Fluconazole Dosing for the Prevention of Candida spp. Infections in Hemato-Oncologic Pediatric Patients: Population Pharmacokinetic Modeling and Probability of Target Attainment Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Bioanalytical Methods
2.3. Population Pharmacokinetic Analysis
2.4. Simulations
3. Results
3.1. Study Population
3.2. Population Pharmacokinetic Model
3.3. Simulations and Probability of Target Attainment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
BIC | Bayesian Information Criteria |
BW | Body weight |
CL | Clearance |
COVi | Individual value of a covariate |
CRP | C-reactive protein |
CV% | Coefficient of variation |
CWRES | Conditional weighted residuals |
eGFR | Estimated glomerular filtration rate |
EUCAST | The European Committee on Antimicrobial Susceptibility Testing |
fAUC | Area under the free drug concentration–time curve |
FLU | Fluconazole |
FOCEI | First-order conditional estimation with interaction |
GOF | Goodness of fit |
HPLC-UV | High-performance liquid chromatography with ultraviolet detection |
IIV | Interindividual variability |
MIC | Minimum inhibitory concentration |
OFV | Objective function value |
PCT | Procalcitonin |
PK | Pharmacokinetic |
PK/PD | Pharmacokinetic/pharmacodynamic |
popPK | Population pharmacokinetic |
PTA | Probability of target attainment |
SCr | Creatinine serum |
SmPC | Summary of Product Characteristics |
TDM | Therapeutic drug monitoring |
V | Volume of distribution |
VPC | Visual Predictive Checks |
WT | Body weight |
ηi | Random effect |
θcov | Estimated effect of the covariate on the parameter |
θi | Individual parameter estimate |
θpop | Population estimated value for the parameter |
References
- Janowski, M.; Demchuk, O.M.; Wujec, M. Fluconazole Analogs and Derivatives: An Overview of Synthesis, Chemical Transformations, and Biological Activity. Molecules 2024, 29, 2855. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; van Rhee, K.P.; Wasmann, R.E.; Krekels, E.H.J.; Wiezer, M.J.; van Dongen, E.P.A.; Verweij, P.E.; van der Linden, P.D.; Brüggemann, R.J.; Knibbe, C.A.J. Total Bodyweight and Sex Both Drive Pharmacokinetic Variability of Fluconazole in Obese Adults. J. Antimicrob. Chemother. 2022, 77, 2217–2226. [Google Scholar] [CrossRef] [PubMed]
- Bury, D.; Tissing, W.J.E.; Muilwijk, E.W.; Wolfs, T.F.W.; Brüggemann, R.J. Clinical Pharmacokinetics of Triazoles in Pediatric Patients. Clin. Pharmacokinet. 2021, 60, 1103–1147. [Google Scholar] [CrossRef] [PubMed]
- Diflucan—Referral|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/human/referrals/diflucan (accessed on 4 January 2025).
- Zhang, T.; Bai, J.; Huang, M.; Li, R.; Liu, Y.; Liu, A.; Liu, J. Posaconazole and Fluconazole Prophylaxis during Induction Therapy for Pediatric Acute Lymphoblastic Leukemia. J. Microbiol. Immunol. Infect. 2021, 54, 1139–1146. [Google Scholar] [CrossRef]
- Carrasco-Portugal, M.d.C.; Flores-Murrieta, F.J. Gender Differences in the Oral Pharmacokinetics of Fluconazole. Clin. Drug Investig. 2007, 27, 851–855. [Google Scholar] [CrossRef]
- Seay, R.E.; Larson, T.A.; Toscano, J.P.; Bostrom, B.C.; O’Leary, M.C.; Uden, D.L. Pharmacokinetics of Fluconazole in Immune-Compromised Children With Leukemia or Other Hematologic Disease. Pharmacotherapy 1995, 15, 52–58. [Google Scholar] [CrossRef]
- Lee, J.W.; Seibel, N.L.; Amantea, M.; Whitcomb, P.; Pizzo, P.A.; Walsh, T.J. Safety and Pharmacokinetics of Fluconazole in Children with Neoplastic Diseases. J. Pediatr. 1992, 120, 987–993. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Pelz, R.K.; Lipsett, P.A.; Swoboda, S.M.; Rinaldi, M.G.; Hendrix, C.W. Enteral Fluconazole Population Pharmacokinetics in Patients in the Surgical Intensive Care Unit. Pharmacotherapy 2003, 23, 592–602. [Google Scholar] [CrossRef]
- Turner, K.; Manzoni, P.; Benjamin, D.K.; Cohen-Wolkowiez, M.; Smith, P.B.; Laughon, M.M. Fluconazole Pharmacokinetics and Safety in Premature Infants. Curr. Med. Chem. 2012, 19, 4617–4620. [Google Scholar] [CrossRef]
- Brammer, K.W.; Coates, P.E. Pharmacokinetics of Fluconazole in Pediatric Patients. European journal of clinical microbiology & infectious diseases. Eur. Soc. Clin. Microbiol. 1994, 13, 325–329. [Google Scholar] [CrossRef]
- Patel, K.; Roberts, J.A.; Lipman, J.; Tett, S.E.; Deldot, M.E.; Kirkpatrick, C.M. Population Pharmacokinetics of Fluconazole in Critically Ill Patients Receiving Continuous Venovenous Hemodiafiltration: Using Monte Carlo Simulations To Predict Doses for Specified Pharmacodynamic Targets. Antimicrob. Agents Chemother. 2011, 55, 5868–5873. [Google Scholar] [CrossRef] [PubMed]
- Van Daele, R.; Wauters, J.; Lagrou, K.; Denooz, R.; Hayette, M.-P.; Gijsen, M.; Brüggemann, R.J.; Debaveye, Y.; Spriet, I. Pharmacokinetic Variability and Target Attainment of Fluconazole in Critically Ill Patients. Microorganisms 2021, 9, 2068. [Google Scholar] [CrossRef] [PubMed]
- Van Der Elst, K.C.M.; Pereboom, M.; Van Den Heuvel, E.R.; Kosterink, J.G.W.; Schölvinck, E.H.; Alffenaar, J.W.C. Insufficient Fluconazole Exposure in Pediatric Cancer Patients and the Need for Therapeutic Drug Monitoring in Critically Ill Children. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 59, 1527–1533. [Google Scholar] [CrossRef]
- Boonstra, J.M.; Märtson, A.G.; Sandaradura, I.; Kosterink, J.G.W.; van der Werf, T.S.; Marriott, D.J.E.; Zijlstra, J.G.; Touw, D.J.; Alffenaar, J.W.C. Optimization of Fluconazole Dosing for the Prevention and Treatment of Invasive Candidiasis Based on the Pharmacokinetics of Fluconazole in Critically Ill Patients. Antimicrob. Agents Chemother. 2021, 65, aac.01554-20. [Google Scholar] [CrossRef]
- Brown, D. Rationale for the EUCAST Clinical Breakpoints; EUCAST: Växjö, Sweden, 2012. [Google Scholar]
- McCreary, E.K.; Davis, M.R.; Narayanan, N.; Andes, D.R.; Cattaneo, D.; Christian, R.; Lewis, R.E.; Watt, K.M.; Wiederhold, N.P.; Johnson, M.D. Utility of Triazole Antifungal Therapeutic Drug Monitoring: Insights from the Society of Infectious Diseases Pharmacists. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2023, 43, 1043–1050. [Google Scholar] [CrossRef]
- Eucast: Breakpoints for Antifungals. Available online: https://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals (accessed on 18 February 2025).
- Pea, F.; Lewis, R.E. Overview of Antifungal Dosing in Invasive Candidiasis. J. Antimicrob. Chemother. 2018, 73, i33–i43. [Google Scholar] [CrossRef]
- Andes, D.; Pascual, A.; Marchetti, O. Antifungal Therapeutic Drug Monitoring: Established and Emerging Indications. Antimicrob. Agents Chemother. 2009, 53, 24–34. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.; Benjamin, D.K., Jr.; Calandra, T.F.; Edwards, J.E., Jr.; Filler, S.G.; Fisher, J.F.; Kullberg, B.-J.; Zeichner, L.O.; et al. Clinical Practice Guidelines for the Management Candidiasis: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 503–535. [Google Scholar] [CrossRef]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic Drug Monitoring (TDM) of Antifungal Agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2014, 69, 1162–1176. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New Equations to Estimate GFR in Children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Schneider, M.F.; Maier, P.S.; Moxey-Mims, M.; Dharnidharka, V.R.; Warady, B.; Furth, S.L.; Muñoz, A. Improved Equations Estimating GFR in Children with Chronic Kidney Disease Using an Immunonephelometric Determination of Cystatin C. Kidney Int. 2012, 82, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Adamiszak, A.; Czyrski, A.; Sznek, B.; Grześkowiak, E.; Bienert, A. The Application of the Design of Experiments and Artificial Neural Networks in the Development of a Fast and Straightforward HPLC-UV Method for Fluconazole Determination in Hemato-Oncologic Pediatric Patients and Its Adaptation to Therapeutic Drug Monitoring. Pharmaceuticals 2024, 17, 1679. [Google Scholar] [CrossRef] [PubMed]
- Fidler, M.; Xiong, Y.; Schoemaker, R.; Wilkins, J.; Wang, W.; Trame, M.; Xu, H.; Harrold, J.; Denney, B.; Papathanasiou, T.; et al. Nlmixr2: Nonlinear Mixed Effects Models in Population PK/PD. 2024. Available online: https://nlmixr2.org/ (accessed on 6 December 2024).
- Svensson, R.J.; Jonsson, E.N. Efficient and Relevant Stepwise Covariate Model Building for Pharmacometrics. CPT Pharmacomet. Syst. Pharmacol. 2022, 11, 1210–1222. [Google Scholar] [CrossRef]
- Rebai, I.; Duval, V.; Akil, A.; Craig, J.; Talley, M.; Largajolli, A.; Fauchet, F. Mlcov: R Package for Covariate Selection Using Machine Learning. Available online: https://www.page-meeting.org/pdf_assets/10996-abstract.pdf (accessed on 17 February 2025).
- Fidler, M.L.; Wang, W.; Hindmarsh, A.; Srinivasan, A.; Al-Mohy, A.H.; Denney, B.; Moler, C.; Cooley, D.; Schmidt, D.; Hairer, E.; et al. Rxode2: Facilities for Simulating from ODE-Based Models. 2025. Available online: https://nlmixr2.github.io/rxode2/ (accessed on 9 December 2024).
- Watt, K.M.; Gonzalez, D.; Benjamin, D.K.; Brouwer, K.L.R.; Wade, K.C.; Capparelli, E.; Barrett, J.; Cohen-Wolkowiez, M. Fluconazole Population Pharmacokinetics and Dosing for Prevention and Treatment of Invasive Candidiasis in Children Supported with Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2015, 59, 3935–3943. [Google Scholar] [CrossRef]
- El Hassani, M.; Liebchen, U.; Marsot, A. Does Sample Size, Sampling Strategy, or Handling of Concentrations Below the Lower Limit of Quantification Matter When Externally Evaluating Population Pharmacokinetic Models? Eur. J. Drug Metab. Pharmacokinet. 2024, 49, 419–436. [Google Scholar] [CrossRef]
- Yan, D.; Wu, X.; Li, J.; Tang, S. Statistical Analysis of Two-Compartment Pharmacokinetic Models with Drug Non-Adherence. Bull. Math. Biol. 2023, 85, 65. [Google Scholar] [CrossRef]
- Han, S.; Kim, J.; Yim, H.; Hur, J.; Song, W.; Lee, J.; Jeon, S.; Hong, T.; Woo, H.; Yim, D.S. Population Pharmacokinetic Analysis of Fluconazole to Predict Therapeutic Outcome in Burn Patients with Candida Infection. Antimicrob. Agents Chemother. 2013, 57, 1006–1011. [Google Scholar] [CrossRef]
- Aoyama, T.; Hirata, K.; Hirata, R.; Yamazaki, H.; Yamamoto, Y.; Hayashi, H.; Matsumoto, Y. Population Pharmacokinetics of Fluconazole after Administration of Fosfluconazole and Fluconazole in Critically Ill Patients: Pharmacokinetics of Fluconazole in Critically Ill Patients. J. Clin. Pharm. Ther. 2012, 37, 356–363. [Google Scholar] [CrossRef]
- Piper, L.; Smith, P.B.; Hornik, C.P.; Cheifetz, I.M.; Barrett, J.S.; Moorthy, G.; Hope, W.W.; Wade, K.C.; Cohen-Wolkowiez, M.; Benjamin, D.K. Fluconazole Loading Dose Pharmacokinetics and Safety in Infants. Pediatr. Infect. Dis. J. 2011, 30, 375–378. [Google Scholar] [CrossRef]
- Leroux, S.; Jacqz-Aigrain, E.; Elie, V.; Legrand, F.; Barin-Le Guellec, C.; Aurich, B.; Biran, V.; Dusang, B.; Goudjil, S.; Coopman, S.; et al. Pharmacokinetics and Safety of Fluconazole and Micafungin in Neonates with Systemic Candidiasis: A Randomized, Open-Label Clinical Trial. Br. J. Clin. Pharmacol. 2018, 84, 1989–1999. [Google Scholar] [CrossRef]
- Watt, K.M.; Benjamin, D.K.; Cheifetz, I.M.; Moorthy, G.; Wade, K.C.; Smith, P.B.; Brouwer, K.L.R.; Capparelli, E.V.; Cohen-Wolkowiez, M. Pharmacokinetics and Safety of Fluconazole in Young Infants Supported with Extracorporeal Membrane Oxygenation. Pediatr. Infect. Dis. J. 2012, 31, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Lee, J.; Oh, J.; Rhee, S.J.; Shin, S.H.; Yoon, S.H.; Lee, S.H.; Kim, H.S.; Yu, K.S. Population Pharmacokinetic Study of Prophylactic Fluconazole in Preterm Infants for Prevention of Invasive Candidiasis. Antimicrob. Agents Chemother. 2019, 63, aac.01960-18. [Google Scholar] [CrossRef]
- Wade, K.C.; Wu, D.; Kaufman, D.A.; Ward, R.M.; Benjamin, D.K.; Sullivan, J.E.; Ramey, N.; Jayaraman, B.; Hoppu, K.; Adamson, P.C.; et al. Population Pharmacokinetics of Fluconazole in Young Infants. Antimicrob. Agents Chemother. 2008, 52, 4043–4049. [Google Scholar] [CrossRef]
- Krzeska, I.; Yeates, R.A.; Pfaff, G. Single Dose Intravenous Pharmacokinetics of Fluconazole in Infants. Drugs Exp. Clin. Res. 1993, 19, 267–271. [Google Scholar]
- Theuretzbacher, U. Pharmacokinetic and Pharmacodynamic Issues for Antimicrobial Therapy in Patients with Cancer. Clin. Infect. Dis. 2012, 54, 1785–1792. [Google Scholar] [CrossRef]
- Germovsek, E.; Barker, C.I.S.; Sharland, M.; Standing, J.F. Scaling Clearance in Paediatric Pharmacokinetics: All Models Are Wrong, Which Are Useful? Brit J. Clin. Pharm. 2017, 83, 777–790. [Google Scholar] [CrossRef]
- Meibohm, B.; Läer, S.; Panetta, J.C.; Barrett, J.S. Population Pharmacokinetic Studies in Pediatrics: Issues in Design and Analysis. AAPS J. 2005, 7, E475–E487. [Google Scholar] [CrossRef]
- Diflucan—Product Label|U.S. Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/019950s056lbl.pdf (accessed on 9 March 2025).
- Momper, J.D.; Capparelli, E.V.; Wade, K.C.; Kantak, A.; Dhanireddy, R.; Cummings, J.J.; Nedrelow, J.H.; Hudak, M.L.; Mundakel, G.T.; Natarajan, G.; et al. Population Pharmacokinetics of Fluconazole in Premature Infants with Birth Weights Less than 750 Grams. Antimicrob. Agents Chemother. 2016, 60, 5539–5545. [Google Scholar] [CrossRef]
- Nahata, M.C.; Tallian, K.B.; Force, R.W. Pharmacokinetics of Fluconazole in Young Infants. Eur. J. Drug Metab. Pharmacokinet. 1999, 24, 155–157. [Google Scholar] [CrossRef]
Characteristics | Number (%) or Median [Range] |
---|---|
Sex | |
Female/Male (%) | 6 (66.7%), 3 (33%) |
Age (years) | 9.75 [0.50–18.00] |
Weight (kg) | 28.50 [6.00–58.50] |
Height (cm) | 28.50 [74.00–178.00] |
Body surface area, BSA (m2) | 1.14 [0.35–1.73] |
Serum creatinine, SCr (mg/dL) | 0.31 [0.18−0.59] |
Bedside Schwartz eGFR (mL/min/1.73 m2) | 151.0 [115.5–240.3] |
Schwartz 2012 eGFR (mL/min/1.73 m2) | 117.77 [95.31–170.03] |
Bilirubin (mg/dL) | 0.50 [0.19–1.55] |
Total proteins (g/dL) | 5.70 [4.80–6.87] |
Alanine aminotransferase, AST (IU/L) | 26.0 [14.0–77.0] |
Aspartate aminotransferase, ALT (IU/L) | 44.0 [8.0–139.0] |
C-reactive protein, CRP (mg/dL) | 0.34 [0.02–6.71] |
Procalcitonin, PCT (ng/mL) | 0.30 [0.04–1.92] |
Parameters | Mean Estimate (%RSE) |
---|---|
A One-Compartment Model with Allometric Scaling (Final Model) | |
Clearance, CL (L/h) | 1.24 (23.23) |
Weight (kg), WT on CL | fixed 0.75 |
IIV on CL (CV%) | 88.54 |
Volume, V (L) | 104.07 (21.59) |
Weight (kg), WT on V | fixed 1.00 |
IIV on V (CV%) | 55.85 |
Proportional residual error (CV%) | 25.19 |
BIC | 208.82 |
OFV | 126.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamiszak, A.; Derwich, K.; Bartkowska-Śniatkowska, A.; Pietrzkiewicz, K.; Niewiadomska-Wojnałowicz, I.; Czyrski, A.; Jusko, W.J.; Bienert, A. Fluconazole Dosing for the Prevention of Candida spp. Infections in Hemato-Oncologic Pediatric Patients: Population Pharmacokinetic Modeling and Probability of Target Attainment Simulations. Pharmaceutics 2025, 17, 488. https://doi.org/10.3390/pharmaceutics17040488
Adamiszak A, Derwich K, Bartkowska-Śniatkowska A, Pietrzkiewicz K, Niewiadomska-Wojnałowicz I, Czyrski A, Jusko WJ, Bienert A. Fluconazole Dosing for the Prevention of Candida spp. Infections in Hemato-Oncologic Pediatric Patients: Population Pharmacokinetic Modeling and Probability of Target Attainment Simulations. Pharmaceutics. 2025; 17(4):488. https://doi.org/10.3390/pharmaceutics17040488
Chicago/Turabian StyleAdamiszak, Arkadiusz, Katarzyna Derwich, Alicja Bartkowska-Śniatkowska, Krzysztof Pietrzkiewicz, Izabela Niewiadomska-Wojnałowicz, Andrzej Czyrski, William J. Jusko, and Agnieszka Bienert. 2025. "Fluconazole Dosing for the Prevention of Candida spp. Infections in Hemato-Oncologic Pediatric Patients: Population Pharmacokinetic Modeling and Probability of Target Attainment Simulations" Pharmaceutics 17, no. 4: 488. https://doi.org/10.3390/pharmaceutics17040488
APA StyleAdamiszak, A., Derwich, K., Bartkowska-Śniatkowska, A., Pietrzkiewicz, K., Niewiadomska-Wojnałowicz, I., Czyrski, A., Jusko, W. J., & Bienert, A. (2025). Fluconazole Dosing for the Prevention of Candida spp. Infections in Hemato-Oncologic Pediatric Patients: Population Pharmacokinetic Modeling and Probability of Target Attainment Simulations. Pharmaceutics, 17(4), 488. https://doi.org/10.3390/pharmaceutics17040488