Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care
Abstract
1. Introduction
1.1. Clinical Need and Benefit
1.2. Long-Acting Injection for Local and Systemic Treatment
2. Classification, Materials, and Design Approaches for Long-Acting Formulations
3. Technological Approaches in Long-Acting Formulations
3.1. In Situ Depots
3.2. Hydrogels
3.3. Implants
3.4. Oily Solutions
3.5. Suspended Solids
3.6. Liposomes
3.7. Microparticles/Microspheres
3.8. Nanoparticle-Based Approaches
4. Characterization Methodologies for Long-Acting Formulations
4.1. Morphological Examination
4.2. Rheological Properties
4.3. Differential Scanning Calorimetry (DSC)
4.4. Thermo-Gravimetric Analysis (TGA)
4.5. Fourier-Transform Infrared (FTIR) Spectroscopy
4.6. X-Ray Diffraction
4.7. Encapsulation Efficiency (EE)
4.8. In Vitro Drug Release Studies
4.9. Syringeability
4.10. Sterilization
5. In Vitro Drug Release Testing of Long-Acting Formulations and Its Challenges
5.1. Sample-and-Separate Method
5.2. Continuous Flow
5.3. Dialysis Method
5.4. Standardized Methods
5.5. Accelerated In Vitro Dissolution Testing Methods for Long-Acting Parenteral Products
6. In Vitro and In Vivo Correlation
7. Physical and Chemical Stability of Long-Acting Drug Delivery Systems
8. Safety, Biodegradability, and Biocompatibility Considerations of Long-Acting Drug Delivery Systems
9. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAT | Animal-assisted therapy |
ECM | Extra cellular matrix |
GA | Glycolic acid |
HCL | Hydrochloric acid |
HIV | Human immunodeficiency virus |
IA | Intra-articular |
IM | Intramuscular |
IPD | Intra-periodontal |
IV | Intravenous |
IVIVC | In vitro and in vivo correlation |
LA | Lactic acid |
LAIs | Long-acting injectables |
NA | Not applicable |
NSAIDs | Non-steroidal anti-inflammatory drugs |
OTM | Oral transmucosal route |
PCL | Polycaprolactone |
PLA | Polylactic acid |
PLGA | Poly(lactic-co-glycolic acid) |
PD | Periodontal diseases |
RTU | Ready to use |
SC | Subcutaneous |
SGA | Second generation antipsychotics |
SLN | Solid lipid nanoparticles |
USFDA | United States Food and Drug Administration |
USP | United States Pharmacopeia |
References
- Benedetti, M.S.; Whomsley, R.; Poggesi, I.; Cawello, W.; Mathy, F.-X.; Delporte, M.-L.; Papeleu, P.; Watelet, J.-B. Drug metabolism and pharmacokinetics. Drug Metab. Rev. 2009, 41, 344–390. [Google Scholar] [CrossRef] [PubMed]
- Baggot, J.D. The Physiological Basis of Veterinary Clinical Pharmacology; Blackwell Science: Hoboken, NJ, USA, 2001. [Google Scholar]
- Martinez, M.N.; Mochel, J.P.; Neuhoff, S.; Pade, D. Comparison of canine and human physiological factors: Understanding interspecies differences that impact drug pharmacokinetics. AAPS J. 2021, 23, 59. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Sanda, S.; Regmi, N.; Sasaki, K.; Shimoda, M. Characterization of cytochrome P450-mediated drug metabolism in cats. J. Vet. Pharmacol. Ther. 2007, 30, 422–428. [Google Scholar] [CrossRef]
- Frandson, R.; Spurgeon, T. Anatomy and physiology of farm animals. Evaluation 1992, 3, 4. [Google Scholar]
- McReynolds, T. 8 Veterinary Drugs with Human Health Hazards. Trends. 4 April 2023. Available online: https://www.aaha.org/newstat/publications/8-veterinary-drugs-with-human-health-hazards/?utm_source=chatgpt.com (accessed on 30 November 2024).
- National Research Council. The Use of Drugs in Food Animals: Benefits and Risks; National Academies Press: Washington, DC, USA, 1999. [Google Scholar]
- Martinez, M.; Augsburger, L.; Johnston, T.; Jones, W.W. Applying the Biopharmaceutics Classification System to veterinary pharmaceutical products: Part I: Biopharmaceutics and formulation considerations. Adv. Drug Deliv. Rev. 2002, 54, 805–824. [Google Scholar] [CrossRef]
- Purewal, R.; Christley, R.; Kordas, K.; Joinson, C.; Meints, K.; Gee, N.; Westgarth, C. Companion Animals and Child/Adolescent Development: A Systematic Review of the Evidence. Int. J. Environ. Res. Public Health 2017, 14, 234. [Google Scholar] [CrossRef]
- Brooks, H.L.; Rushton, K.; Lovell, K.; Bee, P.; Walker, L.; Grant, L.; Rogers, A. The power of support from companion animals for people living with mental health problems: A systematic review and narrative synthesis of the evidence. BMC Psychiatry 2018, 18, 31. [Google Scholar] [CrossRef]
- Veilleux, A. Benefits and challenges of animal-assisted therapy in older adults: A literature review. Nurs. Stand. 2021, 36, 28–33. [Google Scholar] [CrossRef]
- Phung, A.; Joyce, C.; Ambutas, S.; Browning, M.; Fogg, L.; Christopher, B.-A.; Flood, S. Animal-assisted therapy for inpatient adults. Nursing2023 2017, 47, 63–66. [Google Scholar] [CrossRef]
- Villafaina-Domínguez, B.; Collado-Mateo, D.; Merellano-Navarro, E.; Villafaina, S. Effects of Dog-Based Animal-Assisted Interventions in Prison Population: A Systematic Review. Animals 2020, 10, 2129. [Google Scholar] [CrossRef]
- Coakley, A.B.; Annese, C.D.; Empoliti, J.H.; Flanagan, J.M. The Experience of Animal Assisted Therapy on Patients in an Acute Care Setting. Clin. Nurs. Res. 2021, 30, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Gharagozloo, F. Pain management following robotic thoracic surgery. Mini-Invasive Surg. 2020, 4, 8. [Google Scholar] [CrossRef]
- Schwendeman, S.P.; Shah, R.B.; Bailey, B.A.; Schwendeman, A.S. Injectable controlled release depots for large molecules. J. Control. Release 2014, 190, 240–253. [Google Scholar] [CrossRef]
- Homayun, B.; Lin, X.; Choi, H.J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef]
- Vinarov, Z.; Abdallah, M.; Agundez, J.A.G.; Allegaert, K.; Basit, A.W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B.T.; Grimm, M.; et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur. J. Pharm. Sci. 2021, 162, 105812. [Google Scholar] [CrossRef]
- Lucas, C.J.; Galettis, P.; Schneider, J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef]
- Ahmed, I.; Kasraian, K. Pharmaceutical challenges in veterinary product development. Adv. Drug Deliv. Rev. 2002, 54, 871–882. [Google Scholar] [CrossRef]
- Sun, Y.; Scruggs, D.W.; Peng, Y.; Johnson, J.R.; Shukla, A.J. Issues and challenges in developing long-acting veterinary antibiotic formulations. Adv. Drug Deliv. Rev. 2004, 56, 1481–1496. [Google Scholar] [CrossRef]
- Chaudhary, K.; Patel, M.M.; Mehta, P.J. Long-acting injectables: Current perspectives and future promise. Crit. Rev. Ther. Drug Carr. Syst. 2019, 36, 137–181. [Google Scholar] [CrossRef]
- Manasa, C.; Likhitha, U.; Nayak, U.Y. Revolutionizing Animal Health: A Comprehensive Review of Long-Acting Formulations. J. Drug Deliv. Sci. Technol. 2024, 101, 106226. [Google Scholar] [CrossRef]
- Nyaku, A.N.; Kelly, S.G.; Taiwo, B.O. Long-acting antiretrovirals: Where are we now? Curr. HIV/AIDS Rep. 2017, 14, 63–71. [Google Scholar] [CrossRef] [PubMed]
- ViiV Healthcare. Cabenuva Safety Information. Available online: https://www.cabenuva.com/ (accessed on 30 April 2025).
- Invega Sustenna. Patient Leaflet Information. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/022264s023lbl.pdf (accessed on 20 December 2024).
- Risperdal Consta. Patient Information Leaflet. 2024. Available online: https://www.medicines.org.uk/emc/files/pil.1690.pdf (accessed on 20 December 2024).
- Depocyt. Patient Leaflet information. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021041s031lbl.pdf (accessed on 20 December 2024).
- Deport, L. Patient Information Leaflet. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020517s036_019732s041lbl.pdf (accessed on 20 December 2024).
- Nguyen, V.T.T.; Darville, N.; Vermeulen, A. Pharmacokinetics of long-acting aqueous nano-/microsuspensions after intramuscular administration in different animal species and humans—A review. AAPS J. 2022, 25, 4. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, M.J.; McDowell, A. Long Acting Animal Health Drug Products: Fundamentals and Applications. 2012. Available online: https://vetbooks.ir/long-acting-animal-health-drug-products-fundamentals-and-applications/ (accessed on 30 April 2025).
- Thapa Magar, K.; Boucetta, H.; Zhao, Z.; Xu, Y.; Liu, Z.; He, W. Injectable long-acting formulations (ILAFs) and manufacturing techniques. Expert Opin. Drug Deliv. 2024, 21, 881–904. [Google Scholar] [CrossRef]
- McDonald, T.A.; Zepeda, M.L.; Tomlinson, M.J.; Bee, W.H.; Ivens, I.A. Subcutaneous administration of biotherapeutics: Current experience in animal models. Curr. Opin. Mol. Ther. 2010, 12, 461–470. [Google Scholar] [PubMed]
- Leenaars, M.; Hendriksen, C. Influence of Route of Injection on Efficacy and Side Effects of Immunisation. Altex 1998, 15, 87. [Google Scholar]
- Slovis, N.M.; Wilson, D.; Stanley, S.; Lakritz, J.; Mihalyi, J.; Kollias-Baker, C. Comparative Pharmacokinetics and Bioavailability of Ceftiofur in Horses After Intravenous, Intramuscular, and Subcutaneous Administration. AAEP Proc. 2006, 52, 329–330. Available online: https://www.researchgate.net/profile/Jeffrey-Lakritz/publication/265098740_Comparative_Pharmacokinetics_and_Bioavailability_of_Ceftiofur_in_Horses_After_Intravenous_Intramuscular_and_Subcutaneous_Administration/links/547473d10cf245eb436ddc90/Comparative-Pharmacokinetics-and-Bioavailability-of-Ceftiofur-in-Horses-After-Intravenous-Intramuscular-and-Subcutaneous-Administration.pdf (accessed on 30 April 2025).
- McGlone, J.; Guay, K.; Garcia, A. Comparison of intramuscular or subcutaneous injections vs. castration in pigs—Impacts on behavior and welfare. Animals 2016, 6, 52. [Google Scholar] [CrossRef]
- Giordano, T.; Steagall, P.V.; Ferreira, T.H.; Minto, B.W.; de Sá Lorena, S.E.R.; Brondani, J.; Luna, S.P. Postoperative analgesic effects of intravenous, intramuscular, subcutaneous or oral transmucosal buprenorphine administered to cats undergoing ovariohysterectomy. Vet. Anaesth. Analg. 2010, 37, 357–366. [Google Scholar] [CrossRef]
- Steagall, P.; Carnicelli, P.; Taylor, P.; Luna, S.P.L.; Dixon, M.; Ferreira, T. Effects of subcutaneous methadone, morphine, buprenorphine or saline on thermal and pressure thresholds in cats. J. Vet. Pharmacol. Ther. 2006, 29, 531–537. [Google Scholar] [CrossRef]
- Steagall, P.V.; Taylor, P.M.; Brondani, J.T.; Luna, S.P.; Dixon, M.J.; Ferreira, T.H. Effects of buprenorphine, carprofen and saline on thermal and mechanical nociceptive thresholds in cats. Vet. Anaesth. Analg. 2007, 34, 344–350. [Google Scholar] [CrossRef]
- Broster, C.; Burn, C.; Barr, A.; Whay, H. The range and prevalence of pathological abnormalities associated with lameness in working horses from developing countries. Equine Vet. J. 2009, 41, 474–481. [Google Scholar] [CrossRef]
- Onodera, S.; Suzuki, K.; Matsuno, T.; Kaneda, K.; Takagi, M.; Nishihira, J. Macrophage migration inhibitory factor induces phagocytosis of foreign particles by macrophages in autocrine and paracrine fashion. Immunology 1997, 92, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.H. Intra-articular drug delivery: The challenge to extend drug residence time within the joint. Vet. J. 2011, 190, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Katzman, S.A.; Cissell, D.; Leale, D.; Perez-Nogues, M.; Hall, M.D.; Bloom, G.; Hamamoto-Hardman, B.; Wu, C.-Y.; Haudenschild, A.K.; Liu, G.-Y. Intra-articular injection of an extended-release flavopiridol formulation represents a potential alternative to other intra-articular medications for treating equine joint disease. Am. J. Vet. Res. 2024, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cokelaere, S.M.; Groen, W.M.; Plomp, S.G.; de Grauw, J.C.; van Midwoud, P.M.; Weinans, H.H.; van de Lest, C.H.; Tryfonidou, M.A.; van Weeren, P.R.; Korthagen, N.M. Sustained Intra-Articular Release and Biocompatibility of Tacrolimus (FK506) Loaded Monospheres Composed of [PDLA-PEG1000]-b-[PLLA] Multi-Block Copolymers in Healthy Horse Joints. Pharmaceutics 2021, 13, 1438. [Google Scholar] [CrossRef]
- Wallis, C.; Holcombe, L.J. A review of the frequency and impact of periodontal disease in dogs. J. Small Anim. Pract. 2020, 61, 529–540. [Google Scholar] [CrossRef]
- Cunha, E.; Tavares, L.; Oliveira, M. Revisiting periodontal disease in dogs: How to manage this new old problem? Antibiotics 2022, 11, 1729. [Google Scholar] [CrossRef]
- Yi, T.; Zhuang, G.; Wang, Y. Delivery of active minocycline hydrochloride by local sustained-release system of complex and thermoresponsive hydrogel for dogs. Arq. Bras. Med. Veterinária E Zootec. 2022, 74, 641–648. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, Y.; Xiong, J.; Liu, H.; Lv, G.; Zhao, J.; He, H.; Gou, J.; Yin, T.; Tang, X. A multiple controlled-release hydrophilicity minocycline hydrochloride delivery system for the efficient treatment of periodontitis. Int. J. Pharm. 2023, 636, 122802. [Google Scholar] [CrossRef]
- Larrañeta, E.; Singh, T.R.R.; Donnelly, R.F. Overview of the clinical current needs and potential applications for long-acting and implantable delivery systems. In Long-Acting Drug Delivery Systems; Woodhead Publishing: Sawston, UK, 2022; pp. 1–16. [Google Scholar]
- Pacheco, C.; Baiao, A.; Ding, T.; Cui, W.; Sarmento, B. Recent advances in long-acting drug delivery systems for anticancer drug. Adv. Drug Deliv. Rev. 2023, 194, 114724. [Google Scholar] [CrossRef]
- Li, W.; Tang, J.; Lee, D.; Tice, T.R.; Schwendeman, S.P.; Prausnitz, M.R. Clinical translation of long-acting drug delivery formulations. Nat. Rev. Mater. 2022, 7, 406–420. [Google Scholar] [CrossRef]
- Packhaeuser, C.; Schnieders, J.; Oster, C.; Kissel, T. In situ forming parenteral drug delivery systems: An overview. Eur. J. Pharm. Biopharm. 2004, 58, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Bassyouni, F.; ElHalwany, N.; Abdel Rehim, M.; Neyfeh, M. Advances and new technologies applied in controlled drug delivery system. Res. Chem. Intermed. 2015, 41, 2165–2200. [Google Scholar] [CrossRef]
- Capen, R.; Christopher, D.; Forenzo, P.; Ireland, C.; Liu, O.; Lyapustina, S.; O’Neill, J.; Patterson, N.; Quinlan, M.; Sandell, D. On the shelf life of pharmaceutical products. AAPS PharmSciTech 2012, 13, 911–918. [Google Scholar] [CrossRef]
- Heller, J.; Barr, J.; Ng, S.Y.; Abdellauoi, K.S.; Gurny, R. Poly(ortho esters): Synthesis, characterization, properties and uses. Adv. Drug Deliv. Rev. 2002, 54, 1015–1039. [Google Scholar] [CrossRef]
- Carlo Altamura, A.; Sassella, F.; Santini, A.; Montresor, C.; Fumagalli, S.; Mundo, E. Intramuscular preparations of antipsychotics: Uses and relevance in clinical practice. Drugs 2003, 63, 493–512. [Google Scholar] [CrossRef]
- Neuhofer, C. Development of Lipid Based Depot Formulations Using Interferon-Beta-1b as a Model Protein. Ph.D. Thesis, Ludwig-Maximilians-Universität München, Munich, Germany, 2015. [Google Scholar]
- Zhang, T.; Luo, J.; Peng, Q.; Dong, J.; Wang, Y.; Gong, T.; Zhang, Z. Injectable and biodegradable phospholipid-based phase separation gel for sustained delivery of insulin. Colloids Surf. B Biointerfaces 2019, 176, 194–201. [Google Scholar] [CrossRef]
- Li, H.; Liu, T.; Zhu, Y.; Fu, Q.; Wu, W.; Deng, J.; Lan, L.; Shi, S. An in situ-forming phospholipid-based phase transition gel prolongs the duration of local anesthesia for ropivacaine with minimal toxicity. Acta Biomater. 2017, 58, 136–145. [Google Scholar] [CrossRef]
- Rachmawati, H.; Arvin, Y.A.; Asyarie, S.; Anggadiredja, K.; Tjandrawinata, R.R.; Storm, G. Local sustained delivery of bupivacaine HCl from a new castor oil-based nanoemulsion system. Drug Deliv. Transl. Res. 2018, 8, 515–524. [Google Scholar] [CrossRef]
- Tiberg, F.; Roberts, J.; Cervin, C.; Johnsson, M.; Sarp, S.; Tripathi, A.P.; Linden, M. Octreotide sc depot provides sustained octreotide bioavailability and similar IGF-1 suppression to octreotide LAR in healthy volunteers. Br. J. Clin. Pharmacol. 2015, 80, 460–472. [Google Scholar] [CrossRef]
- Báez-Santos, Y.M.; Otte, A.; Mun, E.A.; Soh, B.-K.; Song, C.-G.; Lee, Y.-N.; Park, K. Formulation and characterization of a liquid crystalline hexagonal mesophase region of phosphatidylcholine, sorbitan monooleate, and tocopherol acetate for sustained delivery of leuprolide acetate. Int. J. Pharm. 2016, 514, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cao, J.; Li, H.; Liu, H.; Han, F.; Liu, Z.; Tong, C.; Li, S. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: Synthesis, properties and in vivo evaluation. Drug Deliv. 2016, 23, 3168–3178. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Baldursdottir, S.; Yang, M.; Mu, H. Lipid and PLGA hybrid microparticles as carriers for protein delivery. J. Drug Deliv. Sci. Technol. 2018, 43, 65–72. [Google Scholar] [CrossRef]
- Janich, C.; Friedmann, A.; Martins de Souza e Silva, J.; Santos de Oliveira, C.; Souza, L.E.d.; Rujescu, D.; Hildebrandt, C.; Beck-Broichsitter, M.; Schmelzer, C.E.; Mäder, K. Risperidone-Loaded PLGA–Lipid Particles with Improved Release Kinetics: Manufacturing and Detailed Characterization by Electron Microscopy and Nano-CT. Pharmaceutics 2019, 11, 665. [Google Scholar] [CrossRef]
- Kanwar, N.; Sinha, V.R. In situ forming depot as sustained-release drug delivery systems. Crit. Rev. Ther. Drug Carr. Syst. 2019, 36, 93–136. [Google Scholar] [CrossRef]
- Dadey, E.J. The Atrigel Drug Delivery System. In Modified-Release Drug Delivery Technology; CRC Press: Boca Raton, FL, USA, 2008; pp. 211–218. [Google Scholar]
- Rathbone, M.J.; Martinez, M.N. Modified release drug delivery in veterinary medicine. Drug Discov. Today 2002, 7, 823–829. [Google Scholar] [CrossRef]
- Sullivan, S.; Gibson, J.; Burns, P.; Franz, L.; Squires, E.; Thompson, D.; Tipton, A. Sustained Release of Progesterone and Estradiol from the Saber® Delivery System: In Vitro and In Vivo Release Rates. Proc. Control. Release Soc. 1998, 25, 653–654. Available online: https://repository.lsu.edu/animalsciences_pubs/1267/ (accessed on 30 December 2024).
- Reynolds, R.; Chappel, C. Sucrose acetate isobutyrate (SAIB): Historical aspects of its use in beverages and a review of toxicity studies prior to 1988. Food Chem. Toxicol. 1998, 36, 81–93. [Google Scholar] [CrossRef]
- Rathbone, M.J.; Hadgraft, J.; Roberts, M.S.; Lane, M.E. Modified-Release Drug Delivery Technology; Marcel Dekker: New York, NY, USA, 2003; Volume 1. [Google Scholar]
- Duracet. POSIDUR SABER. 2024. Available online: https://www.durect.com/2014/04/durect-announces-posidur-saber-bupivacaine-data-presentations-at-the-39th-annual-american-society-of-regional-anesthetic-and-pain-medicine-meeting/ (accessed on 20 December 2024).
- Sekar, M.; Okumu, F.; Van Osdor, W.; Tamraz, W.; Tung, D.; Sverdrup, F. SABER™ formulation for intra-articular delivery of recombinant human growth hormone. In Proceedings of the 2009 AAPS National Biotechnology Conference, Poster# NBC-09-00476, Seattle, WA, USA, 21–24 June 2009. [Google Scholar]
- Wright, J.C.; Bannister, R.; Chen, G.; Lucas, C. Alzamer depot bioerodible polymer technology. In Modified-Release Drug Delivery Technology; CRC Press: Boca Raton, FL, USA, 2002; pp. 663–670. [Google Scholar]
- Zentner, G.M.; Rathi, R.; Shih, C.; McRea, J.C.; Seo, M.-H.; Oh, H.; Rhee, B.; Mestecky, J.; Moldoveanu, Z.; Morgan, M. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control. Release 2001, 72, 203–215. [Google Scholar] [CrossRef]
- Elstad, N.L.; Fowers, K.D. OncoGel (ReGel/paclitaxel)—Clinical applications for a novel paclitaxel delivery system. Adv. Drug Deliv. Rev. 2009, 61, 785–794. [Google Scholar] [CrossRef]
- Geng, Z.X.; Li, H.M.; Tian, J.; Liu, T.F.; Yu, Z.G. Study of pharmacokinetics of an in situ forming gel system for controlled delivery of florfenicol in pigs. J. Vet. Pharmacol. Ther. 2015, 38, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, V.; Durst, M.; Arras, M.; Detampel, P.; Jirkof, P.; Huwyler, J. Design and in vivo evaluation of a microparticulate depot formulation of buprenorphine for veterinary use. Sci. Rep. 2020, 10, 17295. [Google Scholar] [CrossRef] [PubMed]
- Cokelaere, S.; Plomp, S.; de Leeuw, M.; van Weeren, R.; Korthagen, N. Sustained intra-articular release of celecoxib from in situ forming hydrogels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in an equine model of osteoarthritis. Osteoarthr. Cartil. 2016, 24, S525–S526. [Google Scholar] [CrossRef]
- Lai, W.F.; He, Z.D. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J. Control. Release 2016, 243, 269–282. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, A.; Wang, X.; Belhadj, Z.; Wang, J.; Zhang, Q. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharm. Sin. B 2021, 11, 2396–2415. [Google Scholar] [CrossRef]
- Afinjuomo, F.; Fouladian, P.; Parikh, A.; Barclay, T.G.; Song, Y.; Garg, S. Preparation and Characterization of Oxidized Inulin Hydrogel for Controlled Drug Delivery. Pharmaceutics 2019, 11, 356. [Google Scholar] [CrossRef]
- Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical applications of hydrogels in drug delivery system: An update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914. [Google Scholar] [CrossRef]
- Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010, 5, 469–484. [Google Scholar] [CrossRef]
- Nicolas, J.; Magli, S.; Rabbachin, L.; Sampaolesi, S.; Nicotra, F.; Russo, L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020, 21, 1968–1994. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B.; Shah, J.; Sreeharsha, N.; Gupta, S.; Shinu, P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021, 13, 357. [Google Scholar] [CrossRef]
- Onaciu, A.; Munteanu, R.A.; Moldovan, A.I.; Moldovan, C.S.; Berindan-Neagoe, I. Hydrogels Based Drug Delivery Synthesis, Characterization and Administration. Pharmaceutics 2019, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Hua, S.; Tian, Y.; Liu, J. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: A review. J. Mater. Chem. B 2020, 8, 10050–10064. [Google Scholar] [CrossRef] [PubMed]
- Afinjuomo, F.; Abdella, S.; Youssef, S.H.; Song, Y.; Garg, S. Inulin and Its Application in Drug Delivery. Pharmaceuticals 2021, 14, 855. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Gegel, N.O.; Shipovskaya, A.B.; Khaptsev, Z.Y.; Radionov, R.V.; Belyaeva, A.A.; Kharlamov, V.N. Thermosensitive chitosan-containing hydrogels: Their formation, properties, antibacterial activity, and veterinary usage. Gels 2022, 8, 93. [Google Scholar] [CrossRef]
- Moretto, A.; Tesolin, L.; Marsilio, F.; Schiavon, M.; Berna, M.; Veronese, F. Slow release of two antibiotics of veterinary interest from PVA hydrogels. Il Farm. 2004, 59, 1–5. [Google Scholar] [CrossRef]
- Abo El-Ela, F.I.; Hussein, K.H.; El-Banna, H.A.; Gamal, A.; Rouby, S.; Menshawy, A.M.; El-Nahass, E.-S.; Anwar, S.; Zeinhom, M.M.; Salem, H.F. Treatment of brucellosis in guinea pigs via a combination of engineered novel pH-responsive curcumin niosome hydrogel and doxycycline-loaded chitosan–sodium alginate nanoparticles: An in vitro and in vivo study. AAPS PharmSciTech 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Hussain, Z.; Thu, H.E.; Katas, H.; Bukhari, S.N.A. Hyaluronic acid-based biomaterials: A versatile and smart approach to tissue regeneration and treating traumatic, surgical, and chronic wounds. Polym. Rev. 2017, 57, 594–630. [Google Scholar] [CrossRef]
- Li, X.; He, L.; Li, N.; He, D. Curcumin loaded hydrogel with anti-inflammatory activity to promote cartilage regeneration in immunocompetent animals. J. Biomater. Sci. Polym. Ed. 2023, 34, 200–216. [Google Scholar] [CrossRef]
- Nkanga, C.I.; Fisch, A.; Rad-Malekshahi, M.; Romic, M.D.; Kittel, B.; Ullrich, T.; Wang, J.; Krause, R.W.M.; Adler, S.; Lammers, T. Clinically established biodegradable long acting injectables: An industry perspective. Adv. Drug Deliv. Rev. 2020, 167, 19–46. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.G.; Figueiredo, L.A.; Fernandes-Cunha, G.M.; Machado, L.A.; Dasilva, G.R. Methotrexate locally released from poly(e-caprolactone) implants: Inhibition of the inflammatory angiogenesis response in a murine sponge model and the absence of systemic toxicity. J. Pharm. Sci. 2015, 104, 3731–3742. [Google Scholar] [CrossRef] [PubMed]
- Fayzullin, A.; Bakulina, A.; Mikaelyan, K.; Shekhter, A.; Guller, A. Implantable drug delivery systems and foreign body reaction: Traversing the current clinical landscape. Bioengineering 2021, 8, 205. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L. Current advances in sustained-release systems for parenteral drug delivery. Expert Opin. Drug Deliv. 2005, 2, 1039–1058. [Google Scholar] [CrossRef]
- Danckwerts, M.; Fassihi, A. Implantable controlled release drug delivery systems: A review. Drug Dev. Ind. Pharm. 1991, 17, 1465–1502. [Google Scholar] [CrossRef]
- Utomo, E.; Stewart, S.A.; Picco, C.J.; Domínguez-Robles, J.; Larrañeta, E. Classification, material types, and design approaches of long-acting and implantable drug delivery systems. In Long-Acting Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 17–59. [Google Scholar]
- Cady, S.M.; Cheifetz, P.M.; Galeska, I. Veterinary long-acting injections and implants. In Long Acting Animal Health Drug Products: Fundamentals and Applications; Springer: New York, NY, USA, 2013; pp. 271–294. [Google Scholar]
- Cady, S.M.; Macar, C.; Gibson, J.W. Extended Release Growth Promoting Two Component Composition. U.S. Patent 6498153B1, 24 December 2002. Available online: https://patents.google.com/patent/US6498153B1/en (accessed on 15 February 2025).
- European Medical Agency. Suprelorin 9.5mg-Implant. Available online: https://medicines.health.europa.eu/veterinary/en/600000000030 (accessed on 10 January 2025).
- Elanco. Compudose. Available online: https://farmanimal.elanco.com/us/products/beef/compudose (accessed on 21 December 2024).
- Elanco. Veterinary Products. Available online: https://farmanimal.elanco.com/au (accessed on 21 December 2024).
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef]
- Kumar, A.; Pillai, J. Implantable drug delivery systems: An overview. In Nanostructures for the Engineering of Cells, Tissues and Organs; William Andrew: Norwich, NY, USA, 2018; pp. 473–511. [Google Scholar] [CrossRef]
- Wilkinson, J.; Ajulo, D.; Tamburrini, V.; Gall, G.L.; Kimpe, K.; Holm, R.; Belton, P.; Qi, S. Lipid based intramuscular long-acting injectables: Current state of the art. Eur. J. Pharm. Sci. 2022, 178, 106253. [Google Scholar] [CrossRef]
- Weng Larsen, S.; Larsen, C. Critical Factors Influencing the In Vivo Performance of Long-acting Lipophilic Solutions—Impact on In Vitro Release Method Design. AAPS J. 2009, 11, 762–770. [Google Scholar] [CrossRef]
- Owen, A.; Rannard, S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy. Adv. Drug Deliv. Rev. 2016, 103, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Nippe, S.; Preuße, C.; General, S. Evaluation of the in vitro release and pharmacokinetics of parenteral injectable formulations for steroids. Eur. J. Pharm. Biopharm. 2013, 83, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.R.; Hadgraft, J. The clearance of oily vehicles following intramuscular and subcutaneous injections in rabbits. Int. J. Pharm. 1983, 16, 31–39. [Google Scholar] [CrossRef]
- Hirano, K.; Ichihashi, T.; Yamada, H. Studies on the absorption of practically water-insoluble drugs following injection. I. Intramuscular absorption from water-immiscible oil solutions in rats. Chem. Pharm. Bull. 1981, 29, 519–531. [Google Scholar] [CrossRef]
- Medlicott, N.J.; Waldron, N.A.; Foster, T.P. Sustained release veterinary parenteral products. Adv. Drug Deliv. Rev. 2004, 56, 1345–1365. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, D. Effects of Boostin-250 supplementation on milk production and health of dairy cows. J. Vet. Clin. 2012, 29, 213–219. [Google Scholar]
- Jurox. Jurox Decort, Summary of Product Characteristics. Available online: https://www.jurox.com.au/product/decort-20/ (accessed on 30 November 2024).
- Alleva Animal Health. Depodine. Available online: https://alleva.co.nz/depodine (accessed on 30 November 2024).
- Zoetis. EXCENEL® RTU EZ Sterile Suspension. Available online: https://www.zoetisus.com/products/dairy/excenel-rtu-ez (accessed on 30 November 2024).
- Abbey. Bimoxyl LA, Summary of Product Characteristics. Available online: https://www.vmd.defra.gov.uk/productinformationdatabase/files/SPC_Documents/SPC_131071.PDF (accessed on 30 November 2024).
- Jurox. Jurox Moxylan LA, Summary of Product Characteristics. Available online: https://www.jurox.com.au/wp-content/uploads/SDS-AU058-v2.1.pdf (accessed on 30 November 2024).
- Virbac. Virbac SMARTSHOT B12. Available online: https://nz.virbac.com/products/trace-elements/smartshot-b12 (accessed on 30 November 2024).
- USFDA. Patient Information Leaflet, POSILAC. Available online: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=1d3664b8-d13d-464a-b9dc-d493a24fbdc8 (accessed on 30 November 2024).
- Elanco. Micotil Tilmicosin Injection. Available online: https://farmanimal.elanco.com/us/micotil/micotil-tilmicosin-injection (accessed on 21 February 2025).
- Zeotis. ProHeart 12 (Moxedectin). Available online: https://www.zoetisus.com/content/_assets/docs/vmips/package-inserts/proheart-12-prescribing-information.pdf (accessed on 21 February 2025).
- Elanco. Component E-C and Component E-C with Tylan. Available online: https://farmanimal.elanco.com/us/beef/component-with-tylan (accessed on 30 November 2024).
- Elanco. Compudose 100, 200, and 400. Available online: https://farmanimal.elanco.com/au/beef/product-directory/compudose (accessed on 30 November 2024).
- MSD. Ralgro. Available online: https://www.msd-animal-health.co.za/products/ralgro-cattle-implants/ (accessed on 30 March 2025).
- Zoetis. Synovex ONE Grover. Available online: https://www.zoetisus.com/products/beef/synovex-implant-finder/synovex-one-grower (accessed on 30 March 2025).
- Virbac. Suprelorin. Available online: https://nz.virbac.com/products/reproduction-and-contraception/suprelorin-47mg (accessed on 30 March 2025).
- Exubrion. Synovetin OA Impant. Available online: https://www.synovetin.com/about-synovetin-oa/how-synovetin-oar-works#effectiveness (accessed on 30 March 2025).
- Products, I.A.H. Ivermectin Hydrogel. Available online: https://specialistsales.com.au/shop/animal-health/cattle-products/cattle-lice-control/pour-on-cattle-lice-control/ausmectin-cattle-pour-on-ivermectin/?srsltid=AfmBOoqsqgB5IuBKP6BX1dbfZLw7Mgx2KiGMzRm74Gitt6RH8dqh63Si (accessed on 30 March 2025).
- Zoetis. Prescribing Information of Conviena. Available online: https://www.zoetisus.com/content/_assets/docs/vmips/package-inserts/convenia-prescribing-information.pdf (accessed on 30 March 2025).
- Zoetis. Prescribing Information of Doxirobe Gel. Available online: https://www.zoetisus.com/content/_assets/docs/vmips/package-inserts/doxirobe-gel-prescribing-information.pdf (accessed on 30 March 2025).
- Han, S.-K.; Park, J.-B.; Kim, D.; Park, S.-K.; Lee, H.-S.; Kim, S.-N.; Chang, B.-S.; Ryu, P.-D. Pharmacokinetics of a sustained-release bovine somatotropin in lactating cows. Korean J. Vet. Res. 1999, 39, 267–275. [Google Scholar]
- Talebian Masoudi, A.; Mirshamsollahi, A. The effect of iodine supplementation on growth performance, reproductive parameters and thyroid hormones of sheep in some areas of Markazi province, Iran. J. Rumin. Res. 2022, 10, 71–86. [Google Scholar]
- Abbey Animal Health. BimoxylTM LA Product Information. 2023. Available online: https://abbeylabs.com.au/wp-content/uploads/2022/03/Bimoxyl-LA-Sell-Sheet-Mar23.pdf (accessed on 21 December 2024).
- Xiong, J.; Zhu, Q.; Lei, Z.; Yang, S.; Chen, P.; Zhao, Y.; Cao, J.; Qiu, Y. Bioequivalence evaluation of two 5% ceftiofur hydrochloride sterile suspension in pigs. J. Vet. Med. Sci. 2018, 80, 1847–1852. [Google Scholar] [CrossRef]
- Grace, N.D.; Knowles, S.O. A Long-Acting Injectable Se/Vitamin B12 Product to Prevent Se and Co Deficiency in Lambs; New Zealand Society of Animal Production: Queenstown, New Zealand, 2003; pp. 18–20. [Google Scholar]
- O’Brien, M.N.; Jiang, W.; Wang, Y.; Loffredo, D.M. Challenges and opportunities in the development of complex generic long-acting injectable drug products. J. Control. Release 2021, 336, 144–158. [Google Scholar] [CrossRef]
- Van Eerdenbrugh, B.; Van den Mooter, G.; Augustijns, P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm. 2008, 364, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.-T.; Suydam, I.T.; Woodrow, K.A. Prodrug approaches for the development of a long-acting drug delivery systems. Adv. Drug Deliv. Rev. 2023, 198, 114860. [Google Scholar] [CrossRef] [PubMed]
- Greco, D.S.; Broussard, J.D.; Peterson, M.E. Insulin therapy. Vet. Clin. Small Anim. Pract. 1995, 25, 677–689. [Google Scholar] [CrossRef]
- Buckwalter, F.; Dickison, H. The effect of vehicle and particle size on the absorption, by the intramuscular route, of procaine penicillin G suspensions. J. Am. Pharm. Assoc. (Sci. Ed.) 1958, 47, 661–666. [Google Scholar] [CrossRef]
- EMA. Summary Product Characteristics of Convenia. Available online: https://www.ema.europa.eu/en/documents/product-information/convenia-epar-product-information_en.pdf (accessed on 30 April 2025).
- Underwood, C.; Van Eps, A. Nanomedicine and veterinary science: The reality and the practicality. Vet. J. 2012, 193, 12–23. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 2003, 8, 1112–1120. [Google Scholar] [CrossRef]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238–252. [Google Scholar] [CrossRef]
- Harendra, S.; Vipulanandan, C. Production and Characterization of Liposome Systems for Pharmaceutical Applications; Vipulanandan Center for Innovative Grouting Material and Technology (CIGMAT), Department of Civil and Environmental Engineering University of Houston: Houston, TX, USA, 2006. [Google Scholar]
- Aghdam, M.A.; Bagheri, R.; Mosafer, J.; Baradaran, B.; Hashemzaei, M.; Baghbanzadeh, A.; de la Guardia, M.; Mokhtarzadeh, A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J. Control. Release 2019, 315, 1–22. [Google Scholar] [CrossRef]
- Paltauf, F.; Hermetter, A. Phospholipids—Natural, semisynthetic, synthetic. In Phospholipids: Biochemical, Pharmaceutical, and Analytical Considerations; Springer: Berlin/Heidelberg, Germany, 1990; pp. 1–12. [Google Scholar]
- Woodle, M.C. Sterically stabilized liposome therapeutics. Adv. Drug Deliv. Rev. 1995, 16, 249–265. [Google Scholar] [CrossRef]
- Nagayasu, A.; Uchiyama, K.; Kiwada, H. The size of liposomes: A factor that affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. Rev. 1999, 40, 75–87. [Google Scholar] [CrossRef]
- Mozafari, M.R. Nanomaterials and Nanosystems for Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Sackmann, E. Membrane bending energy concept of vesicle-and cell-shapes and shape-transitions. FEBS Lett. 1994, 346, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015, 10, 81–98. [Google Scholar] [CrossRef]
- Gensure, R.H.; Zeidel, M.L.; Hill, W.G. Lipid raft components cholesterol and sphingomyelin increase H+/OH− permeability of phosphatidylcholine membranes. Biochem. J. 2006, 398, 485–495. [Google Scholar] [CrossRef]
- Zhang, H. Thin-film hydration followed by extrusion method for liposome preparation. In Liposomes: Methods and Protocols; Springer: New York, NY, USA, 2017; pp. 17–22. [Google Scholar] [CrossRef]
- Deamer, D.W. Preparation and properties of ether-injection liposomes. Ann. N. Y. Acad. Sci. 1978, 308, 250–258. [Google Scholar] [CrossRef]
- Bnyan, R.; Cesarini, L.; Khan, I.; Roberts, M.; Ehtezazi, T. The effect of ethanol evaporation on the properties of inkjet produced liposomes. DARU J. Pharm. Sci. 2020, 28, 271–280. [Google Scholar] [CrossRef]
- Taylor, K.; Taylor, G.; Kellaway, I.; Stevens, J. Drug entrapment and release from multilamellar and reverse-phase evaporation liposomes. Int. J. Pharm. 1990, 58, 49–55. [Google Scholar] [CrossRef]
- Brunner, J.; Skrabal, P.; Hausser, H. Single bilayer vesicles prepared without sonication physico-chemical properties. Biochim. Biophys. Acta (BBA)-Biomembr. 1976, 455, 322–331. [Google Scholar] [CrossRef]
- Yu, B.; Lee, R.J.; Lee, L.J. Microfluidic methods for production of liposomes. Methods Enzymol. 2009, 465, 129–141. [Google Scholar]
- Marie, M.; Habeeb, A.D. Preparation and evaluation of salbutamol liposomal suspension using chloroform film method. Mustansiriya Med. J. 2012, 11, 39–44. [Google Scholar]
- Yen, T.T.; Le Dan, N.; Duc, L.H.; Tung, B.T.; Hue, P.T.M. Preparation and characterization of freeze-dried liposomes loaded with amphotericin B. Curr. Drug Ther. 2019, 14, 65–73. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Zhang, T.; Song, Y.; She, Z.; Li, J.; Deng, Y. Progress involving new techniques for liposome preparation. Asian J. Pharm. Sci. 2014, 9, 176–182. [Google Scholar] [CrossRef]
- Pawar, N.; Agrawal, S.; Methekar, R. Continuous antisolvent crystallization of α-lactose monohydrate: Impact of process parameters, kinetic estimation, and dynamic analysis. Org. Process Res. Dev. 2019, 23, 2394–2404. [Google Scholar] [CrossRef]
- Sadozai, H.; Saeidi, D. Recent developments in liposome-based veterinary therapeutics. Int. Sch. Res. Not. 2013, 2013, 167521. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J. Pers. Med. 2021, 11, 771. [Google Scholar] [CrossRef]
- Vail, D.M.; MacEwen, E.G.; Kurzman, I.D.; Dubielzig, R.R.; Helfand, S.C.; Kisseberth, W.C.; London, C.A.; Obradovich, J.E.; Madewell, B.R.; Rodriguez, C.O., Jr. Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine adjuvant immunotherapy for splenic hemangiosarcoma in the dog: A randomized multi-institutional clinical trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1995, 1, 1165–1170. [Google Scholar]
- Hauck, M.L.; LaRue, S.M.; Petros, W.P.; Poulson, J.M.; Yu, D.; Spasojevic, I.; Pruitt, A.F.; Klein, A.; Case, B.; Thrall, D.E. Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin. Cancer Res. 2006, 12, 4004–4010. [Google Scholar] [CrossRef]
- Schwendener, R.A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines 2014, 2, 159–182. [Google Scholar] [CrossRef]
- Li, W.; Watarai, S.; Iwasaki, T.; Kodama, H. Suppression of Salmonella enterica serovar Enteritidis excretion by intraocular vaccination with fimbriae proteins incorporated in liposomes. Dev. Comp. Immunol. 2004, 28, 29–38. [Google Scholar] [CrossRef]
- Hiszczynska-Sawicka, E.; Li, H.; Xu, J.B.; Akhtar, M.; Holec-Gasior, L.; Kur, J.; Bickerstaffe, R.; Stankiewicz, M. Induction of immune responses in sheep by vaccination with liposome-entrapped DNA complexes encoding Toxoplasma gondii MIC3 gene. Pol. J. Vet. Sci. 2012, 15, 3–9. [Google Scholar] [CrossRef]
- Schmidt, J.R.; Krugner-Higby, L.; Heath, T.D.; Sullivan, R.; Smith, L.J. Epidural administration of liposome-encapsulated hydromorphone provides extended analgesia in a rodent model of stifle arthritis. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 507–512. [Google Scholar]
- Frisbie, D.D.; McIlwraith, C.W.; Kawcak, C.E.; Werpy, N.M.; Pearce, G.L. Evaluation of topically administered diclofenac liposomal cream for treatment of horses with experimentally induced osteoarthritis. Am. J. Vet. Res. 2009, 70, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Khanna, C.; Anderson, P.M.; Hasz, D.E.; Katsanis, E.; Neville, M.; Klausner, J.S. Interleukin-2 liposome inhalation therapy is safe and effective for dogs with spontaneous pulmonary metastases. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1997, 79, 1409–1421. [Google Scholar] [CrossRef]
- Teske, E.; Rutteman, G.; Kirpenstein, J.; Hirschberger, J. A randomized controlled study into the efficacy and toxicity of pegylated liposome encapsulated doxorubicin as an adjuvant therapy in dogs with splenic haemangiosarcoma. Vet. Comp. Oncol. 2011, 9, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Vail, D.M.; Kravis, L.D.; Cooley, A.J.; Chun, R.; MacEwen, E.G. Preclinical trial of doxorubicin entrapped in sterically stabilized liposomes in dogs with spontaneously arising malignant tumors. Cancer Chemother. Pharmacol. 1997, 39, 410–416. [Google Scholar] [CrossRef]
- Sorenmo, K.; Samluk, M.; Clifford, C.; Baez, J.; Barrett, J.S.; Poppenga, R.; Overley, B.; Skorupski, K.; Oberthaler, K.; Winkle, T.V. Clinical and pharmacokinetic characteristics of intracavitary administration of pegylated liposomal encapsulated doxorubicin in dogs with splenic hemangiosarcoma. J. Vet. Intern. Med. 2007, 21, 1347–1354. [Google Scholar] [CrossRef]
- Kleiter, M.; Tichy, A.; Willmann, M.; Pagitz, M.; Wolfesberger, B. Concomitant liposomal doxorubicin and daily palliative radiotherapy in advanced feline soft tissue sarcomas. Vet. Radiol. Ultrasound 2010, 51, 349–355. [Google Scholar] [CrossRef]
- Kanter, P.; Bullard, G.; Ginsberg, R.; Pilkiewicz, F.; Mayer, L.; Cullis, P.; Pavelic, Z. Comparison of the cardiotoxic effects of liposomal doxorubicin (TLC D-99) versus free doxorubicin in beagle dogs. In Vivo 1993, 7, 17–26. [Google Scholar]
- Kisseberth, W.C.; MacEwen, E.G.; Helfand, S.C.; Vail, D.M.; London, C.L.; Keller, E. Response to liposome-encapsulated doxorubicin (TLC D-99) in a dog with myeloma. J. Vet. Intern. Med. 1995, 9, 425–428. [Google Scholar] [CrossRef]
- Murphey, E.D. The AVMA Animal Health Studies Database. Top. Companion Anim. Med. 2019, 37, 100361. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Mao, W.; Shi, R.; Jiang, P.; Wang, Q.; Zhu, R.; Wang, T.; Ma, Y. Pharmacokinetics of liposomal-encapsulated and un-encapsulated vincristine after injection of liposomal vincristine sulfate in beagle dogs. Cancer Chemother. Pharmacol. 2014, 73, 459–466. [Google Scholar] [CrossRef]
- Zhao, L.; Ye, Y.; Li, J.; Wei, Y.-M. Preparation and the in-vivo evaluation of paclitaxel liposomes for lung targeting delivery in dogs. J. Pharm. Pharmacol. 2011, 63, 80–86. [Google Scholar] [CrossRef] [PubMed]
- U’Ren, L.W.; Biller, B.J.; Elmslie, R.E.; Thamm, D.H.; Dow, S.W. Evaluation of a novel tumor vaccine in dogs with hemangiosarcoma. J. Vet. Intern. Med. 2007, 21, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Yaguchi, K.; Ohgitani, T.; Noro, T.; Kaneshige, T.; Shimizu, Y. Vaccination of chickens with liposomal inactivated avian pathogenic Escherichia coli (APEC) vaccine by eye drop or coarse spray administration. Avian Dis. 2009, 53, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Purwar, N.; Gupta, P.C. Microspheres as drug carriers for controlled drug delivery: A review. Int. J. Pharm. Sci. Res. 2015, 6, 4579. [Google Scholar]
- Freiberg, S.; Zhu, X. Polymer microspheres for controlled drug release. Int. J. Pharm. 2004, 282, 1–18. [Google Scholar] [CrossRef]
- Bermudez, J.M.; Cid, A.G.; Ramírez-Rigo, M.V.; Quinteros, D.; Simonazzi, A.; Sánchez Bruni, S.; Palma, S. Challenges and opportunities in polymer technology applied to veterinary medicine. J. Vet. Pharmacol. Ther. 2014, 37, 105–124. [Google Scholar] [CrossRef]
- Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 2019, 87, 20. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Jani, G.K.; Kapadia, J.R. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin. Drug Deliv. 2015, 12, 1283–1299. [Google Scholar] [CrossRef]
- Varde, N.K.; Pack, D.W. Microspheres for controlled release drug delivery. Expert Opin. Biol. Ther. 2004, 4, 35–51. [Google Scholar] [CrossRef]
- Hua, Y.; Su, Y.; Zhang, H.; Liu, N.; Wang, Z.; Gao, X.; Gao, J.; Zheng, A. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: A review. Drug Deliv. 2021, 28, 1342–1355. [Google Scholar] [CrossRef]
- Ciocîlteu, M.-V.; Gabriela, R.; Amzoiu, M.O.; Amzoiu, D.C.; Pisoschi, C.G.; Poenariu, B.A.-M. PLGA-The Smart Biocompatible Polimer: Kinetic Degradation Studies and Active Principle Release. Curr. Health Sci. J. 2023, 49, 416. [Google Scholar] [PubMed]
- Zhang, Y.; Fei, S.; Yu, M.; Guo, Y.; He, H.; Zhang, Y.; Yin, T.; Xu, H.; Tang, X. Injectable sustained release PLA microparticles prepared by solvent evaporation-media milling technology. Drug Dev. Ind. Pharm. 2018, 44, 1591–1597. [Google Scholar] [CrossRef]
- Kostanski, J.W.; Thanoo, B.; DeLuca, P.P. Preparation, characterization, and in vitro evaluation of 1-and 4-month controlled release orntide PLA and PLGA microspheres. Pharm. Dev. Technol. 2000, 5, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Dash, T.K.; Konkimalla, V.B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release 2012, 158, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef]
- Gavini, E.; Manunta, L.; Giua, S.; Achenza, G.; Giunchedi, P. Spray-dried poly(D,L-lactide) microspheres containing Carboplatin for veterinary use: In vitro and in vivo studies. AAPS PharmSciTech 2005, 6, 17. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, L.; Li, J.; Muhammad, I.; Cheng, P.; Xiao, T.; Zhang, X. Preparation and evaluation of tilmicosin microspheres and lung-targeting studies in rabbits. Vet. J. 2019, 246, 27–34. [Google Scholar] [CrossRef]
- Ustariz-Peyret, C. Cephradin-plaga microspheres for sustained delivery to cattle. J. Microencapsul. 1999, 16, 181–194. [Google Scholar] [CrossRef]
- Shang, Q.; Wang, X.; Apley, M.; Kukanich, S.; Berkland, C. PPF microsphere depot sustains NSAID blood levels with infusion-like kinetics without ‘burst’. J. Vet. Pharmacol. Ther. 2012, 35, 231–238. [Google Scholar] [CrossRef]
- Youssef, F.S.; El-Banna, H.A.; Elzorba, H.Y.; Galal, A.M. Application of some nanoparticles in the field of veterinary medicine. Int. J. Vet. Sci. Med. 2019, 7, 78–93. [Google Scholar] [CrossRef]
- Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. Nano-Objects 2019, 20, 100397. [Google Scholar] [CrossRef]
- Irache, J.M.; Esparza, I.; Gamazo, C.; Agüeros, M.; Espuelas, S. Nanomedicine: Novel approaches in human and veterinary therapeutics. Vet. Parasitol. 2011, 180, 47–71. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci. 2016, 11, 404–416. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Chariou, P.L.; Ortega-Rivera, O.A.; Steinmetz, N.F. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano 2020, 14, 2678–2701. [Google Scholar] [CrossRef]
- Zoetis. Patient Information Leaflet, Paccal Vet-CA1. Available online: https://www.zoetisus.com/content/_assets/docs/vmips/package-inserts/paccal_vet-ca1.pdf (accessed on 20 November 2024).
- Elanco. Imrestor Injection, Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/imrestor-epar-product-information_en.pdf (accessed on 30 November 2024).
- Feldhaeusser, B.; Platt, S.R.; Marrache, S.; Kolishetti, N.; Pathak, R.K.; Montgomery, D.J.; Reno, L.R.; Howerth, E.; Dhar, S. Evaluation of nanoparticle delivered cisplatin in beagles. Nanoscale 2015, 7, 13822–13830. [Google Scholar] [CrossRef]
- Han, C.; Qi, C.M.; Zhao, B.K.; Cao, J.; Xie, S.Y.; Wang, S.L.; Zhou, W.Z. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: In vitro and in vivo studies. J. Vet. Pharmacol. Ther. 2009, 32, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Skomski, D.; Liu, Z.; Su, Y.; John, C.T.; Doty, A.; Forster, S.P.; Teller, R.; Barrett, S.E.; Xu, W. An imaging toolkit for physical characterization of long-acting pharmaceutical implants. J. Pharm. Sci. 2020, 109, 2798–2811. [Google Scholar] [CrossRef]
- Xie, L.; Yue, W.; Ibrahim, K.; Shen, J. A long-acting curcumin nanoparticle/in situ hydrogel composite for the treatment of uveal melanoma. Pharmaceutics 2021, 13, 1335. [Google Scholar] [CrossRef]
- Sanchez, A.; Tobío, M.; González, L.; Fabra, A.; Alonso, M.J. Biodegradable micro-and nanoparticles as long-term delivery vehicles for interferon-alpha. Eur. J. Pharm. Sci. 2003, 18, 221–229. [Google Scholar] [CrossRef]
- Ibrahim, T.M.; El-Megrab, N.A.; El-Nahas, H.M. An overview of PLGA in-situ forming implants based on solvent exchange technique: Effect of formulation components and characterization. Pharm. Dev. Technol. 2021, 26, 709–728. [Google Scholar] [CrossRef] [PubMed]
- Nippe, S.; General, S. Investigation of injectable drospirenone organogels with regard to their rheology and comparison to non-stabilized oil-based drospirenone suspensions. Drug Dev. Ind. Pharm. 2015, 41, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Özdal, Z.D.; Gültekin, Y.; Vural, İ.; Takka, S. Development and characterization of polymeric nanoparticles containing ondansetron hydrochloride as a hydrophilic drug. J. Drug Deliv. Sci. Technol. 2022, 74, 103599. [Google Scholar] [CrossRef]
- Rahnfeld, L.; Thamm, J.; Steiniger, F.; van Hoogevest, P.; Luciani, P. Study on the in situ aggregation of liposomes with negatively charged phospholipids for use as injectable depot formulation. Colloids Surf. B Biointerfaces 2018, 168, 10–17. [Google Scholar] [CrossRef]
- Xing, D.; Tang, L.; Yang, H.; Yan, M.; Yuan, P.; Wu, Y.; Zhang, Y.; Yin, T.; Wang, Y.; Gou, J. Effect of mPEG-PLGA on Drug Crystallinity and Release of Long-Acting Injection Microspheres: In Vitro and In Vivo Perspectives. Pharm. Res. 2024, 41, 1271–1284. [Google Scholar] [CrossRef]
- Mäder, K. Characterization methodologies for long-acting and implantable drug delivery systems. In Long-Acting Drug Delivery Systems: Pharmaceutical, Clinical, and Regulatory Aspects; Woodhead Publishing Series in Biomaterials; Elsevier: Sawston, UK, 2022; pp. 319–345. [Google Scholar]
- Ebrahimi, A.; Sadrjavadi, K.; Hajialyani, M.; Shokoohinia, Y.; Fattahi, A. Preparation and characterization of silk fibroin hydrogel as injectable implants for sustained release of Risperidone. Drug Dev. Ind. Pharm. 2018, 44, 199–205. [Google Scholar] [CrossRef]
- Hajian, M.; Erfani-Moghadam, V.; Arabi, M.S.; Soltani, A.; Shahbazi, M. A comparison between optimized PLGA and CS-Alg-PLGA microspheres for long-lasting release of glatiramer acetate. J. Drug Deliv. Sci. Technol. 2023, 82, 104355. [Google Scholar] [CrossRef]
- Hamishehkar, H.; Emami, J.; Najafabadi, A.R.; Gilani, K.; Minaiyan, M.; Mahdavi, H.; Nokhodchi, A. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Colloids Surf. B Biointerfaces 2009, 74, 340–349. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, J.; Ma, P.; Mu, H.; Wang, A.; Zhang, L.; Wu, Z.; Sun, K. Preparation and evaluation of a novel biodegradable long-acting intravitreal implant containing ligustrazine for the treatment of proliferative vitreoretinopathy. J. Pharm. Pharmacol. 2015, 67, 160–169. [Google Scholar] [CrossRef]
- Savolainen, M.; Herder, J.; Khoo, C.; Lövqvist, K.; Dahlqvist, C.; Glad, H.; Juppo, A.M. Evaluation of polar lipid–hydrophilic polymer microparticles. Int. J. Pharm. 2003, 262, 47–62. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, Y.; Xiong, J.; Liu, H.; Lv, G.; Zhao, J.; He, H.; Gou, J.; Yin, T.; Tang, X. Antibacterial-anti-inflammatory-bone restoration procedure achieved by MIN-loaded PLGA microsphere for efficient treatment of periodontitis. AAPS PharmSciTech 2023, 24, 74. [Google Scholar] [CrossRef] [PubMed]
- Sivasankaran, S.; Jonnalagadda, S. Levonorgestrel loaded biodegradable microparticles for injectable contraception: Preparation, characterization and modelling of drug release. Int. J. Pharm. 2022, 624, 121994. [Google Scholar] [CrossRef] [PubMed]
- Rungseevijitprapa, W.; Bodmeier, R. Injectability of biodegradable in situ forming microparticle systems (ISM). Eur. J. Pharm. Sci. 2009, 36, 524–531. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Development Pharmaceutics for Veterinary Medicinal Products; European Medicines Agency: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Feng, X.; Wu, K.-W.; Balajee, V.; Leissa, J.; Ashraf, M.; Xu, X. Understanding syringeability and injectability of high molecular weight PEO solution through time-dependent force-distance profiles. Int. J. Pharm. 2023, 631, 122486. [Google Scholar] [CrossRef]
- Yu, Z.G.; Geng, Z.X.; Liu, T.F.; Jiang, F. In vitro and in vivo evaluation of an in situ forming gel system for sustained delivery of Florfenicol. J. Vet. Pharmacol. Ther. 2015, 38, 271–277. [Google Scholar] [CrossRef]
- Carrascosa, C.; Espejo, L.; Torrado, S.; Torrado, J. Effect of c-Sterilization Process on PLGA Microspheres Loaded with Insulin-Like Growth Factor-I (IGF-I). J. Biomater. Appl. 2003, 18, 95–108. [Google Scholar] [CrossRef]
- Gonella, A.; Grizot, S.; Liu, F.; López Noriega, A.; Richard, J. Long-acting injectable formulation technologies: Challenges and opportunities for the delivery of fragile molecules. Expert Opin. Drug Deliv. 2022, 19, 927–944. [Google Scholar] [CrossRef]
- Bauer, A.; Berben, P.; Chakravarthi, S.S.; Chattorraj, S.; Garg, A.; Gourdon, B.; Heimbach, T.; Huang, Y.; Morrison, C.; Mundhra, D. Current state and opportunities with long-acting injectables: Industry perspectives from the innovation and quality consortium “long-acting injectables” working group. Pharm. Res. 2023, 40, 1601–1631. [Google Scholar] [CrossRef]
- Yaman, A. Methods of Sterilization for Controlled Release Injectable and Implantable Preparations. In Long Acting Injections and Implants; Advances in Delivery Science and Technology; Springer: Boston, MA, USA, 2011; pp. 459–473. [Google Scholar] [CrossRef]
- Merisko-Liversidge, E. Nanosizing:“end-to-end” formulation strategy for poorly water-soluble molecules. In Discovering and Developing Molecules with Optimal Drug-Like Properties; AAPS Advances in the Pharmaceutical Sciences Series (AAPS, Volume 15); Springer: New York, NY, USA, 2014; pp. 437–467. [Google Scholar] [CrossRef]
- Wright, J.C.; Burgess, D.J. Long Acting Injections and Implants; Advances in Drug Delivery Science and Technology; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Hickey, T.; Kreutzer, D.; Burgess, D.; Moussy, F. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials 2002, 23, 1649–1656. [Google Scholar] [CrossRef]
- Patil, S.D.; Papadimitrakopoulos, F.; Burgess, D.J. Dexamethasone-loaded poly(lactic-co-glycolic) acid microspheres/poly(vinyl alcohol) hydrogel composite coatings for inflammation control. Diabetes Technol. Ther. 2004, 6, 887–897. [Google Scholar] [CrossRef]
- Kastellorizios, M.; Burgess, D.J. In Vitro Drug Release Testing and In Vivo/In Vitro Correlation for Long Acting Implants and Injections. In Long Acting Injections and Implants; Wright, J.C., Burgess, D.J., Eds.; Springer: Boston, MA, USA, 2012; pp. 475–503. [Google Scholar]
- Bhardwaj, U.; Sura, R.; Papadimitrakopoulos, F.; Burgess, D.J. Controlling acute inflammation with fast releasing dexamethasone-PLGA microsphere/PVA hydrogel composites for implantable devices. J. Diabetes Sci. Technol. 2007, 1, 8–17. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, S.S.; DeLuca, P.P. Development of a dialysis in vitro release method for biodegradable microspheres. AAPS Pharmscitech 2005, 6, E323–E328. [Google Scholar] [CrossRef] [PubMed]
- Khidr, S.; Niazy, E.; El-Sayed, Y. Development and in-vitro evaluation of sustained-release meclofenamic acid microspheres. J. Microencapsul. 1998, 15, 153–162. [Google Scholar] [CrossRef]
- Chen, M.-L.; Shah, V.; Patnaik, R.; Adams, W.; Hussain, A.; Conner, D.; Mehta, M.; Malinowski, H.; Lazor, J.; Huang, S.-M. Bioavailability and bioequivalence: An FDA regulatory overview. Pharm. Res. 2001, 18, 1645–1650. [Google Scholar] [CrossRef]
- FDA U.S. Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations. 1997. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extended-release-oral-dosage-forms-development-evaluation-and-application-vitroin-in-vivo-correlations (accessed on 30 April 2025).
- Rawat, A.; Burgess, D.J. USP apparatus 4 method for in vitro release testing of protein loaded microspheres. Int. J. Pharm. 2011, 409, 178–184. [Google Scholar] [CrossRef]
- Dadhaniya, T.M.; Sharma, O.P.; Gohel, M.C.; Mehta, P.J. Current approaches for in vitro drug release study of long-acting parenteral formulations. Curr. Drug Deliv. 2015, 12, 256–270. [Google Scholar] [CrossRef]
- Bain, D.; Munday, D.; Smith, A. Modulation of rifampicin release from spray-dried microspheres using combinations of poly-(DL-lactide). J. Microencapsul. 1999, 16, 369–385. [Google Scholar]
- Latha, M.; Lal, A.; Kumary, T.; Sreekumar, R.; Jayakrishnan, A. Progesterone release from glutaraldehyde cross-linked casein microspheres: In vitro studies and in vivo response in rabbits. Contraception 2000, 61, 329–334. [Google Scholar] [CrossRef]
- Negrın, C.; Delgado, A.; Llabres, M.; Evora, C. In vivo–in vitro study of biodegradable methadone delivery systems. Biomaterials 2001, 22, 563–570. [Google Scholar] [CrossRef]
- Schaefer, M.J.; Singh, J. Effect of tricaprin on the physical characteristics and in vitro release of etoposide from PLGA microspheres. Biomaterials 2002, 23, 3465–3471. [Google Scholar] [CrossRef]
- Park, T.G.; Lee, H.Y.; Nam, Y.S. A new preparation method for protein loaded poly(D,L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J. Control. Release 1998, 55, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Aubert-Pouëssel, A.; Bibby, D.C.; Venier-Julienne, M.-C.; Hindré, F.; Benoît, J.-P. A novel in vitro delivery system for assessing the biological integrity of protein upon release from PLGA microspheres. Pharm. Res. 2002, 19, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- United States Pharmacopeial Convention. USP 33 NF 28: United States Pharmacopeia [and] National Formulary. Reissue. Supplement 2.A. 2010. Available online: https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/USP33-NF28FirstSupplementRevisionCommentary.pdf (accessed on 30 April 2025).
- Zolnik, B.; Raton, J.; Burgess, D. Application of USP apparatus 4 and in situ fiber optic analysis to microsphere release testing. Dissolution Technol. 2005, 12, 11–14. [Google Scholar] [CrossRef]
- Longo, W.E.; Goldberg, E.P. [2] Hydrophilic albumin microspheres. In Methods in Enzymology; Drug and Enzyme Targeting; Elsevier: Amsterdam, The Netherlands, 1985; Volume 112, pp. 18–26. [Google Scholar]
- Seidlitz, A.; Nagel, S.; Semmling, B.; Grabow, N.; Martin, H.; Senz, V.; Harder, C.; Sternberg, K.; Schmitz, K.-P.; Kroemer, H.K. Examination of drug release and distribution from drug-eluting stents with a vessel-simulating flow-through cell. Eur. J. Pharm. Biopharm. 2011, 78, 36–48. [Google Scholar] [CrossRef]
- D’Souza, S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharm. 2014, 2014, 304757. [Google Scholar] [CrossRef]
- Kostanski, J.W.; DeLuca, P.P. A novel in vitro release technique for peptide-containing biodegradable microspheres. AAPS PharmSciTech 2000, 1, 30–40. [Google Scholar]
- D’Souza, S.S.; DeLuca, P.P. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res. 2006, 23, 460–474. [Google Scholar] [CrossRef]
- Nastruzzi, C.; Esposito, E.; Cortesi, R.; Gambari, R.; Menegatti, E. Kinetics of bromocriptine release from microspheres: Comparative analysis between different in vitro models. J. Microencapsul. 1994, 11, 565–574. [Google Scholar] [CrossRef]
- Chidambaram, N.; Burgess, D. A novel in vitro release method for submicron-sized dispersed systems. AAPS PharmSci 1999, 1, 32–40. [Google Scholar] [CrossRef]
- Andhariya, J.V.; Burgess, D.J. Recent advances in testing of microsphere drug delivery systems. Expert Opin. Drug Deliv. 2016, 13, 593–608. [Google Scholar] [CrossRef]
- Gray, V.; Kelly, G.; Xia, M.; Butler, C.; Thomas, S.; Mayock, S. The science of USP 1 and 2 dissolution: Present challenges and future relevance. Pharm. Res. 2009, 26, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Aso, Y.; Yoshioka, S.; Po, A.L.W.; Terao, T. Effect of temperature on mechanisms of drug release and matrix degradation of poly(D,L-lactide) microspheres. J. Control. Release 1994, 31, 33–39. [Google Scholar] [CrossRef]
- Burgess, D.J.; Crommelin, D.J.; Hussain, A.S.; Chen, M.-L. Assuring quality and performance of sustained and controlled release parenterals: EUFEPS workshop report. AAPS PharmSci 2004, 6, 100–111. [Google Scholar] [CrossRef]
- Martinez, M.; Rathbone, M.; Burgess, D.; Huynh, M. In vitro and in vivo considerations associated with parenteral sustained release products: A review based upon information presented and points expressed at the 2007 Controlled Release Society Annual Meeting. J. Control. Release 2008, 129, 79–87. [Google Scholar] [CrossRef]
- Shen, J.; Burgess, D.J. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms. J. Pharm. Pharmacol. 2012, 64, 986–996. [Google Scholar] [CrossRef]
- Zolnik, B.S.; Leary, P.E.; Burgess, D.J. Elevated temperature accelerated release testing of PLGA microspheres. J. Control. Release 2006, 112, 293–300. [Google Scholar] [CrossRef]
- Shen, J.; Burgess, D.J. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings. Int. J. Pharm. 2012, 422, 341–348. [Google Scholar] [CrossRef]
- Kang, J.; Schwendeman, S.P. Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Mol. Pharm. 2007, 4, 104–118. [Google Scholar] [CrossRef]
- Zolnik, B.S.; Burgess, D.J. Effect of acidic pH on PLGA microsphere degradation and release. J. Control. Release 2007, 122, 338–344. [Google Scholar] [CrossRef]
- Makino, K.; Ohshima, H.; Kondo, T. Mechanism of hydrolytic degradation of poly(L-lactide) microcapsules: Effects of pH, ionic strength and buffer concentration. J. Microencapsul. 1986, 3, 203–212. [Google Scholar] [CrossRef]
- De Jong, S.; Arias, E.R.; Rijkers, D.; Van Nostrum, C.; Kettenes-Van den Bosch, J.; Hennink, W. New insights into the hydrolytic degradation of poly(lactic acid): Participation of the alcohol terminus. Polymer 2001, 42, 2795–2802. [Google Scholar] [CrossRef]
- Guse, C.; Koennings, S.; Kreye, F.; Siepmann, F.; Göpferich, A.; Siepmann, J. Drug release from lipid-based implants: Elucidation of the underlying mass transport mechanisms. Int. J. Pharm. 2006, 314, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Koennings, S.; Berié, A.; Teßmar, J.; Blunk, T.; Göpferich, A. Influence of wettability and surface activity on release behavior of hydrophilic substances from lipid matrices. J. Control. Release 2007, 119, 173–181. [Google Scholar] [CrossRef]
- Shameem, M.; Lee, H.; DeLuca, P.P. A short-term (accelerated release) approach to evaluate peptide release from PLGA depot formulations. Aaps Pharmsci 1999, 1, 1–6. [Google Scholar] [CrossRef]
- Shen, J.; Lee, K.; Choi, S.; Qu, W.; Wang, Y.; Burgess, D.J. A reproducible accelerated in vitro release testing method for PLGA microspheres. Int. J. Pharm. 2016, 498, 274–282. [Google Scholar] [CrossRef]
- Nguyen, M.; Flanagan, T.; Brewster, M.; Kesisoglou, F.; Beato, S.; Biewenga, J.; Crison, J.; Holm, R.; Li, R.; Mannaert, E. A survey on IVIVC/IVIVR development in the pharmaceutical industry–past experience and current perspectives. Eur. J. Pharm. Sci. 2017, 102, 1–13. [Google Scholar] [CrossRef]
- Andhariya, J.V.; Jog, R.; Shen, J.; Choi, S.; Wang, Y.; Zou, Y.; Burgess, D.J. Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres. J. Control. Release 2019, 308, 1–13. [Google Scholar] [CrossRef]
- Andhariya, J.V.; Shen, J.; Choi, S.; Wang, Y.; Zou, Y.; Burgess, D.J. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J. Control. Release 2017, 255, 27–35. [Google Scholar] [CrossRef]
- Shen, J.; Choi, S.; Qu, W.; Wang, Y.; Burgess, D.J. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J. Control. Release 2015, 218, 2–12. [Google Scholar] [CrossRef]
- Bao, Q.; Wang, X.; Wan, B.; Zou, Y.; Wang, Y.; Burgess, D.J. Development of in vitro-in vivo correlations for long-acting injectable suspensions. Int. J. Pharm. 2023, 634, 122642. [Google Scholar] [CrossRef]
- Kortejärvi, H.; Malkki, J.; Marvola, M.; Urtti, A.; Yliperttula, M.; Pajunen, P. Level A in vitro-in vivo correlation (IVIVC) model with Bayesian approach to formulation series. J. Pharm. Sci. 2006, 95, 1595–1605. [Google Scholar] [CrossRef] [PubMed]
- Cardot, J.; Beyssac, E.; Alric, M. In vitro-in vivo correlation: Importance of dissolution in IVIVC. Dissolution Technol. 2007, 14, 15. [Google Scholar] [CrossRef]
- Sakore, S.; Chakraborty, B. In vitro–in vivo correlation (IVIVC): A strategic tool in drug development. J. Bioequiv. Availab S 2011, 3, 2. [Google Scholar]
- O’hara, T.; Hayes, S.; Davis, J.; Devane, J.; Smart, T.; Dunne, A. In vivo–in vitro correlation (IVIVC) modeling incorporating a convolution step. J. Pharmacokinet. Pharmacodyn. 2001, 28, 277–298. [Google Scholar] [CrossRef]
- Moreno-Camacho, C.A.; Montoya-Torres, J.R.; Jaegler, A.; Gondran, N. Sustainability metrics for real case applications of the supply chain network design problem: A systematic literature review. J. Clean. Prod. 2019, 231, 600–618. [Google Scholar] [CrossRef]
- Prescott, J.H.; Krieger, T.J.; Lipka, S.; Staples, M.A. Dosage form development, in vitro release kinetics, and in vitro–in vivo correlation for leuprolide released from an implantable multi-reservoir array. Pharm. Res. 2007, 24, 1252–1261. [Google Scholar] [CrossRef]
- Schliecker, G.; Schmidt, C.; Fuchs, S.; Ehinger, A.; Sandow, J.; Kissel, T. In vitro and in vivo correlation of buserelin release from biodegradable implants using statistical moment analysis. J. Control. Release 2004, 94, 25–37. [Google Scholar] [CrossRef]
- Nandi, S.; Padrela, L.; Tajber, L.; Collas, A. Development of long-acting injectable suspensions by continuous antisolvent crystallization: An integrated bottom-up process. Int. J. Pharm. 2023, 648, 123550. [Google Scholar] [CrossRef]
- Kowsari, K.; Lu, L.; Persak, S.C.; Hu, G.; Forrest, W.; Berger, R.; Givand, J.C.; Babaee, S. Injectability of high concentrated suspensions using model microparticles. J. Pharm. Sci. 2024, 113, 3525–3537. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, J.; Zhou, X.; Li, X. The Development of a Stable Peptide-Loaded Long-Acting Injection Formulation through a Comprehensive Understanding of Peptide Degradation Mechanisms: A QbD-Based Approach. Pharmaceutics 2024, 16, 266. [Google Scholar] [CrossRef]
- Cagnon, M.-E.; Curia, S.; Serindoux, J.; Cros, J.-M.; Ng, F.; Lopez-Noriega, A. Poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) copolymers for the formulation of in situ forming depot long-acting injectables. Pharmaceutics 2021, 13, 605. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, A.; Sofi, G. A review of regulatory guidelines on stability studies. J. Phytopharm. 2019, 8, 147–151. [Google Scholar] [CrossRef]
- Huynh-Ba, K.; Zahn, M. Understanding ICH guidelines applicable to stability testing. In Handbook of Stability Testing in Pharmaceutical Development: Regulations, Methodologies, and Best Practices; Chapter 3; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–41. [Google Scholar]
- Misawa, F.; Kishimoto, T.; Hagi, K.; Kane, J.M.; Correll, C.U. Safety and tolerability of long-acting injectable versus oral antipsychotics: A meta-analysis of randomized controlled studies comparing the same antipsychotics. Schizophr. Res. 2016, 176, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Lehman, M.L.; Bass, L.; Gustafson, D.L.; Rao, S.; O’Fallon, E.S. Clinical efficacy, safety and pharmacokinetics of a novel long-acting intramuscular omeprazole in performance horses with gastric ulcers. Equine Vet. Educ. 2022, 34, 573–580. [Google Scholar] [CrossRef]
- Gruen, M.E.; Myers, J.A.E.; Tena, J.-K.S.; Becskei, C.; Cleaver, D.M.; Lascelles, B.D.X. Frunevetmab, a felinized anti-nerve growth factor monoclonal antibody, for the treatment of pain from osteoarthritis in cats. J. Vet. Intern. Med. 2021, 35, 2752–2762. [Google Scholar] [CrossRef]
- Sheehan, J.J.; Reilly, K.R.; Fu, D.J.; Alphs, L. Comparison of the peak-to-trough fluctuation in plasma concentration of long-acting injectable antipsychotics and their oral equivalents. Innov. Clin. Neurosci. 2012, 9, 17–23. [Google Scholar]
- Wei, Y.; Yan, V.K.C.; Kang, W.; Wong, I.C.K.; Castle, D.J.; Gao, L.; Chui, C.S.L.; Man, K.K.C.; Hayes, J.F.; Chang, W.C.; et al. Association of Long-Acting Injectable Antipsychotics and Oral Antipsychotics With Disease Relapse, Health Care Use, and Adverse Events Among People with Schizophrenia. JAMA Netw. Open 2022, 5, e2224163. [Google Scholar] [CrossRef]
- Park, S.C.; Choi, M.Y.; Choi, J.; Park, E.; Tchoe, H.J.; Suh, J.K.; Kim, Y.H.; Won, S.H.; Chung, Y.C.; Bae, K.Y.; et al. Comparative Efficacy and Safety of Long-acting Injectable and Oral Second-generation Antipsychotics for the Treatment of Schizophrenia: A Systematic Review and Meta-analysis. Clin. Psychopharmacol. Neurosci. 2018, 16, 361–375. [Google Scholar] [CrossRef]
- Mishra, D.; Glover, K.; Gade, S.; Sonawane, R.; Raj Singh, T.R. 10-Safety, biodegradability, and biocompatibility considerations of long-acting drug delivery systems. In Long-Acting Drug Delivery Systems; Woodhead Publishing: Sawston, UK, 2022; pp. 289–317. [Google Scholar]
- Winzenburg, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv. Drug Deliv. Rev. 2004, 56, 1453–1466. [Google Scholar] [CrossRef]
- Kalicharan, R.W.; Oussoren, C.; Schot, P.; de Rijk, E.; Vromans, H. The contribution of the in-vivo fate of an oil depot to drug absorption. Int. J. Pharm. 2017, 528, 595–601. [Google Scholar] [CrossRef]
- Bilhalva, A.F.; Finger, I.S.; Pereira, R.A.; Corrêa, M.N.; Burkert Del Pino, F.A. Utilization of biodegradable polymers in veterinary science and routes of administration: A literature review. J. Appl. Anim. Res. 2018, 46, 643–649. [Google Scholar] [CrossRef]
- Göpferich, A.; Tessmar, J. Polyanhydride degradation and erosion. Adv. Drug Deliv. Rev. 2002, 54, 911–931. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.J.; Oehler, D.D.; Pound, M.J. Delivery of Ivermectin by Injectable Microspheres. J. Econ. Entomol. 1998, 91, 655–659. [Google Scholar] [CrossRef]
- Genchi, C.; Rossi, L.; Cardini, G.; Kramer, L.H.; Venco, L.; Casiraghi, M.; Genchi, M.; Agostini, A. Full season efficacy of moxidectin microsphere sustained release formulation for the prevention of heartworm (Dirofilaria immitis) infection in dogs. Vet. Parasitol. 2002, 110, 85–91. [Google Scholar] [CrossRef]
- Matschke, C.; Isele, U.; van Hoogevest, P.; Fahr, A. Sustained-release injectables formed in situ and their potential use for veterinary products. J. Control. Release 2002, 85, 1–15. [Google Scholar] [CrossRef]
- Pan, S.; Zou, J.; Mao, H.; Hu, Z.; Sun, S.; Wu, W.; Yang, J.; An, Z.; Wang, C. Available phosphorus levels modulate growth performance, serum indices, metabolome, rumen fermentation, and microorganism in Hu lambs. Anim. Feed. Sci. Technol. 2025, 322, 116259. [Google Scholar] [CrossRef]
- Mottu, F.; Laurent, A.; Rüfenacht, D.A.; Doelker, E. Organic solvents for pharmaceutical parenterals and embolic liquids: A review of toxicity data. PDA J. Pharm. Sci. Technol. 2000, 54, 456–469. [Google Scholar]
- Sweetana, S.; Akers, M.J. Solubility principles and practices for parenteral drug dosage form development. PDA J. Pharm. Sci. Technol. 1996, 50, 330–342. [Google Scholar]
- Wang, Y.-C.J.; Kowal, R.R. Review of excipients and pH’s for parenteral products used in the United States. PDA J. Pharm. Sci. Technol. 1980, 34, 452–462. [Google Scholar]
- Lifschitz, P.; Alvarez, V.; Sanchez, S.; Kujanek, L. Bioequivalence of ivermectin formulations in pigs and cattle. J. Vet. Pharmacol. Ther. 1999, 22, 27–34. [Google Scholar] [CrossRef]
- Bleiberg, B.; Beers, T.R.; Persson, M.; Miles, J.M. Metabolism of triacetin-derived acetate in dogs. Am. J. Clin. Nutr. 1993, 58, 908–911. [Google Scholar] [CrossRef] [PubMed]
- McManus, E.C.; Pulliam, J.D. Histopathologic features of canine heartworm microfilarial infection after treatment with ivermectin. Am. J. Vet. Res. 1984, 45, 91–97. [Google Scholar] [CrossRef]
- ICH. ICH Topic Q3C (M): Maintenance of Note for Guidance on Impurities: Residual Solvents (CPMP/ICH/283/95). Available online: http://www.pharma.gally.ch/ich/q3cmstep4194000en.pdf (accessed on 30 April 2025).
- Aucouturier, J.; Dupuis, L.; Ganne, V. Adjuvants designed for veterinary and human vaccines. Vaccine 2001, 19, 2666–2672. [Google Scholar] [CrossRef]
- Meyer, E.K. Vaccine-associated adverse events. Vet. Clin. North Am. Small Anim. Pract. 2001, 31, 493–514. [Google Scholar] [CrossRef]
- Vogel, F.R. Improving vaccine performance with adjuvants. Clin. Infect. Dis. 2000, 30 (Suppl. S3), S266–S270. [Google Scholar] [CrossRef]
- Hughes, H.P. Cytokine adjuvants: Lessons from the past—Guidelines for the future? Vet. Immunol. Immunopathol. 1998, 63, 131–138. [Google Scholar] [CrossRef]
- Kersten, G.F.; Crommelin, D.J. Liposomes and ISCOMS as vaccine formulations. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 1995, 1241, 117–138. [Google Scholar] [CrossRef]
- Spickler, A.R.; Roth, J.A. Adjuvants in veterinary vaccines: Modes of action and adverse effects. J. Vet. Intern. Med. 2003, 17, 273–281. [Google Scholar] [CrossRef]
- Nouws, J.; Smulders, A.; Rappalini, M. A comparative study on irritation and residue aspects of five oxytetracycline formulations administered intramuscularly to calves, pigs and sheep. Vet. Q. 1990, 12, 129–138. [Google Scholar] [CrossRef]
- Cunha, B.; Domenico, P.; Cunha, C. Pharmacodynamics of doxycycline. Clin. Microbiol. Infect. 2000, 6, 270–273. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Velasco, Z.-H.; Vázquez, C.; Vargas, D.; Sumano, H. Pharmacokinetics of an injectable long-acting formulation of doxycycline hyclate in dogs. Acta Vet. Scand. 2012, 54, 35. [Google Scholar] [CrossRef] [PubMed]
- Chiers, K.; Weyens, P.; Deprez, P.; Van Heerden, M.; Meulemans, G.; Baert, K.; Croubels, S.; De Backer, P.; Ducatelle, R. Lingual and pharyngeal paralysis due to acute doxycycline intoxication. Vet. Rec. 2004, 155, 25–26. [Google Scholar] [CrossRef] [PubMed]
- Yeruham, I.; Perl, S.; Sharony, D.; Vishinisky, Y. Doxycycline toxicity in calves in two feedlots. J. Vet. Med. Ser. B 2002, 49, 406–408. [Google Scholar] [CrossRef] [PubMed]
- Heaney, K.; Lindahl, R.G. Safety evaluation of moxidectin sustained-release injectable in 10-week-old puppies. Vet. Parasitol. 2005, 133, 227–231. [Google Scholar] [CrossRef]
- McTier, T.L.; Kryda, K.; Wachowski, M.; Mahabir, S.; Ramsey, D.; Rugg, D.; Mazaleski, M.; Therrien, C.; Adams, E.; Wolff, T. ProHeart® 12, a moxidectin extended-release injectable formulation for prevention of heartworm (Dirofilaria immitis) disease in dogs in the USA for 12 months. Parasites Vectors 2019, 12, 369. [Google Scholar] [CrossRef]
- Vercelli, C.; Bertolotti, L.; Gelsi, E.; Gazza, C.; Re, G. Evaluation of Side Effects and Long-Term Protection of a Sustained-Release Injectable Moxidectin Formulation against Dirofilaria immitis Infection in Dogs: An Observational—In Field Multicentric Study. Vet. Sci. 2022, 9, 408. [Google Scholar] [CrossRef]
In Situ Depot Delivery Systems | Advantages | Disadvantages | Release Time Range | Ref. |
---|---|---|---|---|
Oily solutions |
|
| Weeks to several months | [56] |
Vesicular phospholipid gels |
|
| Days to weeks | [57] |
Phospholipid-based phase separation gel (PPSG) |
|
| Days to weeks | [58,59] |
Nanoemulsion |
|
| Hours | [60] |
Liquid crystalline systems (like cubosomes and hexosomes) |
|
| Days to weeks | [61,62] |
Organogels |
|
| Days | [63] |
Hydrogels |
|
| Days to weeks | [64] |
Polymeric microparticles |
|
| Days to weeks | [65,66] |
Product Name | Active Ingredient | Key Excipients | Indication | Species | Dosing Information | Route of Administration | Manufacturer | Ref. |
---|---|---|---|---|---|---|---|---|
Oily solution | ||||||||
Boostin®-S | Recombinant bovine somatotropin | Vitamin E acetate; lecithin | Increased milk production | Cattle | 500 mg every 14 days | SC | Intervet South Africa (Pty) Ltd., Kempton Park, South Africa. | [119] |
Decort 20 oily injection | Deoxycortone acetate | NA | Sodium and water retention | Dogs; cats; horses | 1 mL (dogs and cats); 3–5 mL (horses) every 3 to 4 weeks | IM | Jurox Pty Ltd., Rutherford, NSW, Australia. | [120] |
Depodine™ | Iodine | Peanut oil | Treatment of iodine deficiency | Cattle; sheep | 1.5 mL (sheep); 3–6 mL (cattle) | IM | Alleva Animal Health, Australia | [121] |
Oily Suspension | ||||||||
Excenel® RTU | Ceftiofur hydrochloride | Phospholipids; sorbitan oleate; cottonseed oil | Bovine respiratory disease; acute bovine interdigital necrobacillosis; acute metritis | Swine | 3–5 mg/kg body weight | SC; IM | Zoetis, Parsipanny, NJ, USA | [122] |
Bimoxyl™ LA | Amoxicillin trihydrate | Glycerol monocaprylate; propylene glycol dicaprylocaprate | Amoxicillin is susceptible to bacterial infections; respiratory infections; urinary tract infections | Cattle; sheep; pigs; dogs | 15 mg/kg body weight; repeat at 48 h intervals if required | IM (cattle, sheep, and pigs); SC (dogs) | Bimeda Animal Health Ltd., Dublin, Ireland | [123] |
Moxylan LA | Amoxicillin trihydrate | Plant oil | Amoxicillin is susceptible to bacterial infections | Cattle; sheep; pigs; dogs; cats | 15 mg/kg body weight; repeat at 48 h intervals if required | IM (cattle, sheep, and pigs); SC (dogs and cats) | Jurox Pty Ltd., Rutherford, NSW, Australia | [124] |
SMARTSHOT® B12 | Vitamin B12 | Peanut oil; poly(lactide-co-glycolide) | For the treatment and prevention of cobalt deficiency | Cattle; sheep | 0.5 mL (lambs for docking); 1 mL (lambs for weaning); 5 mL (ewe); 1 mL per 25 kg live weight (calves) | SC; IM | Virbac New Zealand Ltd., Hamilton, New Zealand | [125] |
POSILAC™ | Recombinant bovine somatotropin | Sesame oil | To increase the production of milk in lactating cows | Cows | 500 mg every 14 days | SC | Union Agener, Inc., Augusta, GA, USA | [126] |
Microspheres | ||||||||
Micotil® | Tilmicosin | NA | Bovine respiratory disease | Cattle, lamb | 10 mg/kg | SC | Elanco, Indianapolis, IN, USA | [127] |
ProHeart®12 | Moxidectin | Hydroxypropyl methylcellulose | Heartworm disease | Dogs | 10 mg | SC | Zoetis, Parsipanny, NJ, USA | [128] |
Implants | ||||||||
Component E-C and Component E-C with Tylan | Progesterone 100 mg, estradiol benzoate 10 mg, tylosin tartarate 29 mg | NA | Improves body mass gain | Beef calves | Single dose for 100–140 days | SC | Elanco, Indianapolis, IN, USA | [129] |
Compudose 100, 200, and 400 | Estradiol | NA | Improves body mass gain | Beef calves | Single dose for 170–400 days | SC | Elanco, Indianapolis, IN, USA | [130] |
Ralgro | Zeranol 36 mg | NA | Improves body mass gain | Cattle | Single dose for 70–100 days | SC | Merck & Co, Rahway, NJ, USA | [131] |
Synovex ONE Grover | Trenbolone acetate 40 mg, estradiol benzoate 21 mg | Lipid matrix | Growth | Cattle | Single dose for 200 days | SC | Zoetis, Parsipanny, NJ, USA | [132] |
Suprelorin | Deslorelin acetate 4.7 mg | Lipid matrix | Contraception | Male dogs | Single dose for 6 months | SC | Virbac New Zealand Ltd., Hamilton, New Zealand | [133] |
Hydrogels | ||||||||
Synovetin OA Device | Tin-117 (radioisotope) | NA | For synovitis and chronic canine elbow pain | Dogs | Once a year | IA | Exubrion, Gainesville, GA, USA | [134] |
Ivermectin hydrogel | Ivermectin 5 mg/mL | Propylene glycol mono myristyl ether propionate | Antibacterial and antiparasitic infections | Cattle | 14–21 days | NA | International Animal Health Products, Huntingwood, Australia | [135] |
Conveina® | Cephalosporin 80 mg/mL | NA | For periodontal diseases | Dogs and cats | 14 days | SC | Zoetis, Parsipanny, NJ, USA | [136] |
Doxirobe® Gel | Doxycycline hyclate | PLGA | For periodontal diseases | Dogs | 7 days | IPD | Zoetis, Parsipanny, NJ, USA | [137] |
Drugs | Animals | Study Details | Ref. |
---|---|---|---|
Stealth PEGylated liposomes | |||
Doxorubicin | Dogs |
| [181,182] |
Doxorubicin | Dogs |
| [183] |
Doxorubicin/Caelyx | Cats |
| [184] |
Non-PEGylated liposomes | |||
Doxorubicin/Myocet | Dogs |
| [185,186] |
Liposomes | |||
Doxorubicin | Dogs |
| [174] |
Carmustine | Dogs |
| [187] |
Vincristine and paclitaxel | Dogs |
| [188,189] |
HAS cell lysates | Dogs |
| [190] |
Inactivated avian pathogenic E. coli | Chickens |
| [191] |
MIC3 protein from T. gondii | Sheep |
| [177] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koppisetti, H.; Abdella, S.; Nakmode, D.D.; Abid, F.; Afinjuomo, F.; Kim, S.; Song, Y.; Garg, S. Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care. Pharmaceutics 2025, 17, 626. https://doi.org/10.3390/pharmaceutics17050626
Koppisetti H, Abdella S, Nakmode DD, Abid F, Afinjuomo F, Kim S, Song Y, Garg S. Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care. Pharmaceutics. 2025; 17(5):626. https://doi.org/10.3390/pharmaceutics17050626
Chicago/Turabian StyleKoppisetti, HariPriya, Sadikalmahdi Abdella, Deepa D. Nakmode, Fatima Abid, Franklin Afinjuomo, Sangseo Kim, Yunmei Song, and Sanjay Garg. 2025. "Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care" Pharmaceutics 17, no. 5: 626. https://doi.org/10.3390/pharmaceutics17050626
APA StyleKoppisetti, H., Abdella, S., Nakmode, D. D., Abid, F., Afinjuomo, F., Kim, S., Song, Y., & Garg, S. (2025). Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care. Pharmaceutics, 17(5), 626. https://doi.org/10.3390/pharmaceutics17050626