Optimization of a Newly Developed Chamber Setup for Spatial Dust Measurements in the Context of Containment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Chamber Setup
2.2.2. Dust Measurements
2.2.3. HPLC Assay
2.2.4. Cleaning of the Chamber Setup
2.2.5. Sieving of the Surrogate
2.2.6. Particle Size Distribution
2.2.7. Residual Moisture Content
2.2.8. True Density
2.2.9. Bulk Density
2.2.10. Scanning Electron Microscopy (SEM)
2.2.11. Atomization Parameters (DoE)
3. Results and Discussion
3.1. Powder Characterization
3.2. Influence of the Cleaning Method
3.3. Comparison of the ACAM Types
3.4. Results of the DoE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HPAPI | Highly potent active pharmaceutical ingredient |
OEL | Occupational exposure limit |
API | Active pharmaceutical ingredient |
ACAM | Acetaminophen |
IOM | Institute of Occupational Medicine |
PLC | Programmable logic controller |
HPLC | High performance liquid chromatography |
SEM | Scanning electron microscopy |
DoE | Design of experiments |
ANOVA | Analysis of variance |
References
- Dunny, E.; O’Connor, I.; Bones, J. Containment Challenges in HPAPI Manufacture for ADC Generation. Drug Discov. Today 2017, 22, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Broach, J.R.; Thorner, J. High-Throughput Screening for Drug Discovery. Nature 1996, 384, 14–16. [Google Scholar] [PubMed]
- Mari, G.; Moccaldi, A.; Ludovisi, G. Handling of High Potency Drugs: Process and Containment. Trans. Ecol. Environ. 1999, 85, 257–265. [Google Scholar]
- Mak, K.-K.; Wong, Y.-H.; Pichika, M.R. Artificial Intelligence in Drug Discovery and Development. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Hock, F.J., Pugsley, M.K., Eds.; Springer: Cham, Switzerland, 2024; pp. 1463–1492. [Google Scholar]
- Vemula, D.; Jayasurya, P.; Sushmitha, V.; Kumar, Y.N.; Bhandari, V. CADD, AI and ML in Drug Discovery: A Comprehensive Review. Eur. J. Pharm. Sci. 2023, 181, 106324. [Google Scholar] [CrossRef] [PubMed]
- Wollowitz, S. Managing High-Potency Active Pharmaceutical Ingredients—A Drug Sponsor’s Guide. Drug Dev. Res. 2010, 71, 420–428. [Google Scholar] [CrossRef]
- Ku, R.H. An Overview of Setting Occupational Exposure Limits (OELs) for Pharmaceuticals. Chem. Health Saf. 2000, 7, 34–37. [Google Scholar] [CrossRef]
- Naumann, B.D.; Sargent, E.V.; Starkman, B.S.; Fraser, W.J.; Becker, G.T.; Kirk, G.D. Performance-Based Exposure Control Limits for Pharmaceutical Active Ingredients. Am. Ind. Hyg. Assoc. J. 1996, 57, 33–42. [Google Scholar] [CrossRef]
- Heron, R.J.L.; Pickering, F.C. Health Effects of Exposure to Active Pharmaceutical Ingredients (APIs). Occup. Med. 2003, 53, 357–362. [Google Scholar] [CrossRef]
- International Society for Pharmaceutical Engineering (ISPE). Good Practice Guide: Assessing the Particulate Containment Performance of Pharmaceutical Equipment; ISPE: Tampa, FL, USA, 2012; ISBN 978-1-936379-35-4. [Google Scholar]
- Becker, J.; Industries, E.; Pohlmann, T.; Industries, E. Development and Implementation of a Large-Scale HPAPI Manufacturing Process. Chim. Oggi-Chem. Today 2019, 35, 20–24. [Google Scholar]
- Tiwari, P.; Chowdhury, S.R. Sustainable Production of Highly Active Pharmaceutical Ingredients (HAPIs). Int. J. Sci. Res. Publ. 2014, 4, 2250–3153. [Google Scholar]
- International Society for Pharmaceutical Engineering (ISPE). ISPE D/A/CH Affiliate: Containment Manual; ISPE D/A/CH: Offenbach/Main, Germany, 2017; ISBN 9781936379354. [Google Scholar]
- Stein, J.; Fuchs, T.; Mattern, C. Advanced Milling and Containment Technologies for Superfine Active Pharmaceutical Ingredients. Chem. Eng. Technol. 2010, 33, 1464–1470. [Google Scholar] [CrossRef]
- Adams, N.J.; Johnson, D.L.; Lynch, R.A. The Effect of Pressure Differential and Care Provider Movement on Airborne Infectious Isolation Room Containment Effectiveness. Am. J. Infect. Control 2011, 39, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Lidén, G. Dustiness Testing of Materials Handled at Workplaces. Ann. Occup. Hyg. 2006, 50, 437–439. [Google Scholar] [CrossRef]
- WHO. Dust Definition and Concepts. In Hazard Prevention and Control in the Work Environment: Airborne Dust; WHO: Geneva, Switzerland, 1999; WHO/SDE/OEH/99.14. [Google Scholar]
- Bach, S.; Eickmann, U.; Schmidt, E. Comparison of Established Systems for Measuring the Dustiness of Powders with the UNC Dustiness Tester Developed Especially for Pharmaceutical Substances. Ann. Occup. Hyg. 2013, 57, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.M.; Hammond, C.M.; Higman, R.W.; Wells, A.B. Progress in Dustiness Estimation. Ann. Occup. Hyg. 1988, 32, 535–544. [Google Scholar]
- Heitbrink, W.A.; Tood, W.F.; Cooper, T.C.; O’BRIEN, D.M. The Application of Dustiness Tests to the Prediction of Worker Dust Exposure. Am. Ind. Hyg. Assoc. J. 1990, 51, 217–223. [Google Scholar] [CrossRef]
- Heitbrink, W.A.; Baron, P.A.; Willeke, K. An Investigation of Dust Generation by Free Falling Powders. Am. Ind. Hyg. Assoc. J. 1992, 53, 617–624. [Google Scholar] [CrossRef]
- Cawley, B.; Leith, D. Bench-Top Apparatus to Examine Factors That Affect Dust Generation. Appl. Occup. Environ. Hyg. 1993, 8, 624–631. [Google Scholar] [CrossRef]
- Plinke, M.A.E.; Leith, D.; Boundy, M.G.; Löffler, F. Dust Generation from Handling Powders in Industry. Am. Ind. Hyg. Assoc. J. 1995, 56, 251–257. [Google Scholar] [CrossRef]
- Hamelmann, F.; Schmidt, E. Methods of Estimating the Dustiness of Industrial Powders—A Review. KONA Powder Part. J. 2003, 21, 7–18. [Google Scholar] [CrossRef]
- Hamelmann, F.; Schmidt, E. Methods for Characterizing the Dustiness Estimation of Powders. Chem. Eng. Technol. 2004, 27, 844–847. [Google Scholar] [CrossRef]
- Bach, S.; Schmidt, E. Determining the Dustiness of Powders—A Comparison of Three Measuring Devices. Ann. Occup. Hyg. 2008, 52, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Boundy, M.; Leith, D.; Polton, T. Method to Evaluate the Dustiness of Pharmaceutical Powders. Ann. Occup. Hyg. 2006, 50, 453–458. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, P.T.; Kang, M.; Ellickson, D. A Novel Device for Measuring Respirable Dustiness Using Low-Mass Powder Samples. J. Occup. Environ. Hyg. 2012, 9, 129–139. [Google Scholar] [CrossRef]
- Ohta, T.; Maeda, H.; Kubota, R.; Koga, A.; Terada, K. Establishment of Powder Dustiness Evaluation Method by Dustmeter with Small Amount of Pharmaceutical Ingredients. Int. J. Pharm. 2014, 472, 251–256. [Google Scholar] [CrossRef]
- Wirth, S.; Schöler, M.; Brügmann, J.; Leopold, C.S. A Novel Two-Chamber Setup for Containment Investigations with Special Focus on the Dustiness of Pharmaceutical Powders Depending on the Airflow. Pharmaceutics 2022, 14, 2387. [Google Scholar] [CrossRef]
- Shandilya, N.; Kuijpers, E.; Tuinman, I.; Fransman, W. Powder Intrinsic Properties as Dustiness Predictor for an Efficient Exposure Assessment? Ann. Work Expo. Health 2019, 63, 1029–1045. [Google Scholar] [CrossRef]
- Plinke, M.A.E.; Maus, R.; Leith, D. Experimental Examination of Factors That Affect Dust Generation by Using Heubach and Mri Testers. Am. Ind. Hyg. Assoc. J. 1992, 53, 325–330. [Google Scholar] [CrossRef]
- Pujara, C.P.; Kildsig, D.O. Effect of Individual Particle Characteristics on Airborne Emissions. In Containment in the Pharmaceutical Industry; CRC Press: Boca Raton, FL, USA, 2020; pp. 29–53. [Google Scholar]
- International Society for Pharmaceutical Engineering (ISPE). Good Practice Guide SMEPAC; ISPE: Tampa, FL, USA, 2024; ISBN 978-1-946964-81-6. [Google Scholar]
- Butler, O.; Forder, J.; Saunders, J. Analytical Protocol for the Sensitive Determination of Mannitol, Sorbitol and Glucose Containing Powders in Pharmaceutical Workplaces by Ion Chromatography Using a Pulsed Amperometric Detector. J. Pharm. Biomed. Anal. 2015, 106, 204–209. [Google Scholar] [CrossRef]
- Wirth, S.; Schöler, M.; Brügmann, J.; Leopold, C.S. An Investigation on the Relationship between Dust Emission and Air Flow as Well as Particle Size with a Novel Containment Two-Chamber Setup. Pharmaceutics 2024, 16, 1088. [Google Scholar] [CrossRef]
- Küllmar, H.; Schöler, M.; Brügmann, J.; Leopold, C.S. A Newly Developed Chamber Setup for the Investigation of the Spatial Dust Distribution of Pharmaceutical Powders—A Proof of Concept. Adv. Powder Technol. 2025, submitted.
- Evans, D.E.; Turkevich, L.A.; Roettgers, C.T.; Deye, G.J.; Baron, P.A. Dustiness of Fine and Nanoscale Powders. Ann. Occup. Hyg. 2013, 57, 261–277. [Google Scholar] [CrossRef] [PubMed]
- 2.9.34. Bulk Density of Powders. In European Pharmacopoeia 11.5; European Directorate for the Quality of Medicines & Health Care (EDQM): Strasbourg, France, 2024; pp. 5830–5833.
- Hardin, R.H.; Sloane, N.J.A. A New Approach to the Construction of Optimal Designs. J. Stat. Plan. Inference 1993, 37, 339–369. [Google Scholar] [CrossRef]
- Anderson-Cook, C.M.; Borror, C.M.; Montgomery, D.C. Response Surface Design Evaluation and Comparison. J. Stat. Plan. Inference 2009, 139, 629–641. [Google Scholar] [CrossRef]
- Jones, B.; Goos, P. I-Optimal Versus D-Optimal Split-Plot Response Surface Designs. J. Allergy Clin. Immunol. 2010, 130, 556. [Google Scholar] [CrossRef]
- Bondi, R.W.; Igne, B.; Drennen, J.K.; Anderson, C.A. Effect of Experimental Design on the Prediction Performance of Calibration Models Based on Near-Infrared Spectroscopy for Pharmaceutical Applications. Appl. Spectrosc. 2012, 66, 1442–1453. [Google Scholar] [CrossRef]
- 2.9.36. Powder Flow. In European Pharmacopoeia 11.5; European Directorate for the Quality of Medicines & Health Care (EDQM): Strasbourg, France, 2024; pp. 5834–5836.
- Jallo, L.J.; Dave, R.N. Explaining Electrostatic Charging and Flow of Surface-Modified Acetaminophen Powders as a Function of Relative Humidity Through Surface Energetics. J. Pharm. Sci. 2015, 104, 2225–2232. [Google Scholar] [CrossRef]
- Czech, Z.; Kowalczyk, A.; Shao, L.; Cheng, X.Q.; Quan, S.; Bai, Y.P. Novel Acrylic Pressure-Sensitive Adhesive (PSA) Containing Silver Particles. J. Adhes. Sci. Technol. 2013, 27, 1446–1454. [Google Scholar] [CrossRef]
- Transactions, C.S.; Devikala, S.; Kamaraj, P.; Arthanareeswari, M. Conductivity and Dielectric Studies of PMMA Composites. Chem. Sci. Trans. 2013, 2, 129–134. [Google Scholar] [CrossRef]
- Sayahi, T.; Kaufman, D.; Becnel, T.; Kaur, K.; Butterfield, A.E.; Collingwood, S.; Zhang, Y.; Gaillardon, P.E.; Kelly, K.E. Development of a Calibration Chamber to Evaluate the Performance of Low-Cost Particulate Matter Sensors. Environ. Pollut. 2019, 255, 113131. [Google Scholar] [CrossRef]
- Likitwattanasade, T.; Barringer, S.A. The Influence of Particle Size on Separation and Dustiness in Powder Mixtures during Nonelectrostatic and Electrostatic Coating. J. Electrostat. 2015, 77, 44–50. [Google Scholar] [CrossRef]
- Chakravarty, S.; Le Bihan, O.; Fischer, M.; Morgeneyer, M. Dust Generation in Powders: Effect of Particle Size Distribution. EPJ Web Conf. 2017, 140, 13018. [Google Scholar] [CrossRef]
- Wirth, S.; Schöler, M.; Leopold, C.S. Investigations on the Dustiness of Binary Acetaminophen—Lactose Monohydrate Powder Blends. Powder Technol. 2024, 448, 120317. [Google Scholar] [CrossRef]
Factor | Lower Limit | Upper Limit |
---|---|---|
Atomization duration [s] | 0.1 | 5 |
Atomization volume flow rate [L/min] | 100 | 300 |
ACAM 1 sample mass [mg] | 50 | 500 |
Powder Properties | ACAM 1 | ACAM 2 |
---|---|---|
Particle size [µm] | ||
x10 | 3.01 ± 0.08 | 4.54 ± 0.10 |
x50 | 16.84 ± 0.11 | 31.52 ± 0.18 |
x90 | 58.43 ± 0.59 | 76.69 ± 0.24 |
True density [g/cm3] | 1.2903 ± 0.0043 | 1.2894 ± 0.0025 |
Untapped bulk density [g/mL] | 0.233 ± 0.006 | 0.429 ± 0.002 |
Tapped bulk density [g/mL] | 0.415 ± 0.011 | 0.710 ± 0.006 |
Hausner ratio | 1.78 ± 0.01 | 1.66 ± 0.02 |
Model | Atomization Effectiveness (Totally Settled Amount) p-Value | Spatial Dust Distribution (Lower–Upper IOM Row) p-Value |
---|---|---|
Model | 0.0001 | 0.0001 |
Sample mass (A) | 0.0001 | 0.0004 |
Atomization duration (B) | 0.0204 | 0.0009 |
Atomization volume flow rate (C) | 0.0357 | Nonsignificant |
Interaction AB | Nonsignificant | Nonsignificant |
Interaction AC | Nonsignificant | Nonsignificant |
Interaction BC | 0.0103 | 0.0312 |
A2 | 0.0027 | Nonsignificant |
B2 | 0.0079 | Nonsignificant |
C2 | Nonsignificant | Nonsignificant |
Lack of fit | Nonsignificant | Nonsignificant |
R2 | 0.8455 | 0.6525 |
Adjusted R2 | 0.8069 | 0.5969 |
Predicted R2 | 0.7381 | 0.4268 |
Adequate precision | 15.7408 | 13.1658 |
Model | Atomization Effectiveness | Spatial Dust Distribution | ||
---|---|---|---|---|
Atomization duration [s] | 2.55 | 3 | 2.55 | 3 |
Atomization volume flow rate [L/min] | 200 | 100 | 200 | 100 |
Sample mass [mg] | 275 | 500 | 275 | 500 |
Predicted mean [µg] | 4245.83 | 4294.13 | 133.95 | 220.26 |
Measured mean ± SD [µg] (n = 3) | 4394.02 ± 184.32 | 5010.07 ± 359.31 | −27.58 ± 2.54 | 116.48 ± 11.63 |
Deviation [%] | 3.49 | 16.67 | 120.59 | 47.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Küllmar, H.; Schöler, M.; Leopold, C.S. Optimization of a Newly Developed Chamber Setup for Spatial Dust Measurements in the Context of Containment. Pharmaceutics 2025, 17, 565. https://doi.org/10.3390/pharmaceutics17050565
Küllmar H, Schöler M, Leopold CS. Optimization of a Newly Developed Chamber Setup for Spatial Dust Measurements in the Context of Containment. Pharmaceutics. 2025; 17(5):565. https://doi.org/10.3390/pharmaceutics17050565
Chicago/Turabian StyleKüllmar, Hendrik, Martin Schöler, and Claudia S. Leopold. 2025. "Optimization of a Newly Developed Chamber Setup for Spatial Dust Measurements in the Context of Containment" Pharmaceutics 17, no. 5: 565. https://doi.org/10.3390/pharmaceutics17050565
APA StyleKüllmar, H., Schöler, M., & Leopold, C. S. (2025). Optimization of a Newly Developed Chamber Setup for Spatial Dust Measurements in the Context of Containment. Pharmaceutics, 17(5), 565. https://doi.org/10.3390/pharmaceutics17050565