adv. 2022, 12, 8841–8851. [Google Scholar] [CrossRef]
- Zahabib, Z.F.; Sharififarc, F.; Almania, P.G.N.; Salari, S. Antifungal activities of different fractions of Salvia rhytidea Benth as a valuable medicinal plant against different Candida species in Kerman province (Southeast of Iran). Gene Rep. 2020, 19, 100624. [Google Scholar] [CrossRef]
- Ramos-Valdivia, A.C.; Cerda-Garcia-Rojas, C.M. Biosynthesis of oxindole alkaloids: Recent advances and challenges. Curr. Opin. Plant Biol. 2024, 82, 102648. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Wu, Q.; Sheng, W.; Zhou, X.; Cheng, L.; Tian, X.; Yuan, H.; Gong, L.; Wang, W.; Li, B.; et al. Flavonoidal alkaloids: Emerging targets for drug discovery from Nature’s bounty. Fitoterapia 2024, 177, 106099. [Google Scholar] [CrossRef] [PubMed]
- Schlager, S.; Drager, B. Exploiting plant alkaloids. Curr. Opin. Biotechnol. 2016, 37, 155–164. [Google Scholar] [CrossRef]
- Letchuman, S.; Madhuranga, H.D.T.; Kaushalya, M.B.L.N.; Premarathna, A.D.; Saravanan, M. Alkaloids Unveiled: A Comprehensive Analysis of Novel Therapeutic Properties, Mechanisms, and Plant-Based Innovations. Intell. Pharm. 2024; in press. [Google Scholar] [CrossRef]
- Kaushik, B.; Sharma, J.; Yadav, K.; Kumar, P.; Shourie, A. Phytochemical Properties and Pharmacological Role of Plants: Secondary Metabolites. Biosci. Biotechnol. Res. Asia 2021, 18, 23–35. [Google Scholar] [CrossRef]
- Wang, H.; Tian, R.; Chen, Y.; Li, W.; Wei, S.; Ji, Z.; Aioub, A.A.A. In vivo and in vitro antifungal activities of five alkaloid compounds isolated from Picrasma quassioides (D. Don) Benn against plant pathogenic fungi. Pestic. Biochem. Physiol. 2022, 188, 105246. [Google Scholar] [CrossRef]
- Zhao, P.; Yu, Z.; Huang, J.P.; Wang, L.; Huang, S.X.; Yang, J. Four unreported aporphine alkaloids with antifungal activities from Artabotrys hexapetalus. Fitoterapia 2024, 174, 105868. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Sun, Y.; Xiong, Y.; Li, R.; Sui, M.; Gao, Z.; Wang, W.; Sun, H.; Dai, J. Antifungal Activity and Multi-Target Mechanism of Action of Methylaervine on Candida albicans. Molecules 2024, 29, 4303. [Google Scholar] [CrossRef]
- Waller, S.B.; Ripoll, M.K.; Pierobom, R.M.; Rodrigues, P.R.C.; Costa, P.P.C.; Pinto, F.; Pessoa, O.D.L.; Gomes, A.D.R.; de Faria, R.O.; Cleff, M.B. Screening of alkaloids and withanolides isolated from Solanaceae plants for antifungal properties against non-wild type Sporothrix brasiliensis. J. Med. Mycol. 2024, 34, 101451. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.d.C.L.; Uchoa, D.E.d.A.; Pessoa, E.R.S.; Otília Deusdênia, L.; Braz-Filho, R. Glicoalcaloides antifúngicos, flavonoides e outros constituintes químicos de Solanum asperum. Quim. Nova 2011, 34, 284–288. [Google Scholar] [CrossRef]
- Andrade, J.T.; Lima, W.G.; Sousa, J.F.; Saldanha, A.A.; Nivea Pereira De, S.; Morais, F.B.; Prates Silva, M.K.; Ribeiro Viana, G.H.; Johann, S.; Soares, A.C.; et al. Design, synthesis, and biodistribution studies of new analogues of marine alkaloids: Potent in vitro and in vivo fungicidal agents against Candida spp. Eur. J. Med. Chem. 2021, 210, 113048. [Google Scholar] [CrossRef]
- Chaudhary, P.K.; Saini, D.; Mishra, P.; Pandav, K.; Prasad, R. Essential oil active constituents loaded PVA nanofibers enhance antibiofilm activity against Candida albicans and Candida tropicalis. J. Drug Deliv. Sci. Technol. 2024, 98, 105871. [Google Scholar] [CrossRef]
- Oliveira, J.S.; Ribas, B.R.; Ferro, A.C.; Tasso, C.O.; Camargo, R.; Cavalheiro, A.J.; Jorge, J.H. Cryptocarya moschata fractions decrease planktonic cells and biofilms of Candida albicans and Streptococcus mutans. Biofouling 2024, 40, 831–846. [Google Scholar] [CrossRef]
- Chu, F.; Wu, H.; Li, C.; Qiu, W.; Zang, L.; Wu, D.; Shao, J.; Wang, T.; Wang, C. Transcriptomics analysis reveals the effect of Pulsatilla decoction butanol extract on endoplasmic reticulum and peroxisome function of Candida albicans in hyphal state. J. Ethnopharmacol. 2025, 337, 118826. [Google Scholar] [CrossRef] [PubMed]
- Ghojoghi, A.; Zarei Mahmoudabadi, A.; Khodavaisy, S.; Nazar, E.; Fatahinia, M. Unveiling the genotypic diversity of Candida albicans and Candida dubliniensis in the oral cavities of drug abusers in Ahvaz, Iran. Gene Rep. 2024, 37, 102073. [Google Scholar] [CrossRef]
- Ma, Y.; Sui, J.; Wang, Y.; Sun, W.; Yi, G.; Wu, J.; Qiu, S.; Wang, L.; Zhang, A.; He, X. RNA-Seq-Based Transcriptomics and GC-MS Quantitative Analysis Reveal Antifungal Mechanisms of Essential Oil of Clausena lansium (Lour.) Skeels Seeds against Candida albicans. Molecules 2023, 28, 8052. [Google Scholar] [CrossRef]
- Wu, S.; Jia, W.; Lu, Y.; Jiang, H.; Huang, C.; Tang, S.; Du, L. Mechanism and bioinformatics analysis of the effect of berberine-enhanced fluconazole against drug-resistant Candida albicans. BMC Microbiol. 2024, 24, 196. [Google Scholar] [CrossRef]
- Ball, B.; Langille, M.; Geddes-McAlister, J. Fun(gi)omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance. mBio 2020, 11, e01020-20. [Google Scholar] [CrossRef]
- Gallart, M.; Dow, L.; Nowak, V.; Belt, K.; Sabburg, R.; Gardiner, D.M.; Thatcher, L.F. Multi-omic investigation identifies key antifungal biochemistry during fermentation of a Streptomyces biological control agent. Microbiol. Res. 2025, 292, 128032. [Google Scholar] [CrossRef] [PubMed]
- Daoudi, H.; Bouafia, A.; Laouini, S.E.; Meneceur, S.; Fellah, M.; Iqbal, A.; El-Hiti, G.A.; Selmi, B. In vitro and in silico study of biosynthesized silver nanoparticles using Nigella sativa extract against SARS-CoV-2 and Candida albicans. J. Mol. Liq. 2024, 405, 125059. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, T.; Liu, J.; Liu, T.; Gong, W. Biodegradable antimicrobial films prepared in a continuous way by melt extrusion using plant extracts as effective components. Food Chem. 2025, 464, 141643. [Google Scholar] [CrossRef]
- Cervi, V.F.; Saccol, C.P.; da Rosa Pinheiro, T.; Santos, R.C.V.; Sari, M.H.M.; Cruz, L. A novel nanotechnological mucoadhesive and fast-dissolving film for vaginal delivery of clotrimazole: Design, characterization, and in vitro antifungal action. Drug Deliv. Transl. Res. 2022, 12, 2907–2919. [Google Scholar] [CrossRef]
- Nour, E.M.; El-Habashy, S.E.; Shehat, M.G.; Essawy, M.M.; El-Moslemany, R.M.; Khalafallah, N.M. Atorvastatin liposomes in a 3D-printed polymer film: A repurposing approach for local treatment of oral candidiasis. Drug Deliv. Transl. Res. 2023, 13, 2847–2868. [Google Scholar] [CrossRef]
- Saadatzade, A.; Shabaninezhad, K.; Handali, S.; Moghimipour, E. A novel mucoadhesive film containing probiotic extract for oral candidiasis treatment: Formulation and antifungal evaluation. Microb. Pathog. 2024, 196, 106967. [Google Scholar] [CrossRef] [PubMed]
- Farjadian, F.; Mirkiani, S.; Ghasemiyeh, P.; Rahbar Kafshboran, H.; Mehdi-Alamdarlou, S.; Raeisi, A.; Esfandiarinejad, R.; Soleymani, S.; Goshtasbi, G.; Firouzabadi, N.; et al. Smart nanogels as promising platform for delivery of drug, gene, and vaccine; therapeutic applications and active targeting mechanism. Eur. Polym. J. 2024, 219, 113400. [Google Scholar] [CrossRef]
- Hasannezhad, H.; Bakhshi, A.; Mozafari, M.R.; Naghib, S.M. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int. J. Biol. Macromol. 2025, 294, 139248. [Google Scholar] [CrossRef]
- Kolben, Y.; Azmanov, H.; Gelman, R.; Dror, D.; Ilan, Y. Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Ann. Med. 2023, 55, 311–318. [Google Scholar] [CrossRef]
- Wang, Y.; Song, M.; Liu, F.; Liang, Z.; Hong, R.; Dong, Y.; Fu, X.; Yuan, W.; Fang, W.; Li, G.; et al. Artificial intelligence using a latent diffusion model enables the generation of diverse and potent antimicrobial peptides. Sci. Adv. 2025, 11, eadp7171. [Google Scholar] [CrossRef]
Classes of Antifungal Agents | Resistance Genes | References |
---|---|---|
Azoles Fluconazole | CDR1, CDR2 (overexpression of efflux pumps) MDR1 (drug transporter) TAC1 (gain-of-function mutations/transcription factors) ERG3 and ERG11 (genes encoding lanosterol 14α-demethylase) | [21,22,23] |
Polyenes Amphotericin B | ERG3, ERG5, ERG6, ERG11 (target genes—ergosterol biosynthesis) FKS1 | [12,24,25] |
Echinocandins Caspofungin | FKS1 and FKS2 (genes encoding β-1,3-D-glucan synthase) ERG3 (gene encoding sterol Δ5,6-desaturase) | [24,26,27,28] |
Pyrimidine 5-Fluorocytosine | FUMP (blocking formation) FCY1 and FUR1 (decreased uranil phosphoribosyltransferase-UPRTase activity) | [4,5,11,18] |
Plant/Derivative | Compounds/Identification Method | Mechanism of Action | Candida Species | MIC (μg/mL) | References |
---|---|---|---|---|---|
Fridericia chica/extract | Scutellarein-O-glucuronide and 5-methyl-scutellarein-O-glucuronide/UPLC-ESI-MS | Morphogenesis Inhibition | C. albicans (ATCC 10231) AR C. albicans (ATCC 18804) C. albicans (ATCC 2091) C. albicans (SC 5314) C. albicans Isolates C. krusei (ATCC 34135) FR+RI | 512 512 512 512 256 to 1.024 512 | [51] |
Annona muricata/extract | Rutin, kaempferol-3O-rutinoside, xylopine, and caffeic acid/UFLC-QTOF-MS | Damage to the Fungal Membrane and Envelope | C. albicans (ATCC 10231) AR | 1000 | [36] |
Origanum vulgare/Essential oil | Thymol, 4-terpineol, and γ-terpinene/GC-MS | Anti-Adhesion and Morphogenesis Inhibition | C. albicans (ATCC 90029) C. albicans (ATCC 10231) AR C. krusei (ATCC 6258) FR+RI C. dubliniensis (CD36) | 0.01 0.97 5.33 2.61 | [52] |
Erythrina senegalensis/extract | Neobavaisoflavone, alpinumisoflavone, cristacarpine, and 6,8-diprenylgenistein/UPLC-ESI-QTOF-MS/MS | Multiple | C. albicans (ATCC 10231) AR C. albicans (SC5314) FR C. glabrata (ATCC 2001) AR | 15.63 31.25 7.81 | [53] |
Eugenia uniflora/extract | Gallic acid and myricitrin/HPLC-DAD | Binding to α-14-Sterol Reductase and 1,3-β-Glucan Synthase | C. albicans (ATCC 90028) C. dubliniesis (CBS 7987) C. tropicalis (ATCC 13803) C. parapsilosis (ATCC 22019) C. glabrata (ATCC 2001) AR | 312.5 312.5 625 312.5 625 | [54] |
Spondias tuberosa/extract | Hyperoside and gallic acid/HPLC-DAD and NMR | High Levels of Mitochondrial Superoxide Anion, Hyperpolarization, and Lysosomal Membrane Damage | C. albicans Isolates C. glabrata | 2000 78 | [55] |
Callistemon citrinus/extract | Tormentic acid/NMR | Membrane Damage | C. albicans (NCPF 3255) FR | 100 | [56] |
Cinnamomum verum/essential oil | Cinnamaldehyde, 1,8-cineole, and α-copaene/GC-MS | Unknown | C. albicans (ATCC 10231) AR | 62.5 | [57] |
Brysonima gardneriana/extract | Pyroglutamic acid, eucalyptol, and octanoic acid/GC-MS | Membrane Disruption and Oxidative Stress | C. albicans (ATCC 10231) AR C. glabrata (ATCC 90030) C. krusei (ATCC 6258) FR+RI | 125 125 250 | [44] |
Myrtus communis/extract and fraction | Terpenes/Total terpenoids content | Unknown | C. albicans (ATCC 76645) FR C. albicans resistant to nystatin | 62.5 to 250 62.5 to 250 | [58] |
Croton blanchetianus/essential oil | Limonene, sabinene, terpinen-4-ol, borneol/GC-MS-MS | Plasma Membrane Damage and Oxidative Stress | C. albicans (ATCC 10231) AR C. parapsilosis (ATCC 22019) | 50 | [59] |
Oxandra xylopioides/extract | Isoespintanol/GC-MS | Plasma Membrane Damage | C. albicans Isolates C. auris C. glabrata C. tropicalis | 452.4 to 493 453.5 496 450.4 to 503.3 | [60] |
Piper nigrum/extract and fraction | Piperine/LC-MS QqQ | Cell Wall Lysis | C. albicans (SC5314) FR C. albicans (CAAL256) CI+FR C. auris (CAAU435) CI C. auris (CAAU537) CI+FR+ABR | 2048 1024 512 512 | [61] |
Myrcia tomentosa/extract and fraction | Avicularin/NMR | Anti-Adhesion and Morphological Alterations | C. albicans (ATCC 90028) C. parapsilosis (ATCC 22019) | 32 16 | [62] |
Aniba riparia/ isolated | Riparin/NMR and ESI-MS | Efflux Pump Inhibition (MDR1, CDR1, and CDR2 Genes) | C. albicans (ATCC 10231) AR C. tropicalis (ATCC 13803) C. krusei (ATCC 34135) FR+RI | 256 128 256 | [63] |
Mitracarpus frigidus/extract and fraction | Scopoletin/HPLC-PDA | Cell Wall, Plasma Membrane Sterols, and Efflux Pump Inhibition | C. tropicalis (ATCC 28707) ABR | 50 | [64] |
Eugenia uniflora/extract | Myricitrin, ellagic acid, and gallic acid/LC-ESI-HRMS/MS | Associated with Cell Wall Inhibition | C. albicans (ATCC 90028) C. glabrata (ATCC 2001) FR C. auris (CDC B11903) FR+ABR | 250 125 31.2 | [65] |
Pachysandra axillaris/extract | Sarcovagine D, Epipachysamine D, Pachysamine M/NMR/HR-ESI-MS | Inhibition of Ergosterol Biosynthesis (ERG4, ERG7, ERG9, ERG1, and ERG24), Disruption of Cell Membrane Homeostasis, and Accumulation of Oxidative Stress | C. albicans (SC5314) FR | 4 | [66] |
Anacardium occidentale/extract | Gallic acid, luteolin and agathisflavone/ UPLC-DAD/QTOF-MS | Increased Permeability of the Fungal Membrane | C. albicans (INCQS 40006) FR C. krusei (INCQS 40095) FR C. tropicalis (INCQS 40042) FR | 376.6 395.3 352.3 | [67] |
Solanum torvum/extract and fraction | 3-oxo-friedelan-20α-oic acid, betulinic acid, oleanolic acid and sitosterol-3-β-D-glucopyranoside/NMR | Disruption of the Fungal cell Wall and Membrane | C. albicans Isolates FR | 250–2000 | [68] |
Ruta angustifolia/extract and fraction | Aborimine and graveoline/NMR/HPLC | Inhibition of the ICL1 Gene | C. albicans (ATCC 10231) FR | 250–500 | [69] |
Acleaya cordata/extract | Chelerythrine/HPLC | Reducing the CSH, Inhibiting the cAMP Pathway, Increased cell Membrane Permeability and ROS Accumulation | C. albicans (SC5314) FR C. albicans (CA16) CI+FR | 2–128 8–128 | [70] |
Rosmarinus officinalis/extract | p-coumaric acid, chlorogenic acid and gallotannin/ HPLC-DAD | Increase Mitochondrial Depolarization, Production of Reactive Oxygen Species, and Causes DNA Fragmentation | C. albicans (ATCC 18804) C. ddubliniensis (ATCC MYA 646) C. tropicalis (ATCC 13803) C. krusei (ATCC 6258) FR+RI | 25,000–50,000 | [71] |
Punica granatum/extract | Gallotanin, quercentin/HPLC-DAD | 50,000 | |||
Rosa centifolia/extract | Derivative of quercetin, gallic acid, gallotannins, p-coumaric acid/HPLC-DAD | 12,500–25,000 | |||
Curcuma longa/extract | Curcumin/HPLC-DAD | 25,000 | |||
Punica granatum/fraction | Galloy-hexahydroxydiphenoyl-glucose/HPLC-DAD-ESI-IT/MS | Reducing Candida Phospholipase Production | C. albicans (ATCC 90028) C. albicans CAS CI C. glabrata (ATCC 2001) C. glabrata FJF CI | >500 >500 125 31.25 | [72] |
Capsicum chinense/extract | Capsaicin and dihydrocapsaicin/LC-ESI-MS | Lyse of the Cell Wall, Inhibition of Hemolytic Activity | Candida albicans (ATCC 90028 and CI) Candida glabrata (ATCC 2001 and CI) FR Candida krusei (ATCC 6258 and CI) FR Candida parapsilosis (ATCC 22019 and CI) Candida tropicalis (ATCC 13803 and CI) | 1500–3000 3000 | [73] |
Saussurea costus/extracts | Dehydrocostuslactone, 11,14,17-eicosatrienoic acid methyl ester/GC/MS | Cell Wall Damage | C. albicans (ATCC 10231) FR C. tropicalis (MH 445555) C. parapsilosis (MH 445556) C. pseudotropicalis (Biochemical ID) C. guillimondii (Biochemical ID) Candida Isolates | 1000–3000 1000–4000 1000–3500 250–4500 1000–3000 200–4500 | [74] |
Dendrobium nobile | Moscatin | Modify Ergosterol Synthesis Pathway Genes (ERG1, ERG3, and ERG11), Heat Shock Protein Genes (HSP12, HSP21, HSP30, and HSP70), and Agglutinin-like Sequence Families (ALS2 and ALS4) | C. albicans (SC5314) AR C. albicans Isolates FR | 20 40–80 | [75] |
Jeniperus thurifera L./essencial oil | α-thujene, elemol and muurolol/GC-MS | Unknown | C. albicans (ATCC 10231) FR | 0.095 | [76] |
Sarcococca hookeriana/extract and fraction | Sarcovagine D/ UPLC-QTOF-MS | Disruption of the Cell Membrane and Biofilms; Interference With the Sphingolipid Pathway. | C. albicans (08030401) FR | 16 | [77] |
Caryocar brasiliense/extract | Polyphenols/ spectrophotometer | Inhibition of Cell Growth, Damage to the Cell Wall and Plasma Membrane. | C. albicans (ATCC 90029) 5FR C. tropicalis (ATCC 750) C. auris FR Isolates | 32–128 | [78] |
Trichilia emetica/extracts | Gamabufatolin, 9-octadecen-1-ol(Z), octadecanoic acid, rescinnamine, cis-9-tetradecen-1-ol, toluene and 2,4-di-tert-butylphenol/CG-MS | Inhibition of Cell Wall Synthesis and Leakage of Nucleic Acids from the Plasma Membrane | C. albicans (NCPF 3255) FR C. tropicalis Isolates | 1000 250 | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dantas, T.d.S.; Machado, J.C.B.; Ferreira, M.R.A.; Soares, L.A.L. Bioactive Plant Compounds as Alternatives Against Antifungal Resistance in the Candida Strains. Pharmaceutics 2025, 17, 687. https://doi.org/10.3390/pharmaceutics17060687
Dantas TdS, Machado JCB, Ferreira MRA, Soares LAL. Bioactive Plant Compounds as Alternatives Against Antifungal Resistance in the Candida Strains. Pharmaceutics. 2025; 17(6):687. https://doi.org/10.3390/pharmaceutics17060687
Chicago/Turabian StyleDantas, Thainá dos Santos, Janaina Carla Barbosa Machado, Magda Rhayanny Assunção Ferreira, and Luiz Alberto Lira Soares. 2025. "Bioactive Plant Compounds as Alternatives Against Antifungal Resistance in the Candida Strains" Pharmaceutics 17, no. 6: 687. https://doi.org/10.3390/pharmaceutics17060687
APA StyleDantas, T. d. S., Machado, J. C. B., Ferreira, M. R. A., & Soares, L. A. L. (2025). Bioactive Plant Compounds as Alternatives Against Antifungal Resistance in the Candida Strains. Pharmaceutics, 17(6), 687. https://doi.org/10.3390/pharmaceutics17060687