Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor–Bone Microenvironment
Abstract
:1. Introduction
1.1. Epidemiology and Prevalence of Bone Metastases
1.2. Pathophysiology and Mechanisms of Bone Colonization by Metastatic Cells
1.3. Mechanisms of Tumor Cell Homing to Bone
2. Current Treatment Challenges
2.1. Conventional Treatments and Their Limitations
2.2. The Need for Targeted, Efficient, and Less Toxic Therapeutic Strategies
2.3. Rationale for Nano-Based Drug Delivery
3. Biological and Physiological Considerations for Targeting Bone Metastases
3.1. The Bone Microenvironment
3.2. Tumor Biology in Bone
4. Overview of Nano-Based Drug Delivery Platforms
- Liposomal and polymeric carriers: clinically validated (e.g., Doxil®, Abraxane®‡), high drug-loading and biodegradability, but prone to leakage and require cold-chain logistics;
- Polymeric micelles: excellent solubilisers for hydrophobics and low critical micelle concentration, yet can disassemble under shear forces in the bloodstream;
- Dendrimers: multivalent targeting and tunable size; hurdles are costly synthesis and cationic-surface cytotoxicity;
- Mesoporous silica (MSNs): record surface area supports gate-controlled release; long-term RES retention and PEG-dependent uptake variability remain concerns;
- Metal/metal-oxide NPs (Au, Pt, TiO2): add photothermal, photodynamic, or radiosensitizing functions and permit image-guided therapy; key disadvantages are metal-ion persistence and potential off-target heating;
- SPIONs: enable MRI-visible magnetic targeting and magnetothermal release; heterogeneous tumor penetration and sparse clinical safety data are limiting factors;
- Hybrid organic–inorganic systems: combine biodegradability with multimodal imaging/therapy; synthetic complexity and regulatory path are still evolving.
4.1. Conventional Nanocarriers
- Liposomes
- Polymeric Nanoparticles
- Micelles
4.2. Advanced Nanocarriers
- Dendrimers
4.3. Mesoporous Silica Nanoparticles
4.4. Inorganic Nanoparticles (Metal/Metal Oxide)
4.5. Iron Oxide Nanoparticles for Magnetic Targeting and MRI Contrast
4.6. Hybrid Nanosystems
4.7. Surface Modifications and Targeting Ligands
5. Mechanisms of Bone-Targeted Delivery
5.1. Stimuli-Responsive Systems
5.2. Thermal-, Magnetic-, or Ultrasound-Triggered Release
6. Therapeutic Cargoes and Combination Strategies
6.1. Chemotherapeutic Agents
6.2. Dosing Strategies and Synergy with Bone Microenvironment
7. Biologics and Gene Therapy
7.1. The Role of Immunotherapy
7.2. Combination Therapies
7.3. Synergistic Effects to Overcome Resistance and Reduce Dosing
8. Preclinical and Clinical Perspectives
8.1. In Vitro and In Vivo Models
8.2. Representative Preclinical Studies
9. Clinical Trials and Ongoing Studies
Regulatory Status, Safety Profiles, and Reported Efficacy
10. Challenges in Translation and Regulatory Considerations
10.1. Manufacturing and Scalability
10.2. Stability During Storage and Distribution
11. Safety and Toxicological Issues
Need for Standardized Toxicity Assessment Protocols
12. Regulatory Framework
Gaps in the Regulation That May Hamper Clinical Translation
13. Future Outlook: Emerging Trends, Challenges, and Innovations
13.1. Multifunctional “Smart” Nanocarriers
13.2. Advanced Manufacturing Techniques
13.3. Three-Dimensional Printing Approaches to Develop Complex Composite Biomaterials for Local Delivery
13.4. Current Challenges of Nano-Drug Delivery Strategies
14. Sustainability and Cost-Effectiveness
14.1. Environmental Impact of Nanomaterials
14.2. Approaches to Make Nano-Delivery Systems More Affordable and Readily Available
15. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Cai, D.; Hong, S. Prevalence and Prognosis of Bone Metastases in Common Solid Cancers at Initial Diagnosis: A Population-Based Study. BMJ Open 2023, 13, e069908. [Google Scholar] [CrossRef] [PubMed]
- Knapp, B.J.; Cittolin-Santos, G.F.; Flanagan, M.E.; Grandhi, N.; Gao, F.; Samson, P.P.; Govindan, R.; Morgensztern, D. Incidence and Risk Factors for Bone Metastases at Presentation in Solid Tumors. Front. Oncol. 2024, 14, 1392667. [Google Scholar] [CrossRef]
- Waning, D.L.; Guise, T.A. Molecular Mechanisms of Bone Metastasis and Associated Muscle Weakness. Clin. Cancer Res. 2014, 20, 3071–3077. [Google Scholar] [CrossRef]
- Gomis, R.R.; Gawrzak, S. Tumor Cell Dormancy. Mol. Oncol. 2017, 11, 62–78. [Google Scholar] [CrossRef]
- Kollet, O.; Dar, A.; Shivtiel, S.; Kalinkovich, A.; Lapid, K.; Sztainberg, Y.; Tesio, M.; Samstein, R.M.; Goichberg, P.; Spiegel, A.; et al. Osteoclasts Degrade Endosteal Components and Promote Mobilization of Hematopoietic Progenitor Cells. Nat. Med. 2006, 12, 657–664. [Google Scholar] [CrossRef]
- Clezardin, P.; Teti, A. Bone Metastasis: Pathogenesis and Therapeutic Implications. Clin. Exp. Metastasis 2007, 24, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.H.; Nakashima, T.; Sanchez, O.H.; Kozieradzki, I.; Komarova, S.V.; Sarosi, I.; Morony, S.; Rubin, E.; Sarao, R.; Hojilla, C.V.; et al. Regulation of Cancer Cell Migration and Bone Metastasis by RANKL. Nature 2006, 440, 692–696. [Google Scholar] [CrossRef]
- Clézardin, P.; Coleman, R.; Puppo, M.; Ottewell, P.; Bonnelye, E.; Paycha, F.; Confavreux, C.B.; Holen, I. Bone Metastasis: Mechanisms, Therapies, and Biomarkers. Physiol. Rev. 2021, 101, 797–855. [Google Scholar] [CrossRef] [PubMed]
- Ban, J.; Fock, V.; Aryee, D.N.T.; Kovar, H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021, 10, 2944. [Google Scholar] [CrossRef]
- Bădilă, A.E.; Rădulescu, D.M.; Niculescu, A.-G.; Grumezescu, A.M.; Rădulescu, M.; Rădulescu, A.R. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers 2021, 13, 4229. [Google Scholar] [CrossRef]
- Li, C.; Wu, Q.; Chang, D.; Liang, H.; Ding, X.; Lao, C.; Huang, Z. State-of-the-Art of Minimally Invasive Treatments of Bone Metastases. J. Bone Oncol. 2022, 34, 100425. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhu, L. Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. Int. J. Nanomed. 2024, 19, 1867–1886. [Google Scholar] [CrossRef]
- Ferro, Y.; Maurotti, S.; Tarsitano, M.G.; Lodari, O.; Pujia, R.; Mazza, E.; Lascala, L.; Russo, R.; Pujia, A.; Montalcini, T. Therapeutic Fasting in Reducing Chemotherapy Side Effects in Cancer Patients: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2666. [Google Scholar] [CrossRef]
- Chow, E.; Harris, K.; Fan, G.; Tsao, M.; Sze, W.M. Palliative Radiotherapy Trials for Bone Metastases: A Systematic Review. JCO 2007, 25, 1423–1436. [Google Scholar] [CrossRef]
- Agarawal, J.P.; Swangsilpa, T.; Van Der Linden, Y.; Rades, D.; Jeremic, B.; Hoskin, P.J. The Role of External Beam Radiotherapy in the Management of Bone Metastases. Clin. Oncol. 2006, 18, 747–760. [Google Scholar] [CrossRef]
- Sprave, T.; Verma, V.; Förster, R.; Schlampp, I.; Bruckner, T.; Bostel, T.; Welte, S.E.; Tonndorf-Martini, E.; Nicolay, N.H.; Debus, J.; et al. Randomized Phase II Trial Evaluating Pain Response in Patients with Spinal Metastases Following Stereotactic Body Radiotherapy versus Three-Dimensional Conformal Radiotherapy. Radiother. Oncol. 2018, 128, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.-W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.L.; Van Der Velden, J.M.; Wong, E.; Seravalli, E.; Sahgal, A.; Chow, E.; Verlaan, J.-J.; Verkooijen, H.M.; Van Der Linden, Y.M. Systematic Review of the Role of Stereotactic Radiotherapy for Bone Metastases. JNCI J. Natl. Cancer Inst. 2019, 111, 1023–1032. [Google Scholar] [CrossRef]
- Dilalla, V.; Chaput, G.; Williams, T.; Sultanem, K. Radiotherapy Side Effects: Integrating a Survivorship Clinical Lens to Better Serve Patients. Curr. Oncol. 2020, 27, 107–112. [Google Scholar] [CrossRef]
- Domschke, C.; Schuetz, F. Side Effects of Bone-Targeted Therapies in Advanced Breast Cancer. Breast Care 2014, 9, 332–336. [Google Scholar] [CrossRef]
- Zhai, X.; Peng, S.; Zhai, C.; Wang, S.; Xie, M.; Guo, S.; Bai, J. Design of Nanodrug Delivery Systems for Tumor Bone Metastasis. CPD 2024, 30, 1136–1148. [Google Scholar] [CrossRef] [PubMed]
- Katsumi, H.; Yamashita, S.; Morishita, M.; Yamamoto, A. Bone-Targeted Drug Delivery Systems and Strategies for Treatment of Bone Metastasis. Chem. Pharm. Bull. 2020, 68, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Li, S. Nanomaterials: Breaking through the Bottleneck of Tumor Immunotherapy. Int. J. Biol. Macromol. 2023, 230, 123159. [Google Scholar] [CrossRef]
- Chen, Z.; Yue, Z.; Yang, K.; Li, S. Nanomaterials: Small Particles Show Huge Possibilities for Cancer Immunotherapy. J. Nanobiotechnol. 2022, 20, 484. [Google Scholar] [CrossRef]
- Pang, Y.; Su, L.; Fu, Y.; Jia, F.; Zhang, C.; Cao, X.; He, W.; Kong, X.; Xu, J.; Zhao, J.; et al. Inhibition of Furin by Bone Targeting Superparamagnetic Iron Oxide Nanoparticles Alleviated Breast Cancer Bone Metastasis. Bioact. Mater. 2021, 6, 712–720. [Google Scholar] [CrossRef]
- Rahman, M.T.; Kaung, Y.; Shannon, L.; Androjna, C.; Sharifi, N.; Labhasetwar, V. Nanoparticle-Mediated Synergistic Drug Combination for Treating Bone Metastasis. J. Control. Release 2023, 357, 498–510. [Google Scholar] [CrossRef]
- Adjei, I.M.; Temples, M.N.; Brown, S.B.; Sharma, B. Targeted Nanomedicine to Treat Bone Metastasis. Pharmaceutics 2018, 10, 205. [Google Scholar] [CrossRef]
- Mane, R.; Dhumal, A.; Patel, V.; Pingale, P.; Jadhav, K.; Rajput, A. Chapter 13 Nanocarriers in Transdermal Drug Delivery. In Nanocarrier Drug Delivery Systems; Pingale, P.L., Baboota, S., Ali, J., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2024; pp. 387–418. ISBN 978-3-11-132084-7. [Google Scholar]
- Guan, Y.; Zhang, W.; Mao, Y.; Li, S. Nanoparticles and Bone Microenvironment: A Comprehensive Review for Malignant Bone Tumor Diagnosis and Treatment. Mol. Cancer 2024, 23, 246. [Google Scholar] [CrossRef]
- Andreev, D.; Liu, M.; Weidner, D.; Kachler, K.; Faas, M.; Grüneboom, A.; Schlötzer-Schrehardt, U.; Muñoz, L.E.; Steffen, U.; Grötsch, B.; et al. Osteocyte Necrosis Triggers Osteoclast-Mediated Bone Loss Through Macrophage-Inducible C-Type Lectin. J. Clin. Investig. 2020, 130, 4811–4830. [Google Scholar] [CrossRef]
- Moradi Kashkooli, F.; Jakhmola, A.; Hornsby, T.K.; Tavakkoli, J.J.; Kolios, M.C. Ultrasound-Mediated Nano Drug Delivery for Treating Cancer: Fundamental Physics to Future Directions. J. Control. Release 2023, 355, 552–578. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Huang, L. Exploring the Tumor Microenvironment with Nanoparticles. In Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer; Mirkin, C.A., Meade, T.J., Petrosko, S.H., Stegh, A.H., Eds.; Cancer Treatment and Research; Springer International Publishing: Cham, Switzerland, 2015; Volume 166, pp. 193–226. ISBN 978-3-319-16554-7. [Google Scholar]
- Aloss, K.; Hamar, P. Augmentation of the EPR Effect by Mild Hyperthermia to Improve Nanoparticle Delivery to the Tumor. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2024, 1879, 189109. [Google Scholar] [CrossRef]
- Yan, Y.; Gao, X.; Zhang, S.; Wang, Y.; Zhou, Z.; Xiao, J.; Zhang, Q.; Cheng, Y. A Carboxyl-Terminated Dendrimer Enables Osteolytic Lesion Targeting and Photothermal Ablation of Malignant Bone Tumors. ACS Appl. Mater. Interfaces 2019, 11, 160–168. [Google Scholar] [CrossRef]
- Ha, S.-W.; Viggeswarapu, M.; Habib, M.M.; Beck, G.R. Bioactive Effects of Silica Nanoparticles on Bone Cells Are Size, Surface, and Composition Dependent. Acta Biomater. 2018, 82, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Q.; He, X.; Chen, H.; Zou, Y.; Li, Y.; Lin, K.; Cai, X.; Xiao, J.; Zhang, Q.; et al. Multifunctional Melanin-like Nanoparticles for Bone-Targeted Chemo-Photothermal Therapy of Malignant Bone Tumors and Osteolysis. Biomaterials 2018, 183, 10–19. [Google Scholar] [CrossRef]
- Zhou, Z.; Fan, T.; Yan, Y.; Zhang, S.; Zhou, Y.; Deng, H.; Cai, X.; Xiao, J.; Song, D.; Zhang, Q.; et al. One Stone with Two Birds: Phytic Acid-Capped Platinum Nanoparticles for Targeted Combination Therapy of Bone Tumors. Biomaterials 2019, 194, 130–138. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022, 14, 543. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, X.; Yuan, H.; Wei, S.; Gu, X.; Bu, Y.; He, H.; Shi, Y.; Ma, M.; Chen, S.; et al. Simply and Cheaply Prepared Liposomal Membrane for Nanocarriers: High Encapsulation Efficiency Based on Broad Regulation of Surface Charges and pH-Switchable Performance. Biomacromolecules 2023, 24, 5687–5697. [Google Scholar] [CrossRef]
- Othman, A.K.; El Kurdi, R.; Badran, A.; Mesmar, J.; Baydoun, E.; Patra, D. Liposome-Based Nanocapsules for the Controlled Release of Dietary Curcumin: PDDA and Silica Nanoparticle-Coated DMPC Liposomes Enhance the Fluorescence Efficiency and Anticancer Activity of Curcumin. RSC Adv. 2022, 12, 11282–11292. [Google Scholar] [CrossRef]
- Gu, J.; Jiang, L.; Chen, Z.; Qi, J. A Simple Nanoplatform of Thermo-Sensitive Liposomes and Gold Nanorods to Treat Bone Metastasis through Improved Chemotherapy Combined with Photothermal Therapy. Int. J. Pharm. X 2024, 8, 100282. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Cui, Y.; Zhao, Z.; Chen, X. Liposomes Modified with a Multivalent Glutamic Hexapeptide: A Novel and Effective Way to Promote Bone Targeting. Arch. Pharm. 2024, 357, 2300620. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhao, Y.; Chen, C.; Xie, C. GLUT1-Mediated Magnetic Liposomes for Targeting Bone Metastatic Breast Cancer. Eur. J. Gynaecol. Oncol. 2023, 44, 98–105. [Google Scholar] [CrossRef]
- Agrawal, S.S.; Baliga, V.; Londhe, V.Y. Liposomal Formulations: A Recent Update. Pharmaceutics 2024, 17, 36. [Google Scholar] [CrossRef]
- Nazemi, K.; Azadpour, P.; Moztarzadeh, F.; Urbanska, A.M.; Mozafari, M. Tissue-Engineered Chitosan/Bioactive Glass Bone Scaffolds Integrated with PLGA Nanoparticles: A Therapeutic Design for on-Demand Drug Delivery. Mater. Lett. 2015, 138, 16–20. [Google Scholar] [CrossRef]
- Duskey, J.T.; Baraldi, C.; Gamberini, M.C.; Ottonelli, I.; Da Ros, F.; Tosi, G.; Forni, F.; Vandelli, M.A.; Ruozi, B. Investigating Novel Syntheses of a Series of Unique Hybrid PLGA-Chitosan Polymers for Potential Therapeutic Delivery Applications. Polymers 2020, 12, 823. [Google Scholar] [CrossRef] [PubMed]
- Parhi, R. Drug Delivery Applications of Chitin and Chitosan: A Review. Environ. Chem. Lett. 2020, 18, 577–594. [Google Scholar] [CrossRef]
- Bixenmann, L.; Ahmad, T.; Stephan, F.; Nuhn, L. End-Group Dye-Labeled Poly(Hemiacetal Ester) Block Copolymers: Enhancing Hydrolytic Stability and Loading Capacity for Micellar (Immuno-)Drug Delivery. Biomacromolecules 2024, 25, 7958–7974. [Google Scholar] [CrossRef]
- He, L.; Jiang, C.; Ren, J.; Pan, X.; Qiu, Z.; Xia, Y.; Wang, T.; Guo, J.; Li, J.; Li, W. Enhanced Drug Resistance Suppression by Serum-Stable Micelles from Multi-Arm Amphiphilic Block Copolymers and Tocopheryl Polyethylene Glycol 1000 Succinate. Nanomedicine 2024, 19, 1297–1311. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, M.; Fan, T.; Zhou, M.; Yin, R.; Wang, X. Advances of Stimuli-Responsive Amphiphilic Copolymer Micelles in Tumor Therapy. Int. J. Nanomed. 2025, 20, 1–24. [Google Scholar] [CrossRef]
- Wooley, K.L.; Hawker, C.J.; Fréchet, J.M.J. Polymers with Controlled Molecular Architecture: Control of Surface Functionality in the Synthesis of Dendritic Hyperbranched Macromolecules Using the Convergent Approach. J. Chem. Soc. Perkin Trans. 1 1991, 1059–1076. [Google Scholar] [CrossRef]
- Pearson, R.M.; Sunoqrot, S.; Hsu, H.; Bae, J.W.; Hong, S. Dendritic Nanoparticles: The Next Generation of Nanocarriers? Ther. Deliv. 2012, 3, 941–959. [Google Scholar] [CrossRef] [PubMed]
- Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117–132. [Google Scholar] [CrossRef]
- Torchilin, V. Multifunctional Nanocarriers☆. Adv. Drug Deliv. Rev. 2006, 58, 1532–1555. [Google Scholar] [CrossRef]
- Medina, S.H.; El-Sayed, M.E.H. Dendrimers as Carriers for Delivery of Chemotherapeutic Agents. Chem. Rev. 2009, 109, 3141–3157. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.T.; Carnahan, M.A.; Immoos, C.E.; Ribeiro, A.A.; Finkelstein, S.; Lee, S.J.; Grinstaff, M.W. Dendritic Molecular Capsules for Hydrophobic Compounds. J. Am. Chem. Soc. 2003, 125, 15485–15489. [Google Scholar] [CrossRef]
- Naylor, A.M.; Goddard, W.A.; Kiefer, G.E.; Tomalia, D.A. Starburst Dendrimers. 5. Molecular Shape Control. J. Am. Chem. Soc. 1989, 111, 2339–2341. [Google Scholar] [CrossRef]
- Patri, A.; Kukowskalatallo, J.; Bakerjr, J. Targeted Drug Delivery with Dendrimers: Comparison of the Release Kinetics of Covalently Conjugated Drug and Non-Covalent Drug Inclusion Complex. Adv. Drug Deliv. Rev. 2005, 57, 2203–2214. [Google Scholar] [CrossRef]
- Kojima, C.; Kono, K.; Maruyama, K.; Takagishi, T. Synthesis of Polyamidoamine Dendrimers Having Poly(Ethylene Glycol) Grafts and Their Ability To Encapsulate Anticancer Drugs. Bioconjug. Chem. 2000, 11, 910–917. [Google Scholar] [CrossRef]
- Li, X.; Takashima, M.; Yuba, E.; Harada, A.; Kono, K. PEGylated PAMAM Dendrimer–Doxorubicin Conjugate-Hybridized Gold Nanorod for Combined Photothermal-Chemotherapy. Biomaterials 2014, 35, 6576–6584. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide Dendrimer–Doxorubicin Conjugate-Based Nanoparticles as an Enzyme-Responsive Drug Delivery System for Cancer Therapy. Adv. Healthc. Mater. 2014, 3, 1299–1308. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Hammond, P.T. Amphiphilic Linear-Dendritic Triblock Copolymers Composed of Poly(Amidoamine) and Poly(Propylene Oxide) and Their Micellar-Phase and Encapsulation Properties. Langmuir 2006, 22, 7825–7832. [Google Scholar] [CrossRef]
- Yang, Y.; Hua, C.; Dong, C.-M. Synthesis, Self-Assembly, and In Vitro Doxorubicin Release Behavior of Dendron-like/Linear/Dendron-like Poly(ε-Caprolactone)-b-Poly(Ethylene Glycol)-b-Poly(ε-Caprolactone) Triblock Copolymers. Biomacromolecules 2009, 10, 2310–2318. [Google Scholar] [CrossRef]
- Hsu, H.; Sen, S.; Pearson, R.M.; Uddin, S.; Král, P.; Hong, S. Poly(Ethylene Glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles. Macromolecules 2014, 47, 6911–6918. [Google Scholar] [CrossRef] [PubMed]
- Patri, A.K.; Majoros, I.J.; Baker, J.R. Dendritic Polymer Macromolecular Carriers for Drug Delivery. Curr. Opin. Chem. Biol. 2002, 6, 466–471. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liang, S.; Long, M.; Xu, H. Mesoporous Silica Nanoparticles as Potential Carriers for Enhanced Drug Solubility of Paclitaxel. Mater. Sci. Eng. C 2017, 78, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Shen, J.; Li, Z.; Zhang, D.; Zhang, Q.; Duan, C.; Liu, G.; Zheng, D.; Liu, Y.; Tian, X. Successfully Tailoring the Pore Size of Mesoporous Silica Nanoparticles: Exploitation of Delivery Systems for Poorly Water-Soluble Drugs. Int. J. Pharm. 2012, 439, 81–91. [Google Scholar] [CrossRef]
- Xu, W.; Riikonen, J.; Lehto, V.-P. Mesoporous Systems for Poorly Soluble Drugs. Int. J. Pharm. 2013, 453, 181–197. [Google Scholar] [CrossRef]
- Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous Silica Nanoparticles for Drug and Gene Delivery. Acta Pharm. Sin. B 2018, 8, 165–177. [Google Scholar] [CrossRef]
- Oh, J.Y.; Yang, G.; Choi, E.; Ryu, J.-H. Mesoporous Silica Nanoparticle-Supported Nanocarriers with Enhanced Drug Loading, Encapsulation Stability, and Targeting Efficiency. Biomater. Sci. 2022, 10, 1448–1455. [Google Scholar] [CrossRef]
- Estrela, J.M.; Ortega, A.; Obrador, E. Glutathione in Cancer Biology and Therapy. Crit. Rev. Clin. Lab. Sci. 2006, 43, 143–181. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, X.; Wu, T.; Feng, P. Tunable Redox-Responsive Hybrid Nanogated Ensembles. J. Am. Chem. Soc. 2008, 130, 14418–14419. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Park, C.; Lee, H.; Park, H.J.; Kim, C. Glutathione-Induced Intracellular Release of Guests from Mesoporous Silica Nanocontainers with Cyclodextrin Gatekeepers. Adv. Mater. 2010, 22, 4280–4283. [Google Scholar] [CrossRef]
- Li, Y.; Hei, M.; Xu, Y.; Qian, X.; Zhu, W. Ammonium Salt Modified Mesoporous Silica Nanoparticles for Dual Intracellular-Responsive Gene Delivery. Int. J. Pharm. 2016, 511, 689–702. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Webster, P.; Davis, M.E. PEGylation Significantly Affects Cellular Uptake and Intracellular Trafficking of Non-Viral Gene Delivery Particles. Eur. J. Cell Biol. 2004, 83, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Arnida; Malugin, A.; Ghandehari, H. Cellular Uptake and Toxicity of Gold Nanoparticles in Prostate Cancer Cells: A Comparative Study of Rods and Spheres. J. Appl. Toxicol. 2010, 30, 212–217. [Google Scholar] [CrossRef]
- He, Q.; Zhang, J.; Shi, J.; Zhu, Z.; Zhang, L.; Bu, W.; Guo, L.; Chen, Y. The Effect of PEGylation of Mesoporous Silica Nanoparticles on Nonspecific Binding of Serum Proteins and Cellular Responses. Biomaterials 2010, 31, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Fang, Y.; Borchardt, L.; Kaskel, S. PEGylated Hollow Mesoporous Silica Nanoparticles as Potential Drug Delivery Vehicles. Microporous Mesoporous Mater. 2011, 141, 199–206. [Google Scholar] [CrossRef]
- Heldin, C.-H.; Rubin, K.; Pietras, K.; Östman, A. High Interstitial Fluid Pressure—An Obstacle in Cancer Therapy. Nat. Rev. Cancer 2004, 4, 806–813. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Z.; Gao, F.; Li, Y.; Shi, J. In Vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: Effects of Particle Size and PEGylation. Small 2011, 7, 271–280. [Google Scholar] [CrossRef]
- Park, J.-H.; Gu, L.; Von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable Luminescent Porous Silicon Nanoparticles for in Vivo Applications. Nat. Mater. 2009, 8, 331–336. [Google Scholar] [CrossRef]
- Eker, F.; Akdaşçi, E.; Duman, H.; Bechelany, M.; Karav, S. Gold Nanoparticles in Nanomedicine: Unique Properties and Therapeutic Potential. Nanomaterials 2024, 14, 1854. [Google Scholar] [CrossRef]
- Bin, R.; Zhu, C.; Yunjia, R.; Jin, Y.; Jie, W.; Dongqin, X.; Tao, L.; Gang, F. Tumor Growth Inhibition and Induced the Immunogenic Death of Tumor Cells in Prostate Tumor Bone Metastases by Photothermal Therapy Mediated with Au Nanoparticles Modified with PDA. Adv. Ther. 2024, 7, 2300433. [Google Scholar] [CrossRef]
- Khosla, A.; Lone, M.; Wani, I.A. Metallic, Magnetic, and Carbon-Based Nanomaterials: Synthesis and Biomedical Applications, 1st ed.; Wiley: Hoboken, NJ, USA, 2025; ISBN 978-1-119-87065-4. [Google Scholar]
- Zhang, Y.; Wang, Y.; Zhu, A.; Yu, N.; Xia, J.; Li, J. Dual-Targeting Biomimetic Semiconducting Polymer Nanocomposites for Amplified Theranostics of Bone Metastasis. Angew. Chem. Int. Ed. 2024, 63, e202310252. [Google Scholar] [CrossRef] [PubMed]
- Luong, D.; Sau, S.; Kesharwani, P.; Iyer, A.K. Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting. Biomacromolecules 2017, 18, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Dong, S. Targeted Magnetic Iron Oxide Nanoparticles for Tumor Imaging and Therapy. Int. J. Nanomed. 2008, 3, 311–321. [Google Scholar] [CrossRef]
- Seaberg, J.; Montazerian, H.; Hossen, M.N.; Bhattacharya, R.; Khademhosseini, A.; Mukherjee, P. Hybrid Nanosystems for Biomedical Applications. ACS Nano 2021, 15, 2099–2142. [Google Scholar] [CrossRef]
- Huang, P.; Chen, Y.; Lin, H.; Yu, L.; Zhang, L.; Wang, L.; Zhu, Y.; Shi, J. Molecularly Organic/Inorganic Hybrid Hollow Mesoporous Organosilica Nanocapsules with Tumor-Specific Biodegradability and Enhanced Chemotherapeutic Functionality. Biomaterials 2017, 125, 23–37. [Google Scholar] [CrossRef]
- Ghosh, R.; Mondal, S.; Mukherjee, D.; Adhikari, A.; Bhattacharyya, M.; Pal, S.K. Inorganic-Organic Synergy in Nano-Hybrids Makes a New Class of Drugwith Targeted Delivery: Glutamate Functionalization of IronNanoparticles for Potential Bone Marrow Delivery and X-Ray Dynamic Therapy. CDD 2022, 19, 991–1000. [Google Scholar] [CrossRef]
- Chen, N.; Fu, W.; Zhou, J.; Mei, L.; Yang, J.; Tian, Y.; Wang, Q.; Yin, W. Mn2+-Doped ZrO2@PDA Nanocomposite for Multimodal Imaging-Guided Chemo-Photothermal Combination Therapy. Chin. Chem. Lett. 2021, 32, 2405–2410. [Google Scholar] [CrossRef]
- Zhang, B.; Swanson, W.B.; Durdan, M.; Livingston, H.N.; Dodd, M.; Vidanapathirana, S.M.; Desai, A.; Douglas, L.; Mishina, Y.; Weivoda, M.; et al. Affinity Targeting of Therapeutic Proteins to the Bone Surface—Local Delivery of Sclerostin–Neutralizing Antibody Enhances Efficacy. J. Bone Miner. Res. 2024, 39, 717–728. [Google Scholar] [CrossRef]
- Yang, H.; Yu, Z.; Ji, S.; Yan, J.; Han, L.; Liu, Y.; Wang, Y.; Niu, Y.; Huo, Q.; Xu, M. Construction and Evaluation of Detachable Bone-Targeting MOF Carriers for the Delivery of Proteasome Inhibitors. RSC Adv. 2022, 12, 14707–14715. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Romanova, S.; Wang, S.; Hyun, M.A.; Zhang, C.; Cohen, S.M.; Singh, R.K.; Bronich, T.K. Alendronate-Modified Polymeric Micelles for the Treatment of Breast Cancer Bone Metastasis. Mol. Pharm. 2019, 16, 2872–2883. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Xia, M.; Tian, Z.; Zhou, J.; Berger, J.M.; Zhang, X.H.-F.; Xiao, H. Engineering Small-Molecule and Protein Drugs for Targeting Bone Tumors. Mol. Ther. 2024, 32, 1219–1237. [Google Scholar] [CrossRef]
- Niu, Y.; Yang, H.; Yu, Z.; Gao, C.; Ji, S.; Yan, J.; Han, L.; Huo, Q.; Xu, M.; Liu, Y. Intervention with the Bone-Associated Tumor Vicious Cycle through Dual-Protein Therapeutics for Treatment of Skeletal-Related Events and Bone Metastases. ACS Nano 2022, 16, 2209–2223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ye, W.; Liu, D.; Cui, H.; Cheng, Y.; Liu, M.; Zhang, B.; Mei, Q.; Zhou, S. Redox and pH Dual Sensitive Bone Targeting Nanoparticles to Treat Breast Cancer Bone Metastases and Inhibit Bone Resorption. Nanoscale 2017, 9, 6264–6277. [Google Scholar] [CrossRef] [PubMed]
- Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P.L.; et al. Selective Molecular Imaging of Viable Cancer Cells with pH-Activatable Fluorescence Probes. Nat. Med. 2009, 15, 104–109. [Google Scholar] [CrossRef]
- Xue, J.; Yao, Y.; Wang, M.; Wang, Z.; Xue, Y.; Li, B.; Ma, Y.; Shen, Y.; Wu, H. Recent Studies on Proteins and Polysaccharides-Based pH-Responsive Fluorescent Materials. Int. J. Biol. Macromol. 2024, 260, 129534. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Zhao, N.; Chen, H.; Guo, G. Advancements in pH-Responsive Nanocarriers: Enhancing Drug Delivery for Tumor Therapy. Expert Opin. Drug Deliv. 2023, 20, 1623–1642. [Google Scholar] [CrossRef]
- He, Y.; Vasilev, K.; Zilm, P. pH-Responsive Biomaterials for the Treatment of Dental Caries—A Focussed and Critical Review. Pharmaceutics 2023, 15, 1837. [Google Scholar] [CrossRef]
- Zarur, M.; Seijo-Rabina, A.; Goyanes, A.; Concheiro, A.; Alvarez-Lorenzo, C. pH-Responsive Scaffolds for Tissue Regeneration: In Vivo Performance. Acta Biomater. 2023, 168, 22–41. [Google Scholar] [CrossRef]
- Li, R.; Landfester, K.; Ferguson, C.T.J. Temperature- and pH-Responsive Polymeric Photocatalysts for Enhanced Control and Recovery. Angew. Chem. Int. Ed. 2022, 61, e202211132. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Qiu, C.; Li, X.; McClements, D.J.; Sang, S.; Jiao, A.; Jin, Z. Polysaccharide-Based Nano-Delivery Systems for Encapsulation, Delivery, and pH-Responsive Release of Bioactive Ingredients. Crit. Rev. Food Sci. Nutr. 2024, 64, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Tan, P.; Fu, S.; Tian, X.; Zhang, H.; Ma, X.; Gu, Z.; Luo, K. Preparation and Application of pH-Responsive Drug Delivery Systems. J. Control. Release 2022, 348, 206–238. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wen, X.; Ke, Q.-F.; Xie, X.-T.; Guo, Y.-P. pH-Responsive Mesoporous ZSM-5 Zeolites/Chitosan Core-Shell Nanodisks Loaded with Doxorubicin against Osteosarcoma. Mater. Sci. Eng. C 2018, 85, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Moussa, F.M.; Mankoci, S.; Ustriyana, P.; Zhang, N.; Abdelmagid, S.; Molenda, J.; Murphy, W.L.; Safadi, F.F.; Sahai, N. Orthosilicic Acid, Si(OH)4, Stimulates Osteoblast Differentiation in Vitro by Upregulating miR-146a to Antagonize NF-κB Activation. Acta Biomater. 2016, 39, 192–202. [Google Scholar] [CrossRef]
- Zhu, J.; Huo, Q.; Xu, M.; Yang, F.; Li, Y.; Shi, H.; Niu, Y.; Liu, Y. Bortezomib-Catechol Conjugated Prodrug Micelles: Combining Bone Targeting and Aryl Boronate-Based pH-Responsive Drug Release for Cancer Bone-Metastasis Therapy. Nanoscale 2018, 10, 18387–18397. [Google Scholar] [CrossRef]
- Lavrador, P.; Gaspar, V.M.; Mano, J.F. Stimuli-Responsive Nanocarriers for Delivery of Bone Therapeutics—Barriers and Progresses. J. Control. Release 2018, 273, 51–67. [Google Scholar] [CrossRef]
- Danhier, F.; Feron, O.; Préat, V. To Exploit the Tumor Microenvironment: Passive and Active Tumor Targeting of Nanocarriers for Anti-Cancer Drug Delivery. J. Control. Release 2010, 148, 135–146. [Google Scholar] [CrossRef]
- Amstad, E.; Kohlbrecher, J.; Müller, E.; Schweizer, T.; Textor, M.; Reimhult, E. Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes. Nano Lett. 2011, 11, 1664–1670. [Google Scholar] [CrossRef]
- Staruch, R.; Chopra, R.; Hynynen, K. Hyperthermia in Bone Generated with MR Imaging–Controlled Focused Ultrasound: Control Strategies and Drug Delivery. Radiology 2012, 263, 117–127. [Google Scholar] [CrossRef]
- Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective Use of Nanocarriers as Drug Delivery Systems for the Treatment of Selected Tumors. Int. J. Nanomed. 2017, 12, 7291–7309. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavalu, S.; Gao, Y.; Rahman, M.T.; Rozic, R.; Sharifi, N.; Midura, R.J.; Labhasetwar, V. Synergistic Combination Treatment to Break Cross Talk between Cancer Cells and Bone Cells to Inhibit Progression of Bone Metastasis. Biomaterials 2020, 227, 119558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ding, J.; Lv, Q.; Zhao, M.; Liu, Y.; Wang, Q.; Chen, Y.; Zhao, H.; Ren, H.; Jiang, W.; et al. Strategies for Organic Nanoparticles Delivering CRISPR/Cas9 for Cancer Therapy: Challenges and Breakthroughs. Mater. Des. 2024, 244, 113097. [Google Scholar] [CrossRef]
- Leng, Q.; Chen, L.; Lv, Y. RNA-Based Scaffolds for Bone Regeneration: Application and Mechanisms of mRNA, miRNA and siRNA. Theranostics 2020, 10, 3190–3205. [Google Scholar] [CrossRef]
- Hamza, F.N.; Mohammad, K.S. Immunotherapy in the Battle Against Bone Metastases: Mechanisms and Emerging Treatments. Pharmaceuticals 2024, 17, 1591. [Google Scholar] [CrossRef]
- Peng, Z.; Huang, W.; Xiao, Z.; Wang, J.; Zhu, Y.; Zhang, F.; Lan, D.; He, F. Immunotherapy in the Fight Against Bone Metastases: A Review of Recent Developments and Challenges. Curr. Treat. Options Oncol. 2024, 25, 1374–1389. [Google Scholar] [CrossRef]
- Avula, L.R.; Grodzinski, P. Nanotechnology-Aided Advancement in the Combating of Cancer Metastasis. Cancer Metastasis Rev. 2022, 41, 383–404. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ge, K.; Jin, Y.; Han, Y.; Zhang, H.; Zhou, G.; Yang, X.; Liu, D.; Liu, H.; Liang, X.-J.; et al. Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis. ACS Nano 2019, 13, 7556–7567. [Google Scholar] [CrossRef]
- Bai, S.; Cheng, Y.; Liu, D.; Ji, Q.; Liu, M.; Zhang, B.; Mei, Q.; Zhou, S. Bone-Targeted PAMAM Nanoparticle to Treat Bone Metastases of Lung Cancer. Nanomedicine 2020, 15, 833–849. [Google Scholar] [CrossRef]
- Chen, S.-H.; Liu, T.-I.; Chuang, C.-L.; Chen, H.-H.; Chiang, W.-H.; Chiu, H.-C. Alendronate/Folic Acid-Decorated Polymeric Nanoparticles for Hierarchically Targetable Chemotherapy against Bone Metastatic Breast Cancer. J. Mater. Chem. B 2020, 8, 3789–3800. [Google Scholar] [CrossRef]
- Kraljevic, S.; Pavelic, K. Navigare Necessere Est: Improved Navigation Would Help to Solve Two Crucial Problems in Modern Drug Therapy: Toxicity and Precise Delivery. EMBO Rep. 2005, 6, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Visentin, S.; Sedić, M.; Pavelić, S.K.; Pavelić, K. Targeting Tumour Metastasis: The Emerging Role of Nanotechnology. CMC 2020, 27, 1367–1381. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, Y.; Kim, J.; Cho, H.; Kim, K. Overcoming Cancer Drug Resistance with Nanoparticle Strategies for Key Protein Inhibition. Molecules 2024, 29, 3994. [Google Scholar] [CrossRef]
- Suurmond, C.E.; Leeuwenburgh, S.C.G.; Van Den Beucken, J.J.J.P. Modelling Bone Metastasis in Spheroids to Study Cancer Progression and Screen Cisplatin Efficacy. Cell Prolif. 2024, 57, e13693. [Google Scholar] [CrossRef]
- Tai, M.; González Díaz, E.C.; Monette, C.E.; Wu, J.; Yang, F. Abstract 6772: A 3D Model of Breast Cancer-Bone Metastasis to Mimic Dysregulation of Bone Remodeling and Drug Response. Cancer Res. 2024, 84, 6772. [Google Scholar] [CrossRef]
- Han, B.; Yang, Z.; Zhao, S.; Liang, G.; Hoang, B.X.; Fang, J. Abstract 1501: Engineering Tissue Models to Elucidate Prostate Cancer Bone Metastasis Dynamics. Cancer Res. 2024, 84, 1501. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, B.; Tang, Y.; Shen, A.; Lin, Y.; Zhao, X.; Li, J.; Monteiro, M.J.; Gu, W. Bone Targeted Nano-Drug and Nano-Delivery. Bone Res. 2024, 12, 51. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, M.; Tan, L.; Li, T.; Min, L. Nano-Based Drug Delivery Systems: Potential Developments in the Therapy of Metastatic Osteosarcoma—A Narrative Review. Pharmaceutics 2023, 15, 2717. [Google Scholar] [CrossRef] [PubMed]
- Katti, K.S.; Jasuja, H.; Kar, S.; Katti, D.R. Nanostructured Biomaterials for in Vitro Models of Bone Metastasis Cancer. Curr. Opin. Biomed. Eng. 2021, 17, 100254. [Google Scholar] [CrossRef]
- Paradise, J. Regulating Nanomedicine at the Food and Drug Administration. AMA J. Ethics 2019, 21, E347–E355. [Google Scholar] [CrossRef]
- Desai, N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 2012, 14, 282–295. [Google Scholar] [CrossRef] [PubMed]
- Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022, 14, 883. [Google Scholar] [CrossRef]
- Kyriakides, T.R.; Raj, A.; Tseng, T.H.; Xiao, H.; Nguyen, R.; Mohammed, F.S.; Halder, S.; Xu, M.; Wu, M.J.; Bao, S.; et al. Biocompatibility of Nanomaterials and Their Immunological Properties. Biomed. Mater. 2021, 16, 042005. [Google Scholar] [CrossRef]
- Zielińska, A.; Costa, B.; Ferreira, M.V.; Miguéis, D.; Louros, J.M.S.; Durazzo, A.; Lucarini, M.; Eder, P.; Chaud, M.V.; Morsink, M.; et al. Nanotoxicology and Nanosafety: Safety-by-Design and Testing at a Glance. Int. J. Environ. Res. Public Health 2020, 17, 4657. [Google Scholar] [CrossRef]
- Đorđević, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current Hurdles to the Translation of Nanomedicines from Bench to the Clinic. Drug Deliv. Transl. Res. 2022, 12, 500–525. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Mohammadnejad, J.; Salamat, S.; Beiram Zadeh, Z.; Tanhaei, M.; Ramakrishna, S. Theranostic Polymeric Nanoparticles as a New Approach in Cancer Therapy and Diagnosis: A Review. Mater. Today Chem. 2023, 29, 101400. [Google Scholar] [CrossRef]
- Seder, I.; Zheng, T.; Zhang, J.; Rojas, C.C.; Helalat, S.H.; Téllez, R.C.; Sun, Y. A Scalable Microfluidic Platform for Nanoparticle Formulation: For Exploratory- and Industrial-Level Scales. Nano Lett. 2024, 24, 5132–5138. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, A.; Catanzano, O.; Bertoncin, P.; Bergonzi, C.; Bettini, R.; Elviri, L. 3D-printed Scaffold Composites for the Stimuli-induced Local Delivery of Bioactive Adjuncts. Biotechnol. Appl. Biochem. 2022, 69, 1793–1804. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, J.; Jiang, Z.; Guo, Q.; Zhang, Z.; Li, J.; Hu, Y.; Wang, L. Zoledronate Combined Metal-Organic Frameworks for Bone-Targeting and Drugs Deliveries. Sci. Rep. 2022, 12, 12290. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, X.; Li, J.; Jiang, Y.; Xu, K.; Su, J. Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Front. Pharmacol. 2022, 13, 909408. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Zhang, R.; Chen, Z.; Zhu, L. RGD Peptide Conjugated Liposomal Drug Delivery System for Enhance Therapeutic Efficacy in Treating Bone Metastasis from Prostate Cancer. J. Control. Release 2014, 196, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zou, Y.; Bie, B.; Lv, Y. Hierarchically Released Liquid Metal Nanoparticles for Mild Photothermal Therapy/Chemotherapy of Breast Cancer Bone Metastases via Remodeling Tumor Stromal Microenvironment. Adv. Healthc. Mater. 2023, 12, 2301080. [Google Scholar] [CrossRef] [PubMed]
- Kumah, E.A.; Fopa, R.D.; Harati, S.; Boadu, P.; Zohoori, F.V.; Pak, T. Human and Environmental Impacts of Nanoparticles: A Scoping Review of the Current Literature. BMC Public Health 2023, 23, 1059. [Google Scholar] [CrossRef] [PubMed]
- Farokhzad, O.C.; Langer, R. Impact of Nanotechnology on Drug Delivery. ACS Nano 2009, 3, 16–20. [Google Scholar] [CrossRef]
- He, X.; Deng, H.; Hwang, H. The Current Application of Nanotechnology in Food and Agriculture. J. Food Drug Anal. 2019, 27, 1–21. [Google Scholar] [CrossRef]
- Rabiee, N.; Ahmadi, S.; Fatahi, Y.; Rabiee, M.; Bagherzadeh, M.; Dinarvand, R.; Bagheri, B.; Zarrintaj, P.; Saeb, M.R.; Webster, T.J. Nanotechnology-Assisted Microfluidic Systems: From Bench to Bedside. Nanomedicine 2021, 16, 237–258. [Google Scholar] [CrossRef]
- Mansouri, V.; Beheshtizadeh, N.; Gharibshahian, M.; Sabouri, L.; Varzandeh, M.; Rezaei, N. Recent Advances in Regenerative Medicine Strategies for Cancer Treatment. Biomed. Pharmacother. 2021, 141, 111875. [Google Scholar] [CrossRef]
- Boulaiz, H.; Alvarez, P.J.; Ramirez, A.; Marchal, J.A.; Prados, J.; Rodríguez-Serrano, F.; Perán, M.; Melguizo, C.; Aranega, A. Nanomedicine: Application Areas and Development Prospects. Int. J. Mol. Sci. 2011, 12, 3303–3321. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Ma, X. Transforming Healthcare with Nanomedicine: A SWOT Analysis of Drug Delivery Innovation. DDDT 2024, 18, 3499–3521. [Google Scholar] [CrossRef]
Platform | Typical Composition/Architecture | Key Advantages for Bone Targeting | Main Limitations | Representative Example |
---|---|---|---|---|
Liposomes | Phospholipid bilayer vesicles; often PEG-, chitosan-, glucose-, or Au-nanorod-coated | Biocompatible, load hydro- and lipophilic drugs; stimuli-responsive; surface easily modified | Instability, drug leakage, scale-up issues | Glu-decorated paclitaxel liposomes outperform free PTX in bone lesions |
Polymeric NPs | PLGA, PLA, PCL ± chitosan, PEG, bioactive glass | Tunable size and release; FDA-accepted PLGA; scaffold embedding | Poor loading of hydrophilic drugs; harsh coupling chemistries | PLGA–chitosan NPs in bioactive glass scaffold sustain local chemo |
Polymeric micelles | Self-assembled PEG-b-PCL/TPGS blocks | Solubilize hydrophobes; serum-stable; dual-drug, stimuli-responsive | Possible in vivo disassembly; limited large cargo | DOX/PTX mPEG-PαLA micelles synergistically suppress osteosarcoma |
Dendrimers | Branched PAMAM cores with multivalent surface | High loading (encap. or covalent); multivalent targeting; size tunable | Complex synthesis; cationic toxicity; burst release | Folate-PAMAM-MTX conjugate shows lysosomal-triggered release |
MSNs | Ordered SiO2 with 2–10 nm pores; gatekeeper surface chem | Very high loading; pH/redox/enzyme gating; surface tunable | RES uptake; need strict pore and gate control | β-CD-capped redox-responsive DOX-MSNs delay bone lesions |
Metal/metal-oxide NPs | Au spheres/rods, Pt, TiO2, etc. | Photothermal, imaging-therapy duality; easy conjugation | Poor biodegradability; off-target heating | PDA-coated Au NPs deliver DOX and trigger immunogenic death |
SPIONs | Fe3O4 core with polymer/dendrimer shell | MRI contrast, magnetic targeting, hyperthermia | Heterogeneous tumor penetration; receptor variability | FA-PAMAM SPIONs ferry curcumin for MRI-guided therapy |
Hybrid systems | Organic–inorganic composites (e.g., PDA-ZrO2, HMONs) | Combine stability + biodegradability; multimodal imaging; tumor-specific degradation | Synthetic complexity; limited tox/clearance data | Disulfide-linked HMONs degrade reductively for bone chemo-photo |
Stimulus/Trigger | Representative Nanocarrier (Design Feature) | Therapeutic Payload | Release Mechanism and Bone-Specific Advantage | Key Pre-Clinical Outcome |
---|---|---|---|---|
pH + GSH (redox) dual | Ammonium-salt-gated mesoporous silica nanoparticle (MSN) with amide + disulfide linkers | Doxorubicin/siRNA | Acidic tumor pH hydrolyzes the amide bond; high intracellular GSH cleaves -S-S- to open pores | There is >80% drug release in bone-mimicking acidic/reducing milieu; minimal leakage in serum |
pH + GSH dual + bone ligand | Alendronate-decorated core loaded with chemo-agent | Paclitaxel | Bone-affine alendronate guides NP to lesions; acidic and GSH gradients unlock carrier | Three-fold higher drug in tibial lesions vs. free PTX; marked osteolysis reduction |
Mild hyperthermia (NIR) | Thermo-sensitive liposome + gold nanorod hybrid (TSL-GNR) | Paclitaxel | NIR raises local temp ≈ 42–45 °C → lipid phase transition → on-demand release | Eliminated metastatic foci, restored osteoclast/osteoblast balance, extended survival in mice |
Alternating magnetic field | SPION-based vesicle with lipid shell (SPFeNOC concept) | Curcumin/reactive-oxygen pro-drug | External field heats membrane, increases permeability; magnet guides NP to marrow | Dual MRI/therapy; precise intramedullary release with chemodynamic tumor kill |
Focused ultrasound (FUS) | ThermoDox®-like DOX liposomes applied to rabbit femur | Doxorubicin | FUS raises bone marrow temp ≈ 41 °C → rapid payload burst | An 8- to 17-fold DOX enrichment in marrow vs. non-heated control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakir, M.; Dawalibi, A.; Mufti, M.A.; Behiery, A.; Mohammad, K.S. Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor–Bone Microenvironment. Pharmaceutics 2025, 17, 603. https://doi.org/10.3390/pharmaceutics17050603
Bakir M, Dawalibi A, Mufti MA, Behiery A, Mohammad KS. Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor–Bone Microenvironment. Pharmaceutics. 2025; 17(5):603. https://doi.org/10.3390/pharmaceutics17050603
Chicago/Turabian StyleBakir, Mohamad, Ahmad Dawalibi, Mohammad Alaa Mufti, Ayman Behiery, and Khalid S. Mohammad. 2025. "Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor–Bone Microenvironment" Pharmaceutics 17, no. 5: 603. https://doi.org/10.3390/pharmaceutics17050603
APA StyleBakir, M., Dawalibi, A., Mufti, M. A., Behiery, A., & Mohammad, K. S. (2025). Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor–Bone Microenvironment. Pharmaceutics, 17(5), 603. https://doi.org/10.3390/pharmaceutics17050603