Collagen–Chitosan Composites Enhanced with Hydroxytyrosol for Prospective Wound Healing Uses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biomaterials Preparation
2.3. Morphology
2.4. Mechanical Properties
2.4.1. Textural Analysis
2.4.2. Rheology Studies
2.4.3. In Vitro HT Release Studies
2.4.4. HT Quantification by HPLC
2.5. Bioassays
2.5.1. Cytocompatibility
2.5.2. Antimicrobial Susceptibility Testing (AST)
2.5.3. Antimicrobial Activity Determination of Biomaterials
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound Repair and Regeneration: Mechanisms, Signaling, and Translation. Sci. Transl. Med. 2014, 6, 265sr6. [Google Scholar] [CrossRef] [PubMed]
- Moura, L.I.F.; Dias, A.M.A.; Carvalho, E.; De Sousa, H.C. Recent Advances on the Development of Wound Dressings for Diabetic Foot Ulcer Treatment—A Review. Acta Biomater. 2013, 9, 7093–7114. [Google Scholar] [CrossRef]
- Borda, L.J.; Macquhae, F.E.; Kirsner, R.S. Wound Dressings: A Comprehensive Review. Curr. Dermatol. Rep. 2016, 5, 287–297. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Chitins and Chitosans for the Repair of Wounded Skin, Nerve, Cartilage and Bone. Carbohydr. Polym. 2009, 76, 167–182. [Google Scholar] [CrossRef]
- Batista, M.P.; Fernández, N.; Gaspar, F.B.; do Rosário Bronze, M.; Duarte, A.R.C. Extraction of Biocompatible Collagen from Blue Shark Skins Through the Conventional Extraction Process Intensification Using Natural Deep Eutectic Solvents. Front. Chem. 2022, 10, 937036. [Google Scholar] [CrossRef] [PubMed]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]
- Carvalho, D.N.; Lopez-Cebral, R.; Sousa, R.O.; Alves, A.L.; Reys, L.L.; Silva, S.S.; Oliveira, J.M.; Reis, R.L.; Silva, T.H. Marine Collagen-Chitosan-Fucoidan Cryogels as Cell-Laden Biocomposites Envisaging Tissue Engineering. Biomed. Mater. 2020, 15, 055030. [Google Scholar] [CrossRef]
- Ramasamy, P.; Shanmugam, A. Characterization and Wound Healing Property of Collagen–Chitosan Film from Sepia Kobiensis (Hoyle, 1885). Int. J. Biol. Macromol. 2015, 74, 93–102. [Google Scholar] [CrossRef]
- Vivcharenko, V.; Przekora, A. Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties. Appl. Sci. 2021, 11, 4114. [Google Scholar] [CrossRef]
- Utami, N.D.; Nordin, A.; Katas, H.; Idrus, R.B.H.; Fauzi, M.B. Molecular Action of Hydroxytyrosol in Wound Healing: An In Vitro Evidence-Based Review. Biomolecules 2020, 10, 1397. [Google Scholar] [CrossRef]
- Batarfi, W.A.; Mohd Yunus, M.H.; Hamid, A.A. The Effect of Hydroxytyrosol in Type II Epithelial-Mesenchymal Transition in Human Skin Wound Healing. Molecules 2023, 28, 2652. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.S.; Fuhro, V.M.; de Souza Nogueira, J.; Romana-Souza, B. Polyphenol Hydroxytyrosol Present Olive Oil Improves Skin Wound Healing of Diabetic Mice. Wound Repair Regen. 2024, 32, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.M.; Al-Badi, E.; Withycombe, C.; Jones, P.M.; Purdy, K.J.; Maddocks, S.E. Interaction between Staphylococcus Aureus and Pseudomonas Aeruginosa Is Beneficial for Colonisation and Pathogenicity in a Mixed Biofilm. Pathog. Dis. 2018, 76, 3. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 403107. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-in Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Bom, S.; Santos, C.; Barros, R.; Martins, A.M.; Paradiso, P.; Cláudio, R.; Pinto, P.C.; Ribeiro, H.M.; Marto, J. Effects of Starch Incorporation on the Physicochemical Properties and Release Kinetics of Alginate-Based 3D Hydrogel Patches for Topical Delivery. Pharmaceutics 2020, 12, 719. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Martins, B.T.; Faria, N.A.; Macedo, A.C.; Miragaia, M.; Serra, A.T.; Bronze, M.R.; Ventura, M.R. Exploring the Biological Potential of Hydroxytyrosol and Derivatives: Synthetic Strategies and Evaluation of Antiproliferative, Antioxidant, and Antimicrobial Activities. J. Agric. Food Chem. 2024, 72, 26699–26710. [Google Scholar] [CrossRef]
- Batista, M.P.; Gonçalves, V.S.S.; Gaspar, F.B.; Nogueira, I.D.; Matias, A.A.; Gurikov, P. Novel Alginate-Chitosan Aerogel Fibres for Potential Wound Healing Applications. Int. J. Biol. Macromol. 2020, 156, 773–782. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization (ISO): Geneva, Switzerland, 2009.
- M07 Ed12; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 12th Edition. Clinical & Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2024.
- ISO 20743:2021; Textiles—Determination of Antibacterial Activity of Textile Products. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Wang, C.C.; Su, C.H.; Chen, C.C. Water Absorbing and Antibacterial Properties of N-Isopropyl Acrylamide Grafted and Collagen/Chitosan Immobilized Polypropylene Nonwoven Fabric and Its Application on Wound Healing Enhancement. J. Biomed. Mater. Res. A 2008, 84A, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.; Yang, Y.; Du, S.; Yang, X.; Pang, S.; Wang, X.; Yang, S. Preparation of a Recombinant Collagen-Peptide (RHC)-Conjugated Chitosan Thermosensitive Hydrogel for Wound Healing. Mater. Sci. Eng. C 2021, 119, 111555. [Google Scholar] [CrossRef]
- Xie, H.; Chen, X.; Shen, X.; He, Y.; Chen, W.; Luo, Q.; Ge, W.; Yuan, W.; Tang, X.; Hou, D.; et al. Preparation of Chitosan-Collagen-Alginate Composite Dressing and Its Promoting Effects on Wound Healing. Int. J. Biol. Macromol. 2018, 107, 93–104. [Google Scholar] [CrossRef]
- Shankar, K.G.; Kumar, S.U.; Sowndarya, S.; Sridevi, J.; Angel, S.S.; Rose, C. Rumen Tissue Derived Decellularized Submucosa Collagen or Its Chitosan-Treated Film as a Cutaneous Wound Healant and 1H NMR-Metabolite Profiling of Plasma. RSC Adv. 2016, 6, 107403–107415. [Google Scholar] [CrossRef]
- Wang, W.; Lin, S.; Xiao, Y.; Huang, Y.; Tan, Y.; Cai, L.; Li, X. Acceleration of Diabetic Wound Healing with Chitosan-Crosslinked Collagen Sponge Containing Recombinant Human Acidic Fibroblast Growth Factor in Healing-Impaired STZ Diabetic Rats. Life Sci. 2008, 82, 190–204. [Google Scholar] [CrossRef]
- Rezaii, M.; Oryan, S.; Javeri, A. Curcumin Nanoparticles Incorporated Collagen-Chitosan Scaffold Promotes Cutaneous Wound Healing through Regulation of TGF-Β1/Smad7 Gene Expression. Mater. Sci. Eng. C 2019, 98, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Dutta, K.; Sarkar, K.; Karmakar, S.; Gangopadhyay, B.; Basu, A.; Bank, S.; De, S.; Das, B.; Das, M.; Chattopadhyay, D. Asymmetric Fabrication and in Vivo Evaluation of the Wound Healing Potency of Electrospun Biomimetic Nanofibrous Scaffolds Based on Collagen Crosslinked Modified-Chitosan and Graphene Oxide Quantum Dot Nanocomposites. J. Mater. Chem. B 2023, 11, 9478–9495. [Google Scholar] [CrossRef]
- Li, M.; Han, M.; Sun, Y.; Hua, Y.; Chen, G.; Zhang, L. Oligoarginine Mediated Collagen/Chitosan Gel Composite for Cutaneous Wound Healing. Int. J. Biol. Macromol. 2019, 122, 1120–1127. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Salama, A.H. Norfloxacin-Loaded Collagen/Chitosan Scaffolds for Skin Reconstruction: Preparation, Evaluation and in-Vivo Wound Healing Assessment. Eur. J. Pharm. Sci. 2016, 83, 155–165. [Google Scholar] [CrossRef]
- Milenkova, S.; Ambrus, R.; Mukhtar, M.; Pilicheva, B.; Marudova, M. Spray-Dried Chitosan Hydrogel Particles as a Potential Delivery System for Benzydamine Hydrochloride. Gels 2024, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- CaterinaValentino; Perucchini, M.; Vigani, B.; Ruggeri, M.; Pellegrini, A.; Pietrocola, G.; Varacca, G.; Bettini, R.; Milanese, C.; Sandri, G.; et al. Development of Chitosan/Hydrolyzed Collagen Interaction Product-Based Microparticles for the Treatment of Respiratory Tract Infections. Int. J. Biol. Macromol. 2025, 288, 138674. [Google Scholar] [CrossRef]
- Másson, M. Antimicrobial Properties of Chitosan and Its Derivatives. Adv. Polym. Sci. 2021, 287, 131–168. [Google Scholar] [CrossRef]
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Bisignano, G.; Tomaino, A.; Lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the In-Vitro Antimicrobial Activity of Oleuropein and Hydroxytyrosol. J. Pharm. Pharmacol. 2010, 51, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Britton, J.; Davis, R.; O’Connor, K.E. Chemical, Physical and Biotechnological Approaches to the Production of the Potent Antioxidant Hydroxytyrosol. Appl. Microbiol. Biotechnol. 2019, 103, 5957–5974. [Google Scholar] [CrossRef]
- Vilaplana-Pérez, C.; Auñón, D.; García-Flores, L.A.; Gil-Izquierdo, A. Hydroxytyrosol and Potential Uses in Cardiovascular Diseases, Cancer, and AIDS. Front. Nutr. 2014, 1, 110584. [Google Scholar] [CrossRef]
- Lin, W.; Mu, C.; Liu, F.; Cheng, Q.; Li, H.; Wu, B.; Zhang, G. Collagen Cryogel Cross-Linked by Dialdehyde Starch. Macromol. Mater. Eng. 2010, 295, 100–107. [Google Scholar] [CrossRef]
- Cefali, L.C.; Ataide, J.A.; Fernandes, A.R.; Sousa, I.M.d.O.; Gonçalves, F.C.d.S.; Eberlin, S.; Dávila, J.L.; Jozala, A.F.; Chaud, M.V.; Sanchez-Lopez, E.; et al. Flavonoid-Enriched Plant-Extract-Loaded Emulsion: A Novel Phytocosmetic Sunscreen Formulation with Antioxidant Properties. Antioxidants 2019, 8, 443. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ngoc Le, T.T.; Nguyen, A.T.; Thien Le, H.N.; Pham, T.T. Biomedical Materials for Wound Dressing: Recent Advances and Applications. RSC Adv. 2023, 13, 5509–5528. [Google Scholar] [CrossRef]
- Hodge, J.G.; Zamierowski, D.S.; Robinson, J.L.; Mellott, A.J. Evaluating Polymeric Biomaterials to Improve Next Generation Wound Dressing Design. Biomater. Res. 2022, 26, 50. [Google Scholar] [CrossRef] [PubMed]
- Spotti, M.L.; Cecchini, J.P.; Spotti, M.J.; Carrara, C.R. Brea Gum (from Cercidium Praecox) as a Structural Support for Emulsion-Based Edible Films. LWT 2016, 68, 127–134. [Google Scholar] [CrossRef]
- Becerra, J.; Rodriguez, M.; Leal, D.; Noris-Suarez, K.; Gonzalez, G. Chitosan-Collagen-Hydroxyapatite Membranes for Tissue Engineering. J. Mater. Sci. Mater. Med. 2022, 33, 18. [Google Scholar] [CrossRef] [PubMed]
- Thongchai, K.; Chuysinuan, P.; Thanyacharoen, T.; Techasakul, S.; Ummartyotin, S. Integration of Collagen into Chitosan Blend Film Composites: Physicochemical Property Aspects for Pharmaceutical Materials. SN Appl. Sci. 2020, 2, 255. [Google Scholar] [CrossRef]
- Suwas, S.; Ray, R.K. Texture and Properties. In Crystallographic Texture of Materials; Springer: London, UK, 2014; pp. 207–223. [Google Scholar] [CrossRef]
- White, R.; Cutting, K.F. Modern Exudate Management: A Review of Wound Treatments. World Wide Wounds. 2006. Available online: http://www.worldwidewounds.com/2006/september/White/Modern-Exudate-Mgt.html (accessed on 27 April 2025).
- Tickle, J. Wound Exudate: A Survey of Current Understanding and Clinical Competency. Br. J. Nurs. 2016, 25, 102–109. [Google Scholar] [CrossRef]
- Denn, M.M.; Morris, J.F.; Bonn, D. Shear Thickening in Concentrated Suspensions of Smooth Spheres in Newtonian Suspending Fluids. Soft Matter 2018, 14, 170–184. [Google Scholar] [CrossRef]
- Zarei, M.; Aalaie, J. Application of Shear Thickening Fluids in Material Development. J. Mater. Res. Technol. 2020, 9, 10411–10433. [Google Scholar] [CrossRef]
- Johnston, E.R.; Miyagi, Y.; Chuah, J.A.; Numata, K.; Serban, M.A. Interplay between Silk Fibroin’s Structure and Its Adhesive Properties. ACS Biomater. Sci. Eng. 2018, 4, 2815–2824. [Google Scholar] [CrossRef]
- Grillet, A.M.; Wyatt, N.B.; Gloe, L.M. Polymer Gel Rheology and Adhesion. In Rheology; IntechOpen: London, UK, 2012; p. 338. [Google Scholar]
- Graça, A.; Gonçalves, L.M.; Raposo, S.; Ribeiro, H.M.; Marto, J. Useful In Vitro Techniques to Evaluate the Mucoadhesive Properties of Hyaluronic Acid-Based Ocular Delivery Systems. Pharmaceutics 2018, 10, 110. [Google Scholar] [CrossRef]
- Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, UK, 2015; pp. 63–86. [CrossRef]
Compounds | Dissolving Agent | Highest-Tested Concentration |
---|---|---|
Chitosan | HCl 0.1 M | 10 mg/mL |
Hydroxytyrosol | ddH2O | 20 mg/mL |
HCl | ddH2O | 50 mM |
Xylitol | ddH2O | 300 mg/mL |
Citric acid | ddH2O | 100 mg/mL |
Tested Compounds | MICMedian (n = 1/n = 2/n = 3) (mg/mL) | |
---|---|---|
S. aureus ATCC 6538 | P. aeruginosa ATCC 27853 | |
Chit | 0.16 (0.16/0.16/0.16) | 0.31 (0.63/0.63/0.31) |
HT | 0.39 (0.39/0.39/0.39) | 1.56 (1.56/0.78/0.78) |
Samples | Burst Strength (N) | Distance at Burst (mm) |
---|---|---|
Coll | 13.9 ± 1.82 a | 53.0 ± 0.40 a |
Coll:Chit | 19.7 ± 3.57 b | 53.5 ± 0.20 a |
Coll:Chit:HT | 17.1 ± 0.89 b | 53.5 ± 0.18 a |
Area Under the Force–Time Curve (N·s) | Peak of Normal Force (N) | |||
---|---|---|---|---|
1:1 w:w | 1:4 w:w | 1:1 w:w | 1:4 w:w | |
Coll | 27.9 ± 2.26 a | 1.44 ± 0.54 b | −15.4 ± 1.30 a | −0.12 ± 0.07 b |
Coll:Chit | 24.4 ± 1.76 a | 1.18 ± 0.54 b | −12.4 ± 2.01 a | −0.27 ± 0.13 b |
Coll:Chit:HT | 25.1 ± 1.53 a | 1.24 ± 0.50 b | −12.5 ± 1.87 a | −0.22 ± 0.08 b |
Strain | Sample | Antibacterial Activity Value | Efficacy of Antibacterial Activity |
---|---|---|---|
S. aureus ATCC 6538 | Coll | 2.1 ± 0.3 | Significant |
Coll:Chit | 6.9 ± 0.1 | Strong | |
Coll:Chit:HT | 7.1 ± 0.1 | Strong | |
P. aeruginosa ATCC 27853 | Coll | 1.7 ± 0.2 | Negligible |
Coll:Chit | 2.6 ± 0.2 | Significant | |
Coll:Chit:HT | 5.8 ± 0.5 | Strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, M.P.; Pimenta, M.; Fernández, N.; Duarte, A.R.C.; Bronze, M.d.R.; Marto, J.; Gaspar, F.B. Collagen–Chitosan Composites Enhanced with Hydroxytyrosol for Prospective Wound Healing Uses. Pharmaceutics 2025, 17, 618. https://doi.org/10.3390/pharmaceutics17050618
Batista MP, Pimenta M, Fernández N, Duarte ARC, Bronze MdR, Marto J, Gaspar FB. Collagen–Chitosan Composites Enhanced with Hydroxytyrosol for Prospective Wound Healing Uses. Pharmaceutics. 2025; 17(5):618. https://doi.org/10.3390/pharmaceutics17050618
Chicago/Turabian StyleBatista, Miguel P., Margarida Pimenta, Naiara Fernández, Ana Rita C. Duarte, Maria do Rosário Bronze, Joana Marto, and Frédéric Bustos Gaspar. 2025. "Collagen–Chitosan Composites Enhanced with Hydroxytyrosol for Prospective Wound Healing Uses" Pharmaceutics 17, no. 5: 618. https://doi.org/10.3390/pharmaceutics17050618
APA StyleBatista, M. P., Pimenta, M., Fernández, N., Duarte, A. R. C., Bronze, M. d. R., Marto, J., & Gaspar, F. B. (2025). Collagen–Chitosan Composites Enhanced with Hydroxytyrosol for Prospective Wound Healing Uses. Pharmaceutics, 17(5), 618. https://doi.org/10.3390/pharmaceutics17050618