Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials
Abstract
:1. Introduction
Constitutive and Regulatory ncRNAs
2. Regulatory ncRNAs: General Overview
3. mtDNA and Cancer Implications
3.1. mtDNA Deregulation in Carcinogenesis
3.1.1. Replication and Repair Mechanisms Cause High mtDNA Mutation Rates
3.1.2. Influence of mtDNA Copy Number in Tumors
3.1.3. Mitochondria and Numtogenesis Process
4. miRNAs
4.1. Biogenesis of miRNAs
4.2. Functional Role of miRNAs
4.3. Therapeutic Applications of miRNAs
4.3.1. LNAs in miRNA Inhibition-Based Therapy
4.3.2. Antagomirs in miRNA Inhibition-Based Therapy
4.3.3. miRNA Replacement Therapy
4.4. miRNA-Based Therapies in CTs
4.5. Recent CTs Evaluating miRNAs as Biomarkers
5. siRNAs
5.1. Biogenesis of siRNAs
5.2. Functional Role of siRNAs
5.3. Therapeutic Applications of siRNAs
5.4. siRNA-Based Clinical Studies
6. piRNAs
6.1. Biogenesis of piRNAs
6.2. Functional Role of piRNAs
6.3. Therapeutic Applications of piRNAs
6.4. piRNA-Based CTs
7. circRNAs
7.1. Biogenesis of circRNAs
7.2. Functional Role of circRNAs
7.3. Therapeutic Applications of circRNAs
7.4. CircRNA-Based CTs
8. lncRNAs
8.1. Biogenesis of lncRNAs
8.2. Functional Role of lncRNAs
8.3. Therapeutic Applications of lncRNAs
8.4. lncRNA-Based CTs
9. The Role of Mitochondrial ncRNAs in Cancer
9.1. SncmtRNA, ASncmtRNA-1, and ASncmtRNA-2
9.2. LIPCAR
9.3. lncCytB and mcPGK1
9.4. MDL1 and MDL1AS
9.5. circ-COX2
9.6. circ-ND5 and ND6
9.7. Mitochondrial ncRNA-Based Therapies in CTs
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- What Is Cancer. Available online: https://www.cancer.gov/about-cancer/understanding/what-is-cancer (accessed on 22 December 2024).
- Hatton, I.A.; Galbraith, E.D.; Merleau, N.S.C.; Miettinen, T.P.; Smith, B.M.; Shander, J.A. The Human Cell Count and Size Distribution. Proc. Natl. Acad. Sci. USA 2023, 120, e2303077120. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lin, W.; Zhu, L. Targeted Drug Delivery for the Treatment of Blood Cancers. Molecules 2022, 27, 1310. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.; Son, M.J.; Motamedi, S.; Hoeft, A.; Teller, C.; Hamby, T.; Ray, A. Utilization of Genomic Tumor Profiling in Pediatric Liquid Tumors: A Clinical Series. Hematol. Rep. 2023, 15, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Siddika, A.; Chowdhury, S.; Hasan, M.R.; Moniruzzaman, M.; Been Sayeed, S.K.J.; Tabassum, T.; Chowduary, M.; Tabassum, T.; Islam, A.; Rahman, M.M. Clinicopathological Patterns of Malignant Solid Tumors in Adult Patients: A Hospital-Based Study From Bangladesh. Cureus 2023, 15, e34925. [Google Scholar] [CrossRef]
- Cancers by Body Location/System. Available online: http://www.cancer.gov/types/by-body-location (accessed on 22 December 2024).
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Ostroverkhova, D.; Przytycka, T.M.; Panchenko, A.R. Cancer Driver Mutations: Predictions and Reality. Trends Mol. Med. 2023, 29, 554–566. [Google Scholar] [CrossRef]
- Doane, A.S.; Elemento, O. Alterations in Transcriptional Networks in Cancer: The Role of Noncoding Somatic Driver Mutations. Curr. Opin. Genet. Dev. 2022, 75, 101919. [Google Scholar] [CrossRef]
- Rheinbay, E.; Nielsen, M.M.; Abascal, F.; Wala, J.A.; Shapira, O.; Tiao, G.; Hornshøj, H.; Hess, J.M.; Juul, R.I.; Lin, Z.; et al. Analyses of Non-Coding Somatic Drivers in 2,658 Cancer Whole Genomes. Nature 2020, 578, 102–111. [Google Scholar] [CrossRef]
- Juul, M.; Bertl, J.; Guo, Q.; Nielsen, M.M.; Świtnicki, M.; Hornshøj, H.; Madsen, T.; Hobolth, A.; Pedersen, J.S. Non-Coding Cancer Driver Candidates Identified with a Sample- and Position-Specific Model of the Somatic Mutation Rate. eLife 2017, 6, e21778. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, S.; Xu, B.; Luo, H. Cancer Evolution: A Means by Which Tumors Evade Treatment. Biomed. Pharmacother. 2021, 133, 111016. [Google Scholar] [CrossRef]
- Alison, M.R. The Cellular Origins of Cancer with Particular Reference to the Gastrointestinal Tract. Int. J. Exp. Pathol. 2020, 101, 132–151. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Amend, S.R.; Austin, R.H.; Gatenby, R.A.; Hammarlund, E.U.; Pienta, K.J. Updating the Definition of Cancer. Mol. Cancer Res. 2023, 21, 1142–1147. [Google Scholar] [CrossRef]
- Ciriello, G.; Magnani, L.; Aitken, S.J.; Akkari, L.; Behjati, S.; Hanahan, D.; Landau, D.A.; Lopez-Bigas, N.; Lupiáñez, D.G.; Marine, J.-C.; et al. Cancer Evolution: A Multifaceted Affair. Cancer Discov. 2024, 14, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Stepankiw, N.; Yang, A.W.H.; Hughes, T.R. The Human Genome Contains over a Million Autonomous Exons. Genome Res. 2023, 33, 1865–1878. [Google Scholar] [CrossRef]
- Cannon, M.E.; Mohlke, K.L. Deciphering the Emerging Complexities of Molecular Mechanisms at GWAS Loci. Am. J. Hum. Genet. 2018, 103, 637–653. [Google Scholar] [CrossRef]
- Edwards, S.L.; Beesley, J.; French, J.D.; Dunning, A.M. Beyond GWASs: Illuminating the Dark Road from Association to Function. Am. J. Hum. Genet. 2013, 93, 779–797. [Google Scholar] [CrossRef]
- Tan, K.-T.; Slevin, M.K.; Leibowitz, M.L.; Garrity-Janger, M.; Shan, J.; Li, H.; Meyerson, M. Neotelomeres and Telomere-Spanning Chromosomal Arm Fusions in Cancer Genomes Revealed by Long-Read Sequencing. Cell Genom. 2024, 4, 100588. [Google Scholar] [CrossRef]
- Liehr, T. Repetitive Elements in Humans. Int. J. Mol. Sci. 2021, 22, 2072. [Google Scholar] [CrossRef]
- Cosby, R.L.; Judd, J.; Zhang, R.; Zhong, A.; Garry, N.; Pritham, E.J.; Feschotte, C. Recurrent Evolution of Vertebrate Transcription Factors by Transposase Capture. Science 2021, 371, eabc6405. [Google Scholar] [CrossRef]
- Liao, X.; Zhu, W.; Zhou, J.; Li, H.; Xu, X.; Zhang, B.; Gao, X. Repetitive DNA Sequence Detection and Its Role in the Human Genome. Commun. Biol. 2023, 6, 954. [Google Scholar] [CrossRef] [PubMed]
- Petri, R.; Brattås, P.L.; Sharma, Y.; Jönsson, M.E.; Pircs, K.; Bengzon, J.; Jakobsson, J. LINE-2 Transposable Elements Are a Source of Functional Human MicroRNAs and Target Sites. PLoS Genet. 2019, 15, e1008036. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ben, S.; Xin, J.; Li, S.; Zheng, R.; Wang, H.; Fan, L.; Du, M.; Zhang, Z.; Wang, M. The Biogenesis and Biological Function of PIWI-Interacting RNA in Cancer. J. Hematol. Oncol. 2021, 14, 93. [Google Scholar] [CrossRef]
- Clark, C.G.; Cross, G.A.M. Circular Ribosomal RNA Genes Are a General Feature of Schizopyrenid Amoebae. J. Protozool. 1988, 35, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.A.; Giusto, J.D.; Bao, A.; Hopper, A.K.; Matera, A.G. Molecular Determinants of Metazoan TricRNA Biogenesis. Nucleic Acids Res. 2019, 47, 6452–6465. [Google Scholar] [CrossRef]
- Tang, X.; Ren, H.; Guo, M.; Qian, J.; Yang, Y.; Gu, C. Review on Circular RNAs and New Insights into Their Roles in Cancer. Comput. Struct. Biotechnol. J. 2021, 19, 910–928. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Deng, H.; Ma, R.; Liao, J.-Y.; Liang, H.; Hu, J.; Li, J.; Guo, Z.; Cai, J.; et al. Targeting Mitochondria-Located CircRNA SCAR Alleviates NASH via Reducing MROS Output. Cell 2020, 183, 76–93.e22. [Google Scholar] [CrossRef]
- Yang, L.; Wilusz, J.E.; Chen, L.-L. Biogenesis and Regulatory Roles of Circular RNAs. Annu. Rev. Cell Dev. Biol. 2022, 38, 263–289. [Google Scholar] [CrossRef]
- Karpagavalli, M.; Sivagurunathan, S.; Panda, T.S.; Srikakulam, N.; Arora, R.; Dohadwala, L.; Tiwary, B.K.; Sadras, S.R.; Arunachalam, J.P.; Pandi, G.; et al. PiRNAs in the Human Retina and Retinal Pigment Epithelium Reveal a Potential Role in Intracellular Trafficking and Oxidative Stress. Mol. Omics 2024, 20, 248–264. [Google Scholar] [CrossRef]
- Malebary, S.J.; Khan, Y.D. Evaluating Machine Learning Methodologies for Identification of Cancer Driver Genes. Sci. Rep. 2021, 11, 12281. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, M.; Saksager, A.; Tom, N.; Chen, X.S.; Colaprico, A.; Olsen, C.; Tiberti, M.; Papaleo, E. A Workflow to Study Mechanistic Indicators for Driver Gene Prediction with Moonlight. Brief. Bioinform. 2023, 24, bbad274. [Google Scholar] [CrossRef] [PubMed]
- Amaral, P.; Carbonell-Sala, S.; De La Vega, F.M.; Faial, T.; Frankish, A.; Gingeras, T.; Guigo, R.; Harrow, J.L.; Hatzigeorgiou, A.G.; Johnson, R.; et al. The Status of the Human Gene Catalogue. Nature 2023, 622, 41–47. [Google Scholar] [CrossRef]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The Complete Sequence of a Human Genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Shen, X. Noncoding RNA-Chromatin Association: Functions and Mechanisms. Fundam. Res. 2023, 3, 665–675. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, R.; Lyu, H.; Xiao, S.; Guo, D.; Zhang, Q.; Ali, D.W.; Michalak, M.; Chen, X.-Z.; Zhou, C.; et al. Dysregulation of TRNA Methylation in Cancer: Mechanisms and Targeting Therapeutic Strategies. Cell Death Discov. 2024, 10, 327. [Google Scholar] [CrossRef]
- Babaian, A.; Rothe, K.; Girodat, D.; Minia, I.; Djondovic, S.; Milek, M.; Spencer Miko, S.E.; Wieden, H.-J.; Landthaler, M.; Morin, G.B.; et al. Loss of M1acp3Ψ Ribosomal RNA Modification Is a Major Feature of Cancer. Cell Rep. 2020, 31, 107611. [Google Scholar] [CrossRef]
- Kang, J.; Brajanovski, N.; Chan, K.T.; Xuan, J.; Pearson, R.B.; Sanij, E. Ribosomal Proteins and Human Diseases: Molecular Mechanisms and Targeted Therapy. Signal Transduct. Target. Ther. 2021, 6, 323. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Q.; Wang, H.; Yang, X.; Mu, H. Alternative Splicing and Related RNA Binding Proteins in Human Health and Disease. Signal Transduct. Target. Ther. 2024, 9, 26. [Google Scholar] [CrossRef]
- Huang, Z.-H.; Du, Y.-P.; Wen, J.-T.; Lu, B.-F.; Zhao, Y. SnoRNAs: Functions and Mechanisms in Biological Processes, and Roles in Tumor Pathophysiology. Cell Death Discov. 2022, 8, 259. [Google Scholar] [CrossRef]
- Chauhan, W.; Sudharshan, S.J.; Kafle, S.; Zennadi, R. SnoRNAs: Exploring Their Implication in Human Diseases. Int. J. Mol. Sci. 2024, 25, 7202. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Sun, Y.-M.; Pan, Q.; Fang, K.; Chen, X.-T.; Zeng, Z.-C.; Chen, T.-Q.; Zhu, S.-X.; Huang, L.-B.; Luo, X.-Q.; et al. The SnoRNA-like LncRNA LNC-SNO49AB Drives Leukemia by Activating the RNA-Editing Enzyme ADAR1. Cell Discov. 2022, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Ender, C.; Krek, A.; Friedländer, M.R.; Beitzinger, M.; Weinmann, L.; Chen, W.; Pfeffer, S.; Rajewsky, N.; Meister, G. A Human SnoRNA with MicroRNA-Like Functions. Mol. Cell 2008, 32, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Yamada, K.; Avolio, F.; Scott, M.S.; van Koningsbruggen, S.; Barton, G.J.; Lamond, A.I. Analysis of Human Small Nucleolar RNAs (SnoRNA) and the Development of SnoRNA Modulator of Gene Expression Vectors. Mol. Biol. Cell 2010, 21, 1569–1584. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, Y.; Yan, D.; Li, Q. Effects of Differentially Methylated CpG Sites in Enhancer and Promoter Regions on the Chromatin Structures of Target LncRNAs in Breast Cancer. Int. J. Mol. Sci. 2024, 25, 11048. [Google Scholar] [CrossRef]
- Glaich, O.; Parikh, S.; Bell, R.E.; Mekahel, K.; Donyo, M.; Leader, Y.; Shayevitch, R.; Sheinboim, D.; Yannai, S.; Hollander, D.; et al. DNA Methylation Directs MicroRNA Biogenesis in Mammalian Cells. Nat. Commun. 2019, 10, 5657. [Google Scholar] [CrossRef]
- Saviana, M.; Le, P.; Micalo, L.; Del Valle-Morales, D.; Romano, G.; Acunzo, M.; Li, H.; Nana-Sinkam, P. Crosstalk between MiRNAs and DNA Methylation in Cancer. Genes 2023, 14, 1075. [Google Scholar] [CrossRef]
- Tuna, M.; Machado, A.S.; Calin, G.A. Genetic and Epigenetic Alterations of Micro RNAs and Implications for Human Cancers and Other Diseases. Genes Chromosomes Cancer 2016, 55, 193–214. [Google Scholar] [CrossRef]
- Saito, Y.; Liang, G.; Egger, G.; Friedman, J.M.; Chuang, J.C.; Coetzee, G.A.; Jones, P.A. Specific Activation of MicroRNA-127 with Downregulation of the Proto-Oncogene BCL6 by Chromatin-Modifying Drugs in Human Cancer Cells. Cancer Cell 2006, 9, 435–443. [Google Scholar] [CrossRef]
- Vijay, A.; Jha, P.K.; Garg, I.; Sharma, M.; Ashraf, M.Z.; Kumar, B. Micro-RNAs Dependent Regulation of DNMT and HIF1α Gene Expression in Thrombotic Disorders. Sci. Rep. 2019, 9, 4815. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, W.; Wu, Z.; Liu, Y.; Shi, Y.; Gong, J.; Shen, W.; Liu, C. MiR-29c-3p Regulates DNMT3B and LATS1 Methylation to Inhibit Tumor Progression in Hepatocellular Carcinoma. Cell Death Dis. 2019, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Xu, X.; Wang, Z.; Wang, F.; Wu, W.; Geng, J.; Liu, X. Methyl-CpG Binding Domain Protein 2 Inhibits the Malignant Characteristic of Lung Adenocarcinoma through the Epigenetic Modulation of 10 to 11 Translocation 1 and MiR-200s. Am. J. Pathol. 2019, 189, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wu, J.; Zhang, Y.; Song, J.; Shi, Z.; Chang, H. LINC00518 Promotes Cell Proliferation by Regulating the Cell Cycle of Lung Adenocarcinoma Through MiR-185-3p Targeting MECP2. Front. Oncol. 2021, 11, 646559. [Google Scholar] [CrossRef]
- Chaput, G.; Sumar, N. Endocrine Therapies for Breast and Prostate Cancers. Can. Fam. Physician 2022, 68, 271–276. [Google Scholar] [CrossRef]
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New Approaches and Procedures for Cancer Treatment: Current Perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef]
- Gebert, L.F.R.; MacRae, I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Wen, K.; Chen, X.; Gu, J.; Chen, Z.; Wang, Z. Beyond Traditional Translation: NcRNA Derived Peptides as Modulators of Tumor Behaviors. J. Biomed. Sci. 2024, 31, 63. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Zhao, Y.; Wang, H.; Liu, T.; Li, Y.; Cui, T.; Li, W.; Feng, Y.; Luo, J.; et al. CncRNAdb: A Manually Curated Resource of Experimentally Supported RNAs with Both Protein-Coding and Noncoding Function. Nucleic Acids Res. 2021, 49, D65–D70. [Google Scholar] [CrossRef]
- Postic, G.; Tav, C.; Platon, L.; Zehraoui, F.; Tahi, F. IRSOM2: A Web Server for Predicting Bifunctional RNAs. Nucleic Acids Res. 2023, 51, W281–W288. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, H.; Lu, S.S.; Jones, K.A.; Govind, A.P.; Jeyifous, O.; Simmons, C.Q.; Tabatabaei, N.; Green, W.N.; Holder, J.L.; et al. RNA-Based Translation Activators for Targeted Gene Upregulation. Nat. Commun. 2023, 14, 6827. [Google Scholar] [CrossRef]
- Dragomir, M.P.; Manyam, G.C.; Ott, L.F.; Berland, L.; Knutsen, E.; Ivan, C.; Lipovich, L.; Broom, B.M.; Calin, G.A. FuncPEP: A Database of Functional Peptides Encoded by Non-Coding RNAs. Noncoding RNA 2020, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2018, 172, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Bhat, A.A.; Younes, S.N.; Raza, S.S.; Zarif, L.; Nisar, S.; Ahmed, I.; Mir, R.; Kumar, S.; Sharawat, S.K.; Hashem, S.; et al. Role of Non-Coding RNA Networks in Leukemia Progression, Metastasis and Drug Resistance. Mol. Cancer 2020, 19, 57. [Google Scholar] [CrossRef]
- Srijyothi, L.; Ponne, S.; Prathama, T.; Ashok, C.; Baluchamy, S. Roles of Non-Coding RNAs in Transcriptional Regulation. In Transcriptional and Post-Transcriptional Regulation; InTech: Rijeka, Croatia, 2018. [Google Scholar]
- Bure, I.V.; Nemtsova, M. V Mutual Regulation of NcRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int. J. Mol. Sci. 2023, 24, 7848. [Google Scholar] [CrossRef]
- Cech, T.R.; Steitz, J.A. The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, H.; Hayashi, J.; Takahama, S.; Taya, C.; Lindahl, K.F.; Yonekawa, H. Elimination of Paternal Mitochondrial DNA in Intraspecific Crosses during Early Mouse Embryogenesis. Proc. Natl. Acad. Sci. USA 1995, 92, 4542–4546. [Google Scholar] [CrossRef]
- Sutovsky, P.; Moreno, R.D.; Ramalho-Santos, J.; Dominko, T.; Simerly, C.; Schatten, G. Ubiquitin Tag for Sperm Mitochondria. Nature 1999, 402, 371–372. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, Y.; Gao, K.; Yang, Q.; Shi, B.; Hou, P.; Ji, M. High Copy Number of Mitochondrial DNA (MtDNA) Predicts Good Prognosis in Glioma Patients. Am. J. Cancer Res. 2015, 5, 1207–1216. [Google Scholar]
- Mortimer, D. The Functional Anatomy of the Human Spermatozoon: Relating Ultrastructure and Function. MHR Basic Sci. Reprod. Med. 2018, 24, 567–592. [Google Scholar] [CrossRef]
- Ankel-Simons, F.; Cummins, J.M. Misconceptions about Mitochondria and Mammalian Fertilization: Implications for Theories on Human Evolution. Proc. Natl. Acad. Sci. USA 1996, 93, 13859–13863. [Google Scholar] [CrossRef]
- Cummins, J.M. Epigenetic and Experimental Modifications in Early Mammalian Development: Part I: Mitochondria: Potential Roles in Embryogenesis and Nucleocytoplasmic Transfer. Hum. Reprod. Update 2001, 7, 217–228. [Google Scholar] [CrossRef]
- Degli Esposti, D.; Hamelin, J.; Bosselut, N.; Saffroy, R.; Sebagh, M.; Pommier, A.; Martel, C.; Lemoine, A. Mitochondrial Roles and Cytoprotection in Chronic Liver Injury. Biochem. Res. Int. 2012, 2012, 1–16. [Google Scholar] [CrossRef]
- D’Erchia, A.M.; Atlante, A.; Gadaleta, G.; Pavesi, G.; Chiara, M.; De Virgilio, C.; Manzari, C.; Mastropasqua, F.; Prazzoli, G.M.; Picardi, E.; et al. Tissue-Specific MtDNA Abundance from Exome Data and Its Correlation with Mitochondrial Transcription, Mass and Respiratory Activity. Mitochondrion 2015, 20, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.C.; Brivanlou, A.; Brischigliaro, M.; Fontanesi, F.; Rouskin, S.; Barrientos, A. The Human Mitochondrial MRNA Structurome Reveals Mechanisms of Gene Expression. Science 2024, 385, eadm9238. [Google Scholar] [CrossRef] [PubMed]
- Vučković, A.; Freyer, C.; Wredenberg, A.; Hillen, H.S. The Molecular Machinery for Maturation of Primary MtDNA Transcripts. Hum. Mol. Genet. 2024, 33, R19–R25. [Google Scholar] [CrossRef]
- Guo, B.; Zhai, D.; Cabezas, E.; Welsh, K.; Nouraini, S.; Satterthwait, A.C.; Reed, J.C. Humanin Peptide Suppresses Apoptosis by Interfering with Bax Activation. Nature 2003, 423, 456–461. [Google Scholar] [CrossRef]
- Ha, C.P.; Hua, T.N.M.; Vo, V.T.A.; Om, J.; Han, S.; Cha, S.-K.; Park, K.-S.; Jeong, Y. Humanin Activates Integrin AV–TGFβ Axis and Leads to Glioblastoma Progression. Cell Death Dis. 2024, 15, 464. [Google Scholar] [CrossRef]
- Peña Agudelo, J.A.; Pidre, M.L.; Garcia Fallit, M.; Pérez Küper, M.; Zuccato, C.; Nicola Candia, A.J.; Marchesini, A.; Vera, M.B.; De Simone, E.; Giampaoli, C.; et al. Mitochondrial Peptide Humanin Facilitates Chemoresistance in Glioblastoma Cells. Cancers 2023, 15, 4061. [Google Scholar] [CrossRef]
- Cheng, J.; Li, M.; Motta, E.; Barci, D.; Song, W.; Zhou, D.; Li, G.; Zhu, S.; Yang, A.; Vaillant, B.D.; et al. Myeloid Cells Coordinately Induce Glioma Cell-Intrinsic and Cell-Extrinsic Pathways for Chemoresistance via GP130 Signaling. Cell Rep. Med. 2024, 5, 101658. [Google Scholar] [CrossRef]
- Yuan, Y.; Ju, Y.S.; Kim, Y.; Li, J.; Wang, Y.; Yoon, C.J.; Yang, Y.; Martincorena, I.; Creighton, C.J.; Weinstein, J.N.; et al. Comprehensive Molecular Characterization of Mitochondrial Genomes in Human Cancers. Nat. Genet. 2020, 52, 342. [Google Scholar] [CrossRef]
- Kim, M.; Mahmood, M.; Reznik, E.; Gammage, P.A. Mitochondrial DNA Is a Major Source of Driver Mutations in Cancer. Trends Cancer 2022, 8, 1046–1059. [Google Scholar] [CrossRef]
- Gorelick, A.N.; Kim, M.; Chatila, W.K.; La, K.; Hakimi, A.A.; Berger, M.F.; Taylor, B.S.; Gammage, P.A.; Reznik, E. Respiratory Complex and Tissue Lineage Drive Recurrent Mutations in Tumour MtDNA. Nat. Metab. 2021, 3, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Triska, P.; Kaneva, K.; Merkurjev, D.; Sohail, N.; Falk, M.J.; Triche, T.J.; Biegel, J.A.; Gai, X. Landscape of Germline and Somatic Mitochondrial DNA Mutations in Pediatric Malignancies. Cancer Res. 2019, 79, 1318–1330. [Google Scholar] [CrossRef]
- Wei, W.; Tuna, S.; Keogh, M.J.; Smith, K.R.; Aitman, T.J.; Beales, P.L.; Bennett, D.L.; Gale, D.P.; Bitner-Glindzicz, M.A.K.; Black, G.C.; et al. Germline Selection Shapes Human Mitochondrial DNA Diversity. Science 2019, 364, eaau6520. [Google Scholar] [CrossRef] [PubMed]
- Jónsson, H.; Sulem, P.; Kehr, B.; Kristmundsdottir, S.; Zink, F.; Hjartarson, E.; Hardarson, M.T.; Hjorleifsson, K.E.; Eggertsson, H.P.; Gudjonsson, S.A.; et al. Parental Influence on Human Germline de Novo Mutations in 1,548 Trios from Iceland. Nature 2017, 549, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Whitehall, J.C.; Smith, A.L.M.; Greaves, L.C. Mitochondrial DNA Mutations and Ageing. In Biochemistry and Cell Biology of Ageing: Part III Biomedical Science; Springer International Publishing: Cham, Switzerland, 2023; pp. 77–98. [Google Scholar]
- Sprason, C.; Tucker, T.; Clancy, D. MtDNA Deletions and Aging. Front. Aging 2024, 5. [Google Scholar] [CrossRef]
- Krasich, R.; Copeland, W.C. DNA Polymerases in the Mitochondria: A Critical Review of the Evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [CrossRef]
- Saneto, R.P.; Naviaux, R.K. Polymerase Gamma Disease through the Ages. Dev. Disabil. Res. Rev. 2010, 16, 163–174. [Google Scholar] [CrossRef]
- Wisnovsky, S.; Jean, S.R.; Liyanage, S.; Schimmer, A.; Kelley, S.O. Mitochondrial DNA Repair and Replication Proteins Revealed by Targeted Chemical Probes. Nat. Chem. Biol. 2016, 12, 567–573. [Google Scholar] [CrossRef]
- Arana, M.E.; Seki, M.; Wood, R.D.; Rogozin, I.B.; Kunkel, T.A. Low-Fidelity DNA Synthesis by Human DNA Polymerase Theta. Nucleic Acids Res. 2008, 36, 3847–3856. [Google Scholar] [CrossRef] [PubMed]
- Rong, Z.; Tu, P.; Xu, P.; Sun, Y.; Yu, F.; Tu, N.; Guo, L.; Yang, Y. The Mitochondrial Response to DNA Damage. Front. Cell Dev. Biol. 2021, 9, 669379. [Google Scholar] [CrossRef]
- Yin, P.-H.; Wu, C.-C.; Lin, J.-C.; Chi, C.-W.; Wei, Y.-H.; Lee, H.-C. Somatic Mutations of Mitochondrial Genome in Hepatocellular Carcinoma. Mitochondrion 2010, 10, 174–182. [Google Scholar] [CrossRef]
- Pinheiro, M.; Veiga, I.; Pinto, C.; Afonso, L.; Sousa, O.; Fragoso, M.; Santos, L.; Lopes, P.; Pais, I.; Lopes, C.; et al. Mitochondrial Genome Alterations in Rectal and Sigmoid Carcinomas. Cancer Lett. 2009, 280, 38–43. [Google Scholar] [CrossRef]
- Weerts, M.J.A.; Timmermans, E.C.; van de Stolpe, A.; Vossen, R.H.A.M.; Anvar, S.Y.; Foekens, J.A.; Sleijfer, S.; Martens, J.W.M. Tumor-Specific Mitochondrial DNA Variants Are Rarely Detected in Cell-Free DNA. Neoplasia 2018, 20, 687–696. [Google Scholar] [CrossRef]
- Koshikawa, N.; Akimoto, M.; Hayashi, J.-I.; Nagase, H.; Takenaga, K. Association of Predicted Pathogenic Mutations in Mitochondrial ND Genes with Distant Metastasis in NSCLC and Colon Cancer. Sci. Rep. 2017, 7, 15535. [Google Scholar] [CrossRef]
- Yusnita, Y.; Norsiah, M.D.; Rahman, A.J. Mutations in Mitochondrial NADH Dehydrogenase Subunit 1 (MtND1) Gene in Colorectal Carcinoma. Malays. J. Pathol. 2010, 32, 103–110. [Google Scholar]
- Kassem, A.M.; El-Guendy, N.; Tantawy, M.; Abdelhady, H.; El-Ghor, A.; Abdel Wahab, A.H. Mutational Hotspots in the Mitochondrial D-Loop Region of Cancerous and Precancerous Colorectal Lesions in Egyptian Patients. DNA Cell Biol. 2011, 30, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Akouchekian, M.; Houshmand, M.; Akbari, M.H.H.; Kamalidehghan, B.; Dehghan, M. Analysis of Mitochondrial ND1 Gene in Human Colorectal Cancer. J. Res. Med. Sci. 2011, 16, 50–55. [Google Scholar]
- Sun, W.; Zhou, S.; Chang, S.S.; McFate, T.; Verma, A.; Califano, J.A. Mitochondrial Mutations Contribute to HIF1α Accumulation via Increased Reactive Oxygen Species and Up-Regulated Pyruvate Dehydrogenease Kinase 2 in Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2009, 15, 476–484. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, W.; Li, H.; Yu, Y.; Tao, J.; Huang, S.; Zeng, Z. Nonsense and Missense Mutation of Mitochondrial ND6 Gene Promotes Cell Migration and Invasion in Human Lung Adenocarcinoma. BMC Cancer 2015, 15, 346. [Google Scholar] [CrossRef]
- Beadnell, T.C.; Scheid, A.D.; Vivian, C.J.; Welch, D.R. Roles of the Mitochondrial Genetics in Cancer Metastasis: Not to Be Ignored Any Longer. Cancer Metastasis Rev. 2018, 37, 615–632. [Google Scholar] [CrossRef]
- Guo, Z.; Jin, C.; Yao, Z.; Wang, Y.; Xu, B. Analysis of the Mitochondrial 4977 Bp Deletion in Patients with Hepatocellular Carcinoma. Balk. J. Med. Genet. 2017, 20, 81–86. [Google Scholar] [CrossRef]
- Shao, J.-Y. Quantitative Detection of Common Deletion of Mitochondrial DNA in Hepatocellular Carcinoma and Hepatocellular Nodular Hyperplasia. World J. Gastroenterol. 2004, 10, 1560. [Google Scholar] [CrossRef] [PubMed]
- Dimberg, J.; Hong, T.T.; Skarstedt, M.; Löfgren, S.; Zar, N.; Matussek, A. Novel and Differential Accumulation of Mitochondrial DNA Deletions in Swedish and Vietnamese Patients with Colorectal Cancer. Anticancer Res. 2014, 34, 147–152. [Google Scholar]
- Shen, L.; Fang, H.; Chen, T.; He, J.; Zhang, M.; Wei, X.; Xin, Y.; Jiang, Y.; Ding, Z.; Ji, J.; et al. Evaluating Mitochondrial DNA in Cancer Occurrence and Development. Ann. N. Y. Acad. Sci. 2010, 1201, 26–33. [Google Scholar] [CrossRef]
- Mohamed Yusoff, A.A.; Mohd Khair, S.Z.N.; Abd Radzak, S.M.; Idris, Z.; Lee, H.-C. Prevalence of Mitochondrial DNA Common Deletion in Patients with Gliomas and Meningiomas: A First Report from a Malaysian Study Group. J. Chin. Med. Assoc. 2020, 83, 838–844. [Google Scholar] [CrossRef]
- Mennuni, M.; Wilkie, S.E.; Michon, P.; Alsina, D.; Filograna, R.; Lindberg, M.; Sanin, D.E.; Rosenberger, F.; Schaaf, A.; Larsson, E.; et al. High Mitochondrial DNA Levels Accelerate Lung Adenocarcinoma Progression. Sci. Adv. 2024, 10, adp3481. [Google Scholar] [CrossRef]
- Al-awadhi, R.; Alroomy, M.; Al-Waheeb, S.; Alwehaidah, M.S. Altered Mitochondrial DNA Copy Number in Cervical Exfoliated Cells among High-risk HPV-positive and HPV-negative Women. Exp. Ther. Med. 2023, 26, 521. [Google Scholar] [CrossRef]
- Alwehaidah, M.S.; Al-Awadhi, R.; Roomy, M.A.; Baqer, T. Al Mitochondrial DNA Copy Number and Risk of Papillary Thyroid Carcinoma. BMC Endocr. Disord. 2024, 24, 138. [Google Scholar] [CrossRef]
- Zhuang, F.; Huang, S.; Liu, L. PYCR3 Modulates MtDNA Copy Number to Drive Proliferation and Doxorubicin Resistance in Triple-Negative Breast Cancer. Int. J. Biochem. Cell Biol. 2024, 171, 106581. [Google Scholar] [CrossRef] [PubMed]
- Weerts, M.J.A.; Sieuwerts, A.M.; Smid, M.; Look, M.P.; Foekens, J.A.; Sleijfer, S.; Martens, J.W.M. Mitochondrial DNA Content in Breast Cancer: Impact on in Vitro and in Vivo Phenotype and Patient Prognosis. Oncotarget 2016, 7, 29166–29176. [Google Scholar] [CrossRef]
- Yu, M.; Zhou, Y.; Shi, Y.; Ning, L.; Yang, Y.; Wei, X.; Zhang, N.; Hao, X.; Niu, R. Reduced Mitochondrial DNA Copy Number Is Correlated with Tumor Progression and Prognosis in Chinese Breast Cancer Patients. IUBMB Life 2007, 59, 450–457. [Google Scholar] [CrossRef]
- Yu, M.; Wan, Y.; Zou, Q. Decreased Copy Number of Mitochondrial DNA in Ewing’s Sarcoma. Clin. Chim. Acta 2010, 411, 679–683. [Google Scholar] [CrossRef]
- Reznik, E.; Miller, M.L.; Şenbabaoğlu, Y.; Riaz, N.; Sarungbam, J.; Tickoo, S.K.; Al-Ahmadie, H.A.; Lee, W.; Seshan, V.E.; Hakimi, A.A.; et al. Mitochondrial DNA Copy Number Variation across Human Cancers. eLife 2016, 5, e10769. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Nomoto, S.; Fujii, T.; Kaneko, T.; Takeda, S.; Inoue, S.; Kanazumi, N.; Nakao, A. Correlation between Copy Number of Mitochondrial DNA and Clinico-pathologic Parameters of Hepatocellular Carcinoma. Eur. J. Surg. Oncol. (EJSO) 2006, 32, 303–307. [Google Scholar] [CrossRef]
- Cui, H.; Huang, P.; Wang, Z.; Zhang, Y.; Zhang, Z.; Xu, W.; Wang, X.; Han, Y.; Guo, X. Association of Decreased Mitochondrial DNA Content with the Progression of Colorectal Cancer. BMC Cancer 2013, 13, 110. [Google Scholar] [CrossRef]
- Wang, Y.; He, S.; Zhu, X.; Qiao, W.; Zhang, J. High Copy Number of Mitochondrial DNA Predicts Poor Prognosis in Patients with Advanced Stage Colon Cancer. Int. J. Biol. Markers 2016, 31, 382–388. [Google Scholar] [CrossRef]
- Harutyunyan, T. The Known Unknowns of Mitochondrial Carcinogenesis: De Novo NUMTs and Intercellular Mitochondrial Transfer. Mutagenesis 2024, 39, 1–12. [Google Scholar] [CrossRef]
- Singh, K.K.; Choudhury, A.R.; Tiwari, H.K. Numtogenesis as a Mechanism for Development of Cancer. Semin. Cancer Biol. 2017, 47, 101–109. [Google Scholar] [CrossRef]
- Farberov, L.; Weissglas-Volkov, D.; Shapira, G.; Zoabi, Y.; Schiff, C.; Kloeckener-Gruissem, B.; Neidhardt, J.; Shomron, N. MRNA Splicing Is Modulated by Intronic MicroRNAs. iScience 2023, 26, 107723. [Google Scholar] [CrossRef]
- Melamed, Z.; Levy, A.; Ashwal-Fluss, R.; Lev-Maor, G.; Mekahel, K.; Atias, N.; Gilad, S.; Sharan, R.; Levy, C.; Kadener, S.; et al. Alternative Splicing Regulates Biogenesis of MiRNAs Located across Exon-Intron Junctions. Mol. Cell 2013, 50, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Pianigiani, G.; Licastro, D.; Fortugno, P.; Castiglia, D.; Petrovic, I.; Pagani, F. Microprocessor-Dependent Processing of Splice Site Overlapping MicroRNA Exons Does Not Result in Changes in Alternative Splicing. RNA 2018, 24, 1158–1171. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, R.L.V.; Conceição, H.B.; Guardia, G.D.A.; Goldstein, G.; Vibranovski, M.D.; Hinske, L.C.; Galante, P.A.F. Retro-MiRs: Novel and Functional MiRNAs Originating from MRNA Retrotransposition. Mob. DNA 2023, 14, 12. [Google Scholar] [CrossRef]
- Downie Ruiz Velasco, A.; Parsons, A.L.; Heatley, M.C.; Martin, A.R.G.; Smart, A.D.; Shah, N.; Jopling, C.L. MicroRNA Biogenesis Is Broadly Disrupted by Inhibition of the Splicing Factor SF3B1. Nucleic Acids Res. 2024, 52, 9210–9229. [Google Scholar] [CrossRef]
- Sundaram, G.M.; Common, J.E.A.; Gopal, F.E.; Srikanta, S.; Lakshman, K.; Lunny, D.P.; Lim, T.C.; Tanavde, V.; Lane, E.B.; Sampath, P. ‘See-Saw’ Expression of MicroRNA-198 and FSTL1 from a Single Transcript in Wound Healing. Nature 2013, 495, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-M.; Jin, S.W.; Jang, B.; Ko, Y.K.; Gim, J.-A. Transposable Elements-Derived MicroRNA Expression Patterns in TCGA Dataset for 10 Species. Evol. Bioinform. 2023, 19, 11769343231194020. [Google Scholar] [CrossRef]
- Mustafin, R.N.; Khusnutdinova, E. Perspective for Studying the Relationship of MiRNAs with Transposable Elements. Curr. Issues Mol. Biol. 2023, 45, 3122–3145. [Google Scholar] [CrossRef]
- Szelągowski, A.; Kozakiewicz, M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson’s Disease. Oxid. Med. Cell. Longev. 2023, 2023, 7759053. [Google Scholar] [CrossRef]
- Partin, A.C.; Zhang, K.; Jeong, B.-C.; Herrell, E.; Li, S.; Chiu, W.; Nam, Y. Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA. Mol. Cell 2020, 78, 411–422.e4. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Jo, M.H.; Choi, Y.-G.; Park, J.; Kwon, S.C.; Hohng, S.; Kim, V.N.; Woo, J.-S. Functional Anatomy of the Human Microprocessor. Cell 2015, 161, 1374–1387. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.C.; Nguyen, T.A.; Choi, Y.-G.; Jo, M.H.; Hohng, S.; Kim, V.N.; Woo, J.-S. Structure of Human DROSHA. Cell 2016, 164, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.I.; Katsura, A.; Yasuda, T.; Ueno, T.; Mano, H.; Sugimoto, K.; Miyazono, K. Small-RNA Asymmetry Is Directly Driven by Mammalian Argonautes. Nat. Struct. Mol. Biol. 2015, 22, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-W.; Noland, C.; Siridechadilok, B.; Taylor, D.W.; Ma, E.; Felderer, K.; Doudna, J.A.; Nogales, E. Structural Insights into RNA Processing by the Human RISC-Loading Complex. Nat. Struct. Mol. Biol. 2009, 16, 1148–1153. [Google Scholar] [CrossRef]
- Frank, F.; Sonenberg, N.; Nagar, B. Structural Basis for 5′-Nucleotide Base-Specific Recognition of Guide RNA by Human AGO2. Nature 2010, 465, 818–822. [Google Scholar] [CrossRef]
- Lee, S.; Jee, D.; Srivastava, S.; Yang, A.; Ramidi, A.; Shang, R.; Bortolamiol-Becet, D.; Pfeffer, S.; Gu, S.; Wen, J.; et al. Promiscuous Splicing-Derived Hairpins Are Dominant Substrates of Tailing-Mediated Defense of MiRNA Biogenesis in Mammals. Cell Rep. 2023, 42, 112111. [Google Scholar] [CrossRef]
- Kakumani, P.K.; Ko, Y.; Ramakrishna, S.; Christopher, G.; Dodgson, M.; Shrinet, J.; Harvey, L.-M.; Shin, C.; Simard, M.J. CSDE1 Promotes MiR-451 Biogenesis. Nucleic Acids Res. 2023, 51, 9385–9396. [Google Scholar] [CrossRef]
- Yoda, M.; Cifuentes, D.; Izumi, N.; Sakaguchi, Y.; Suzuki, T.; Giraldez, A.J.; Tomari, Y. Poly(A)-Specific Ribonuclease Mediates 3′-End Trimming of Argonaute2-Cleaved Precursor MicroRNAs. Cell Rep. 2013, 5, 715–726. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Fromm, B.; Høye, E.; Domanska, D.; Zhong, X.; Aparicio-Puerta, E.; Ovchinnikov, V.; Umu, S.U.; Chabot, P.J.; Kang, W.; Aslanzadeh, M.; et al. MirGeneDB 2.1: Toward a Complete Sampling of All Major Animal Phyla. Nucleic Acids Res. 2022, 50, D204–D210. [Google Scholar] [CrossRef]
- Wang, D.; Sun, X.; Wei, Y.; Liang, H.; Yuan, M.; Jin, F.; Chen, X.; Liu, Y.; Zhang, C.-Y.; Li, L.; et al. Nuclear MiR-122 Directly Regulates the Biogenesis of Cell Survival OncomiR MiR-21 at the Posttranscriptional Level. Nucleic Acids Res. 2018, 46, 2012–2029. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zhang, X.; Nie, X.; Li, H.; Yuan, S.; Dai, B.; Zhan, J.; Wen, Z.; Jiang, J.; Chen, C.; et al. Nuclear MiR-665 Aggravates Heart Failure via Suppressing Phosphatase and Tensin Homolog Transcription. Sci. China Life Sci. 2020, 63, 724–736. [Google Scholar] [CrossRef]
- Liang, Y.; Zou, Q.; Yu, W. Steering Against Wind: A New Network of NamiRNAs and Enhancers. Genom. Proteom. Bioinform. 2017, 15, 331–337. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, P.; Zou, Q.; Luo, H.; Yu, W. An Epigenetic Perspective on Tumorigenesis: Loss of Cell Identity, Enhancer Switching, and NamiRNA Network. Semin. Cancer Biol. 2019, 57, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Zhang, Y.; Huang, Q.-Q.; Qian, M.-M.; Li, Z.-X.; Li, Y.-J.; Li, B.-P.; Qiu, Z.-L.; Yue, J.-J.; Guo, Z.-Y. Genome-Wide Identification and Analysis of Enhancer-Regulated MicroRNAs Across 31 Human Cancers. Front. Genet. 2020, 11, 644. [Google Scholar] [CrossRef]
- Odame, E.; Chen, Y.; Zheng, S.; Dai, D.; Kyei, B.; Zhan, S.; Cao, J.; Guo, J.; Zhong, T.; Wang, L.; et al. Enhancer RNAs: Transcriptional Regulators and Workmates of NamiRNAs in Myogenesis. Cell. Mol. Biol. Lett. 2021, 26, 4. [Google Scholar] [CrossRef]
- Naeli, P.; Winter, T.; Hackett, A.P.; Alboushi, L.; Jafarnejad, S.M. The Intricate Balance between MicroRNA-Induced MRNA Decay and Translational Repression. FEBS J. 2023, 290, 2508–2524. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, N.; Dokaneheifard, S.; Cingaram, P.R.; Valencia, M.G.; Beckedorff, F.; Gomes Dos Santos, H.; Blumenthal, E.; Tayari, M.M.; Gaidosh, G.S.; Shiekhattar, R. The Integrator Complex Regulates MicroRNA Abundance through RISC Loading. Sci. Adv. 2023, 9, eadf0597. [Google Scholar] [CrossRef]
- Treiber, T.; Treiber, N.; Meister, G. Regulation of MicroRNA Biogenesis and Its Crosstalk with Other Cellular Pathways. Nat. Rev. Mol. Cell Biol. 2019, 20, 5–20. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA Circles Function as Efficient MicroRNA Sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Karagkouni, D.; Karavangeli, A.; Paraskevopoulou, M.D.; Hatzigeorgiou, A.G. Characterizing MiRNA–LncRNA Interplay. In Long Non-Coding RNAs: Methods and Protocols; Humana: New York, NY, USA, 2021; pp. 243–262. [Google Scholar]
- Tay, Y.; Rinn, J.; Pandolfi, P.P. The Multilayered Complexity of CeRNA Crosstalk and Competition. Nature 2014, 505, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Moreno-García, L.; López-Royo, T.; Calvo, A.C.; Toivonen, J.M.; de la Torre, M.; Moreno-Martínez, L.; Molina, N.; Aparicio, P.; Zaragoza, P.; Manzano, R.; et al. Competing Endogenous Rna Networks as Biomarkers in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 9582. [Google Scholar] [CrossRef]
- Chen, X.; Wan, L.; Wang, W.; Xi, W.-J.; Yang, A.-G.; Wang, T. Re-Recognition of Pseudogenes: From Molecular to Clinical Applications. Theranostics 2020, 10, 1479–1499. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, J.; Zhang, Z.; Li, J.; Wang, F.; Ma, L.; Tian, X.; Mao, Z.; Yang, Y. Exosomal MiR-485-3p Derived from Pancreatic Ductal Epithelial Cells Inhibits Pancreatic Cancer Metastasis through Targeting PAK1. Chin. Med. J. 2022, 135, 2326–2337. [Google Scholar] [CrossRef]
- Mustafa, A.; Shabbir, M.; Badshah, Y.; Khan, K.; Abid, F.; Trembley, J.H.; Afsar, T.; Almajwal, A.; Razak, S. Genetic Polymorphism in Untranslated Regions of PRKCZ Influences MRNA Structure, Stability and Binding Sites. BMC Cancer 2024, 24, 1147. [Google Scholar] [CrossRef]
- Toledo-Stuardo, K.; Ribeiro, C.H.; Campos, I.; Tello, S.; Latorre, Y.; Altamirano, C.; Dubois-Camacho, K.; Molina, M.C. Impact of MICA 3′UTR Allelic Variability on MiRNA Binding Prediction, a Bioinformatic Approach. Front. Genet. 2023, 14, 1273296. [Google Scholar] [CrossRef]
- Tian, Y.-F.; Huang, C.-J.; Liu, C.-Y.; Yang, S.-H.; Hung, C.-S.; Lin, K.-Y.; Lai, C.-L.; Chang, C.-C. MicroRNA-24 Alleviates Colorectal Cancer Progression via a Rs28382740 Single Nucleotide Polymorphism in the Long Noncoding Region of X-linked Inhibitor of Apoptosis Protein. Oncol. Lett. 2024, 28, 591. [Google Scholar] [CrossRef]
- Homberg, N.; Galvão Ferrarini, M.; Gaspin, C.; Sagot, M.-F. MicroRNA Target Identification: Revisiting Accessibility and Seed Anchoring. Genes 2023, 14, 664. [Google Scholar] [CrossRef]
- Broughton, J.P.; Lovci, M.T.; Huang, J.L.; Yeo, G.W.; Pasquinelli, A.E. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol. Cell 2016, 64, 320–333. [Google Scholar] [CrossRef]
- Kim, D.; Sung, Y.M.; Park, J.; Kim, S.; Kim, J.; Park, J.; Ha, H.; Bae, J.Y.; Kim, S.; Baek, D. General Rules for Functional MicroRNA Targeting. Nat. Genet. 2016, 48, 1517–1526. [Google Scholar] [CrossRef]
- McGeary, S.E.; Bisaria, N.; Pham, T.M.; Wang, P.Y.; Bartel, D.P. MicroRNA 3′-Compensatory Pairing Occurs through Two Binding Modes, with Affinity Shaped by Nucleotide Identity and Position. eLife 2022, 11, e69803. [Google Scholar] [CrossRef] [PubMed]
- Kosek, D.M.; Banijamali, E.; Becker, W.; Petzold, K.; Andersson, E.R. Efficient 3′-Pairing Renders MicroRNA Targeting Less Sensitive to MRNA Seed Accessibility. Nucleic Acids Res. 2023, 51, 11162–11177. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Nam, J.-W.; Farh, K.K.-H.; Chiang, H.R.; Shkumatava, A.; Bartel, D.P. Expanding the MicroRNA Targeting Code: Functional Sites with Centered Pairing. Mol. Cell 2010, 38, 789–802. [Google Scholar] [CrossRef]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. MicroRNAs in Action: Biogenesis, Function and Regulation. Nat. Rev. Genet. 2023, 24, 816–833. [Google Scholar] [CrossRef]
- Ma, F.; Liu, X.; Li, D.; Wang, P.; Li, N.; Lu, L.; Cao, X. MicroRNA-466l Upregulates IL-10 Expression in TLR-Triggered Macrophages by Antagonizing RNA-Binding Protein Tristetraprolin-Mediated IL-10 MRNA Degradation. J. Immunol. 2010, 184, 6053–6059. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Maloney, B.; Rogers, J.T.; Lahiri, D.K. Novel Upregulation of Amyloid-β Precursor Protein (APP) by MicroRNA-346 via Targeting of APP MRNA 5′-Untranslated Region: Implications in Alzheimer’s Disease. Mol. Psychiatry 2019, 24, 345–363. [Google Scholar] [CrossRef]
- Vasudevan, S. Posttranscriptional Upregulation by MicroRNAs. WIREs RNA 2012, 3, 311–330. [Google Scholar] [CrossRef]
- Vasudevan, S.; Tong, Y.; Steitz, J.A. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 2007, 318, 1931–1934. [Google Scholar] [CrossRef]
- Vasudevan, S.; Steitz, J.A. AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2. Cell 2007, 128, 1105–1118. [Google Scholar] [CrossRef]
- Bukhari, S.I.A.; Truesdell, S.S.; Lee, S.; Kollu, S.; Classon, A.; Boukhali, M.; Jain, E.; Mortensen, R.D.; Yanagiya, A.; Sadreyev, R.I.; et al. A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence. Mol. Cell 2016, 61, 760–773. [Google Scholar] [CrossRef]
- Truesdell, S.S.; Mortensen, R.D.; Seo, M.; Schroeder, J.C.; Lee, J.H.; LeTonqueze, O.; Vasudevan, S. MicroRNA-Mediated MRNA Translation Activation in Quiescent Cells and Oocytes Involves Recruitment of a Nuclear MicroRNP. Sci. Rep. 2012, 2, 842. [Google Scholar] [CrossRef]
- Ørom, U.A.; Nielsen, F.C.; Lund, A.H. MicroRNA-10a Binds the 5′UTR of Ribosomal Protein MRNAs and Enhances Their Translation. Mol. Cell 2008, 30, 460–471. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Wang, S.; Li, P.; Zheng, C.; Zhou, X.; Tao, Y.; Chen, X.; Sun, L.; Wang, A.; et al. Blockage of Transferred Exosome-shuttled MiR-494 Inhibits Melanoma Growth and Metastasis. J. Cell. Physiol. 2019, 234, 15763–15774. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ji, X.; Liu, K.; Shi, Y.; Wang, C.; Li, Y.; Zhang, T.; He, Y.; Xiang, M.; Zhao, R. Exosomal MiR-200c-3p Negatively Regulates the Migration and Invasion of Lipopolysaccharide (LPS)-Stimulated Colorectal Cancer (CRC). BMC Mol. Cell Biol. 2020, 21, 48. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Yang, X.; Yang, H.; Lv, M.; Sun, X.; Zhou, B. Exosomal MiR-338-3p Suppresses Non-Small-Cell Lung Cancer Cells Metastasis by Inhibiting CHL1 through the MAPK Signaling Pathway. Cell Death Dis. 2021, 12, 1030. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Qu, L.; Yang, J.; Xu, J.; Sun, L.; Wei, X.; Qu, X.; Bai, T.; Guo, Z.; Zhu, Y. Exosome–Transmitted MicroRNA-133b Inhibited Bladder Cancer Proliferation by Upregulating Dual-specificity Protein Phosphatase 1. Cancer Med. 2020, 9, 6009–6019. [Google Scholar] [CrossRef]
- Hunter, S.; Nault, B.; Ugwuagbo, K.; Maiti, S.; Majumder, M. Mir526b and Mir655 Promote Tumour Associated Angiogenesis and Lymphangiogenesis in Breast Cancer. Cancers 2019, 11, 938. [Google Scholar] [CrossRef]
- Shojaei, S.; Moradi-Chaleshtori, M.; Paryan, M.; Koochaki, A.; Sharifi, K.; Mohammadi-Yeganeh, S. Mesenchymal Stem Cell-Derived Exosomes Enriched with MiR-218 Reduce the Epithelial–Mesenchymal Transition and Angiogenesis in Triple-Negative Breast Cancer Cells. Eur. J. Med. Res. 2023, 28, 516. [Google Scholar] [CrossRef]
- Tang, Y.-T.; Huang, Y.-Y.; Li, J.-H.; Qin, S.-H.; Xu, Y.; An, T.-X.; Liu, C.-C.; Wang, Q.; Zheng, L. Alterations in Exosomal MiRNA Profile upon Epithelial-Mesenchymal Transition in Human Lung Cancer Cell Lines. BMC Genom. 2018, 19, 802. [Google Scholar] [CrossRef]
- Tai, Y.; Chen, K.; Hsieh, J.; Shen, T. Exosomes in Cancer Development and Clinical Applications. Cancer Sci. 2018, 109, 2364–2374. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, L.-J.; Zhang, X.-Y. Exosomal MiRNA-205 Promotes Breast Cancer Chemoresistance and Tumorigenesis through E2F1. Aging 2021, 13, 18498–18514. [Google Scholar] [CrossRef]
- Qin, X.; Yu, S.; Zhou, L.; Shi, M.; Hu, Y.; Xu, X.; Shen, B.; Liu, S.; Yan, D.; Feng, J. Cisplatin-Resistant Lung Cancer Cell–Derived Exosomes Increase Cisplatin Resistance of Recipient Cells in Exosomal MiR-100–5p-Dependent Manner. Int. J. Nanomed. 2017, 12, 3721–3733. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Ning, Y.; Zheng, H.; Zhan, Y.; Wang, H.; Yang, Y.; Luo, J.; Wen, Q.; Zang, H.; et al. Exosome-Mediated MiR-7-5p Delivery Enhances the Anticancer Effect of Everolimus via Blocking MNK/EIF4E Axis in Non-Small Cell Lung Cancer. Cell Death Dis. 2022, 13, 129. [Google Scholar] [CrossRef]
- Díez-Sainz, E.; Lorente-Cebrián, S.; Aranaz, P.; Riezu-Boj, J.I.; Martínez, J.A.; Milagro, F.I. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Front. Nutr. 2021, 8, 586564. [Google Scholar] [CrossRef]
- Deveci, G.; Capasso, R.; Ağagündüz, D. Xeno-MiRs and Circulating MiRNAs as Novel Biomarkers in Certain Diseases. Biologics 2022, 3, 1. [Google Scholar] [CrossRef]
- Norouzi, M.; Bakhtiarizadeh, M.R.; Salehi, A. Investigation of the Transability of Dietary Small Non-Coding RNAs to Animals. Front. Genet. 2022, 13, 933709. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent Deletions and Down-Regulation of Micro- RNA Genes MiR15 and MiR16 at 13q14 in Chronic Lymphocytic Leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [Google Scholar] [CrossRef]
- Liu, C.; Tang, D.G. MicroRNA Regulation of Cancer Stem Cells. Cancer Res. 2011, 71, 5950–5954. [Google Scholar] [CrossRef]
- Lou, Y.; Yang, X.; Wang, F.; Cui, Z.; Huang, Y. MicroRNA-21 Promotes the Cell Proliferation, Invasion and Migration Abilities in Ovarian Epithelial Carcinomas through Inhibiting the Expression of PTEN Protein. Int. J. Mol. Med. 2010, 26, 819–827. [Google Scholar] [CrossRef]
- Bader, A.G.; Brown, D.; Stoudemire, J.; Lammers, P. Developing Therapeutic MicroRNAs for Cancer. Gene Ther. 2011, 18, 1121–1126. [Google Scholar] [CrossRef]
- van Rooij, E.; Marshall, W.S.; Olson, E.N. Toward MicroRNA–Based Therapeutics for Heart Disease. Circ. Res. 2008, 103, 919–928. [Google Scholar] [CrossRef]
- Quemener, A.M.; Bachelot, L.; Forestier, A.; Donnou-Fournet, E.; Gilot, D.; Galibert, M.D. The powerful world of antisense oligonucleotides: From bench to bedside. Wiley Interdiscip. Rev. RNA 2020, 11, e1594. [Google Scholar] [CrossRef] [PubMed]
- Koziolkiewicz, M.; Gendaszewska, E.; Maszewska, M.; Stein, C.A.; Stec, W.J. The Mononucleotide-Dependent, Nonantisense Mechanism of Action of Phosphodiester and Phosphorothioate Oligonucleotides Depends upon the Activity of an Ecto-5′-Nucleotidase. Blood 2001, 98, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Nicolussi, A.; D’Inzeo, S.; Capalbo, C.; Giannini, G.; Coppa, A. The Role of Peroxiredoxins in Cancer. Mol. Clin. Oncol. 2017, 6, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Monia, B.P.; Lesnik, E.A.; Gonzalez, C.; Lima, W.F.; McGee, D.; Guinosso, C.J.; Kawasaki, A.M.; Cook, P.D.; Freier, S.M. Evaluation of 2′-Modified Oligonucleotides Containing 2′-Deoxy Gaps as Antisense Inhibitors of Gene Expression. J. Biol. Chem. 1993, 268, 14514–14522. [Google Scholar]
- Hagedorn, P.H.; Persson, R.; Funder, E.D.; Albæk, N.; Diemer, S.L.; Hansen, D.J.; Møller, M.R.; Papargyri, N.; Christiansen, H.; Hansen, B.R.; et al. Locked Nucleic Acid: Modality, Diversity, and Drug Discovery. Drug Discov. Today 2018, 23, 101–114. [Google Scholar] [CrossRef]
- Elmén, J.; Lindow, M.; Silahtaroglu, A.; Bak, M.; Christensen, M.; Lind-Thomsen, A.; Hedtjärn, M.; Hansen, J.B.; Hansen, H.F.; Straarup, E.M.; et al. Antagonism of MicroRNA-122 in Mice by Systemically Administered LNA-AntimiR Leads to up-Regulation of a Large Set of Predicted Target MRNAs in the Liver. Nucleic Acids Res. 2008, 36, 1153–1162. [Google Scholar] [CrossRef]
- Grünweller, A.; Hartmann, R.K. Locked Nucleic Acid Oligonucleotides. BioDrugs 2007, 21, 235–243. [Google Scholar] [CrossRef]
- Braasch, D.A.; Liu, Y.; Corey, D.R. Antisense Inhibition of Gene Expression in Cells by Oligonucleotides Incorporating Locked Nucleic Acids: Effect of MRNA Target Sequence and Chimera Design. Nucleic Acids Res. 2002, 30, 5160–5167. [Google Scholar] [CrossRef]
- Frieden, M.; Orum, H. Locked Nucleic Acid Holds Promise in the Treatment of Cancer. Curr. Pharm. Des. 2008, 14, 1138–1142. [Google Scholar] [CrossRef]
- Elmén, J.; Thonberg, H.; Ljungberg, K.; Frieden, M.; Westergaard, M.; Xu, Y.; Wahren, B.; Liang, Z.; Ørum, H.; Koch, T.; et al. Locked Nucleic Acid (LNA) Mediated Improvements in SiRNA Stability and Functionality. Nucleic Acids Res. 2005, 33, 439–447. [Google Scholar] [CrossRef]
- Roberts, J.; Palma, E.; Sazani, P.; Ørum, H.; Cho, M.; Kole, R. Efficient and Persistent Splice Switching by Systemically Delivered LNA Oligonucleotides in Mice. Mol. Ther. 2006, 14, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Fackenthal, J.D. Alternative MRNA Splicing and Promising Therapies in Cancer. Biomolecules 2023, 13, 561. [Google Scholar] [CrossRef] [PubMed]
- Obad, S.; dos Santos, C.O.; Petri, A.; Heidenblad, M.; Broom, O.; Ruse, C.; Fu, C.; Lindow, M.; Stenvang, J.; Straarup, E.M.; et al. Silencing of MicroRNA Families by Seed-Targeting Tiny LNAs. Nat. Genet. 2011, 43, 371–378. [Google Scholar] [CrossRef]
- Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of MicroRNAs in Vivo with ‘Antagomirs’. Nature 2005, 438, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Zhang, Y.; Li, X.; Fang, M.; Qian, D. Targeting Exosomes Enveloped EBV-miR-BART1-5p-antagomiRs for NPC Therapy through Both Anti-vasculogenic Mimicry and Anti-angiogenesis. Cancer Med. 2023, 12, 12608–12621. [Google Scholar] [CrossRef]
- Bader, A.G.; Brown, D.; Winkler, M. The Promise of MicroRNA Replacement Therapy. Cancer Res. 2010, 70, 7027–7030. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, J.; Huang, Z. Recent Progress in MicroRNA-Based Delivery Systems for the Treatment of Human Disease. ExRNA 2019, 1, 24. [Google Scholar] [CrossRef]
- Garreau, M.; Weidner, J.; Hamilton, R.; Kolosionek, E.; Toki, N.; Stavenhagen, K.; Paris, C.; Bonetti, A.; Czechtizky, W.; Gnerlich, F.; et al. Chemical Modification Patterns for MicroRNA Therapeutic Mimics: A Structure-Activity Relationship (SAR) Case-Study on MiR-200c. Nucleic Acids Res. 2024, 52, 2792–2807. [Google Scholar] [CrossRef]
- Petrek, H.; Batra, N.; Ho, P.Y.; Tu, M.-J.; Yu, A.-M. Bioengineering of a Single Long Noncoding RNA Molecule That Carries Multiple Small RNAs. Appl. Microbiol. Biotechnol. 2019, 103, 6107–6117. [Google Scholar] [CrossRef] [PubMed]
- van Rooij, E.; Kauppinen, S. Development of Micro RNA Therapeutics Is Coming of Age. EMBO Mol. Med. 2014, 6, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gu, S.; Chen, B.-F.; Shen, W.-L.; Yin, Z.; Xu, G.-W.; Hu, J.-J.; Zhu, T.; Li, G.; Wan, C.; et al. Nanoparticle Delivery of Stable MiR-199a-5p Agomir Improves the Osteogenesis of Human Mesenchymal Stem Cells via the HIF1a Pathway. Biomaterials 2015, 53, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Grillone, K.; Caridà, G.; Luciano, F.; Cordua, A.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P. A Systematic Review of Non-Coding RNA Therapeutics in Early Clinical Trials: A New Perspective against Cancer. J. Transl. Med. 2024, 22, 731. [Google Scholar] [CrossRef]
- Çakan, E.; Lara, O.D.; Szymanowska, A.; Bayraktar, E.; Chavez-Reyes, A.; Lopez-Berestein, G.; Amero, P.; Rodriguez-Aguayo, C. Therapeutic Antisense Oligonucleotides in Oncology: From Bench to Bedside. Cancers 2024, 16, 2940. [Google Scholar] [CrossRef]
- Bartolucci, D.; Pession, A.; Hrelia, P.; Tonelli, R. Precision Anti-Cancer Medicines by Oligonucleotide Therapeutics in Clinical Research Targeting Undruggable Proteins and Non-Coding RNAs. Pharmaceutics 2022, 14, 1453. [Google Scholar] [CrossRef]
- Tassone, P.; Di Martino, M.T.; Arbitrio, M.; Fiorillo, L.; Staropoli, N.; Ciliberto, D.; Cordua, A.; Scionti, F.; Bertucci, B.; Salvino, A.; et al. Safety and Activity of the First-in-Class Locked Nucleic Acid (LNA) MiR-221 Selective Inhibitor in Refractory Advanced Cancer Patients: A First-in-Human, Phase 1, Open-Label, Dose-Escalation Study. J. Hematol. Oncol. 2023, 16, 68. [Google Scholar] [CrossRef]
- Querfeld, C.; Foss, F.M.; Kim, Y.H.; Pinter-Brown, L.; William, B.M.; Porcu, P.; Pacheco, T.; Haverkos, B.M.; DeSimone, J.; Guitart, J.; et al. Phase 1 Trial of Cobomarsen, an Inhibitor of Mir-155, in Cutaneous T Cell Lymphoma. Blood 2018, 132, 2903. [Google Scholar] [CrossRef]
- Hong, D.S.; Kang, Y.-K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.-L.; Kim, T.-Y.; et al. Phase 1 Study of MRX34, a Liposomal MiR-34a Mimic, in Patients with Advanced Solid Tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef]
- Reid, G.; Kao, S.C.; Pavlakis, N.; Brahmbhatt, H.; MacDiarmid, J.; Clarke, S.; Boyer, M.; van Zandwijk, N. Clinical Development of TargomiRs, a MiRNA Mimic-Based Treatment for Patients with Recurrent Thoracic Cancer. Epigenomics 2016, 8, 1079–1085. [Google Scholar] [CrossRef]
- van den Bosch, M.T.J.; Yahyanejad, S.; Alemdehy, M.F.; Telford, B.J.; de Gunst, T.; den Boer, H.C.; Vos, R.M.; Stegink, M.; van Pinxteren, L.A.H.; Schaapveld, R.Q.J.; et al. Transcriptome-Wide Analysis Reveals Insight into Tumor Suppressor Functions of 1B3, a Novel Synthetic MiR-193a-3p Mimic. Mol. Ther. Nucleic Acids 2021, 23, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, M.S.; Aggarwal, R.R.; Boyd, E.; Comerford, K.; Zhang, J.; Méndez, B.; Valenzuela, P.; Grabowsky, J.; Thomas, S.; Munster, P.N. Phase 1 Study of ANDES-1537: A Novel Antisense Oligonucleotide against Non-Coding Mitochondrial DNA in Advanced Solid Tumors. J. Clin. Oncol. 2018, 36, 2557-2557. [Google Scholar] [CrossRef]
- Seto, A.G.; Beatty, X.; Lynch, J.M.; Hermreck, M.; Tetzlaff, M.; Duvic, M.; Jackson, A.L. Cobomarsen, an Oligonucleotide Inhibitor of MiR-155, Co-ordinately Regulates Multiple Survival Pathways to Reduce Cellular Proliferation and Survival in Cutaneous T-cell Lymphoma. Br. J. Haematol. 2018, 183, 428–444. [Google Scholar] [CrossRef]
- miRagen Therapeutics, Inc. PRISM: Efficacy and Safety of Cobomarsen (MRG-106) in Subjects with Mycosis Fungoides Who Have Completed the SOLAR Study (PRISM). Available online: https://clinicaltrials.gov/study/NCT03837457 (accessed on 16 January 2025).
- James, A.M.; Ruckman, J.; Pestano, L.A.; Hopkins, R.D.; Rodgers, R.C.; Marshall, W.S.; Rubin, P.; Escolar, D. SOLAR: A phase 2, global, randomized, active comparator study to investigate the efficacy and safety of cobomarsen in subjects with mycosis fungoides (MF). Hematol. Oncol. 2019, 37, 562–563. [Google Scholar] [CrossRef]
- Peltier, H.J.; Kelnar, K.; Bader, A.G. Effects of MRX34, a Liposomal MiR-34 Mimic, on Target Gene Expression in Human White Blood Cells (HWBCs): QRT-PCR Results from a First-in-Human Trial of MicroRNA Cancer Therapy. J. Clin. Oncol. 2016, 34, e14090. [Google Scholar] [CrossRef]
- Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.-K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I Study of MRX34, a Liposomal MiR-34a Mimic, Administered Twice Weekly in Patients with Advanced Solid Tumors. Investig. New Drugs 2017, 35, 180–188. [Google Scholar] [CrossRef]
- van Zandwijk, N.; Pavlakis, N.; Kao, S.C.; Linton, A.; Boyer, M.J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M.J.; Bailey, D.L.; et al. Safety and Activity of MicroRNA-Loaded Minicells in Patients with Recurrent Malignant Pleural Mesothelioma: A First-in-Man, Phase 1, Open-Label, Dose-Escalation Study. Lancet Oncol. 2017, 18, 1386–1396. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Abdullah, S.T.; Taheri, M.; Samadian, M. A Review on the Role of Mir-16-5p in the Carcinogenesis. Cancer Cell Int. 2022, 22, 342. [Google Scholar] [CrossRef]
- Kook, E.; Lee, J.; Kim, D.-H. YES1 as a Potential Target to Overcome Drug Resistance in EGFR-Deregulated Non-Small Cell Lung Cancer. Arch. Toxicol. 2024, 98, 1437–1455. [Google Scholar] [CrossRef]
- Chia, P.L.; Parakh, S.; Russell, P.; Gan, H.K.; Asadi, K.; Gebski, V.; Murone, C.; Walkiewicz, M.; Liu, Z.; Thapa, B.; et al. Expression of EGFR and Conformational Forms of EGFR in Malignant Pleural Mesothelioma and Its Impact on Survival. Lung Cancer 2021, 153, 35–41. [Google Scholar] [CrossRef]
- Perrino, M.; De Vincenzo, F.; Cordua, N.; Borea, F.; Aliprandi, M.; Santoro, A.; Zucali, P.A. Immunotherapy with Immune Checkpoint Inhibitors and Predictive Biomarkers in Malignant Mesothelioma: Work Still in Progress. Front. Immunol. 2023, 14, 1121557. [Google Scholar] [CrossRef]
- Telford, B.J.; Yahyanejad, S.; de Gunst, T.; den Boer, H.C.; Vos, R.M.; Stegink, M.; van den Bosch, M.T.; Alemdehy, M.F.; van Pinxteren, L.A.; Schaapveld, R.Q.; et al. Multi-Modal Effects of 1B3, a Novel Synthetic MiR-193a-3p Mimic, Support Strong Potential for Therapeutic Intervention in Oncology. Oncotarget 2021, 12, 422–439. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Croce, C.M. MicroRNA: Trends in Clinical Trials of Cancer Diagnosis and Therapy Strategies. Exp. Mol. Med. 2023, 55, 1314–1321. [Google Scholar] [CrossRef]
- Sur, D.; Advani, S.; Braithwaite, D. MicroRNA Panels as Diagnostic Biomarkers for Colorectal Cancer: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 915226. [Google Scholar] [CrossRef]
- Caputo, R.; Buono, G.; Piezzo, M.; Martinelli, C.; Cianniello, D.; Rizzo, A.; Pantano, F.; Staropoli, N.; Cangiano, R.; Turano, S.; et al. Sacituzumab Govitecan for the Treatment of Advanced Triple Negative Breast Cancer Patients: A Multi-Center Real-World Analysis. Front. Oncol. 2024, 14, 1362641. [Google Scholar] [CrossRef]
- Gaber, D.A.; Wassef, R.M.; El-Ayat, W.M.; El-Moazen, M.I.; Montasser, K.A.; Swar, S.A.; Amin, H.A.A. Role of a Schistosoma Haematobium Specific MicroRNA as a Predictive and Prognostic Tool for Bilharzial Bladder Cancer in Egypt. Sci. Rep. 2020, 10, 18844. [Google Scholar] [CrossRef]
- Malta, K.K.; Palazzi, C.; Neves, V.H.; Aguiar, Y.; Silva, T.P.; Melo, R.C.N. Schistosomiasis Mansoni-Recruited Eosinophils: An Overview in the Granuloma Context. Microorganisms 2022, 10, 2022. [Google Scholar] [CrossRef]
- Zaghloul, M.S.; Zaghloul, T.M.; Bishr, M.K.; Baumann, B.C. Urinary Schistosomiasis and the Associated Bladder Cancer: Update. J. Egypt. Natl. Cancer Inst. 2020, 32, 44. [Google Scholar] [CrossRef]
- Gajic, Z.; Kaur, D.; Ni, J.; Zhu, Z.; Zhebrun, A.; Gajic, M.; Kim, M.; Hong, J.; Priyadarshini, M.; Frøkjær-Jensen, C.; et al. Target-Dependent Suppression of SiRNA Production Modulates the Levels of Endogenous SiRNAs in the Caenorhabditis elegans Germline. Development 2022, 149, dev200692. [Google Scholar] [CrossRef]
- Ruby, J.G.; Jan, C.; Player, C.; Axtell, M.J.; Lee, W.; Nusbaum, C.; Ge, H.; Bartel, D.P. Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous SiRNAs in C. elegans. Cell 2006, 127, 1193–1207. [Google Scholar] [CrossRef]
- Okamura, K.; Chung, W.-J.; Ruby, J.G.; Guo, H.; Bartel, D.P.; Lai, E.C. The Drosophila Hairpin RNA Pathway Generates Endogenous Short Interfering RNAs. Nature 2008, 453, 803–806. [Google Scholar] [CrossRef]
- Okamura, K.; Balla, S.; Martin, R.; Liu, N.; Lai, E.C. Two Distinct Mechanisms Generate Endogenous SiRNAs from Bidirectional Transcription in Drosophila Melanogaster. Nat. Struct. Mol. Biol. 2008, 15, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Ghildiyal, M.; Seitz, H.; Horwich, M.D.; Li, C.; Du, T.; Lee, S.; Xu, J.; Kittler, E.L.W.; Zapp, M.L.; Weng, Z.; et al. Endogenous SiRNAs Derived from Transposons and MRNAs in Drosophila Somatic Cells. Science 2008, 320, 1077–1081. [Google Scholar] [CrossRef]
- Czech, B.; Malone, C.D.; Zhou, R.; Stark, A.; Schlingeheyde, C.; Dus, M.; Perrimon, N.; Kellis, M.; Wohlschlegel, J.A.; Sachidanandam, R.; et al. An Endogenous Small Interfering RNA Pathway in Drosophila. Nature 2008, 453, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.; Pasolli, H.A.; Landthaler, M.; Hafner, M.; Ojo, T.; Sheridan, R.; Sander, C.; O’Carroll, D.; Stoffel, M.; Tuschl, T.; et al. DGCR8-Dependent MicroRNA Biogenesis Is Essential for Skin Development. Proc. Natl. Acad. Sci. USA 2009, 106, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, C.; Romero, Y.; Warnefors, M.; Bilican, A.; Borel, C.; Smith, L.B.; Kotaja, N.; Kaessmann, H.; Nef, S. Germ Cell-Specific Targeting of DICER or DGCR8 Reveals a Novel Role for Endo-SiRNAs in the Progression of Mammalian Spermatogenesis and Male Fertility. PLoS ONE 2014, 9, e107023. [Google Scholar] [CrossRef]
- Song, R.; Hennig, G.W.; Wu, Q.; Jose, C.; Zheng, H.; Yan, W. Male Germ Cells Express Abundant Endogenous SiRNAs. Proc. Natl. Acad. Sci. USA 2011, 108, 13159–13164. [Google Scholar] [CrossRef]
- Watanabe, T.; Totoki, Y.; Toyoda, A.; Kaneda, M.; Kuramochi-Miyagawa, S.; Obata, Y.; Chiba, H.; Kohara, Y.; Kono, T.; Nakano, T.; et al. Endogenous SiRNAs from Naturally Formed DsRNAs Regulate Transcripts in Mouse Oocytes. Nature 2008, 453, 539–543. [Google Scholar] [CrossRef]
- Tam, O.H.; Aravin, A.A.; Stein, P.; Girard, A.; Murchison, E.P.; Cheloufi, S.; Hodges, E.; Anger, M.; Sachidanandam, R.; Schultz, R.M.; et al. Pseudogene-Derived Small Interfering RNAs Regulate Gene Expression in Mouse Oocytes. Nature 2008, 453, 534–538. [Google Scholar] [CrossRef]
- Babiarz, J.E.; Ruby, J.G.; Wang, Y.; Bartel, D.P.; Blelloch, R. Mouse ES Cells Express Endogenous ShRNAs, SiRNAs, and Other Microprocessor-Independent, Dicer-Dependent Small RNAs. Genes Dev. 2008, 22, 2773–2785. [Google Scholar] [CrossRef]
- Chen, L.; Dahlstrom, J.E.; Lee, S.-H.; Rangasamy, D. Naturally Occurring Endo-SiRNA Silences LINE-1 Retrotransposons in Human Cells through DNA Methylation. Epigenetics 2012, 7, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Joyce, C.E.; Bowcock, A.M.; Zhang, W. Noncanonical MicroRNAs and Endogenous SiRNAs in Normal and Psoriatic Human Skin. Hum. Mol. Genet. 2013, 22, 737–748. [Google Scholar] [CrossRef]
- Liu, J.; Carmell, M.A.; Rivas, F.V.; Marsden, C.G.; Thomson, J.M.; Song, J.-J.; Hammond, S.M.; Joshua-Tor, L.; Hannon, G.J. Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science 2004, 305, 1437–1441. [Google Scholar] [CrossRef]
- Grimm, D.; Streetz, K.L.; Jopling, C.L.; Storm, T.A.; Pandey, K.; Davis, C.R.; Marion, P.; Salazar, F.; Kay, M.A. Fatality in Mice Due to Oversaturation of Cellular MicroRNA/Short Hairpin RNA Pathways. Nature 2006, 441, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D. The Dose Can Make the Poison: Lessons Learned from Adverse in Vivo Toxicities Caused by RNAi Overexpression. Silence 2011, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.L.; Linsley, P.S. Recognizing and Avoiding SiRNA Off-Target Effects for Target Identification and Therapeutic Application. Nat. Rev. Drug Discov. 2010, 9, 57–67. [Google Scholar] [CrossRef]
- Cao, S.; Chen, G.; Yan, L.; Li, L.; Huang, X. Contribution of Dysregulated CircRNA_100876 to Proliferation and Metastasis of Esophageal Squamous Cell Carcinoma. OncoTargets Ther. 2018, 11, 7385–7394. [Google Scholar] [CrossRef]
- Lee, K.; Jang, B.; Lee, Y.; Suh, E.; Yoo, J.; Lee, M.; Lee, J.; Lee, H. The Cutting-Edge Technologies of SiRNA Delivery and Their Application in Clinical Trials. Arch. Pharm. Res. 2018, 41, 867–874. [Google Scholar] [CrossRef]
- Ouvrard, J.; Muniz, L.; Nicolas, E.; Trouche, D. Small Interfering RNAs Targeting a Chromatin-Associated RNA Induce Its Transcriptional Silencing in Human Cells. Mol. Cell Biol. 2022, 42, e00271-22. [Google Scholar] [CrossRef]
- Mahmoodi Chalbatani, G.; Dana, H.; Gharagouzloo, E.; Grijalvo, S.; Eritja, R.; Logsdon, C.D.; Memari, F.; Miri, S.R.; Rezvani Rad, M.; Marmari, V. Small Interfering RNAs (SiRNAs) in Cancer Therapy: A Nano-Based Approach. Int. J. Nanomed. 2019, 14, 3111–3128. [Google Scholar] [CrossRef]
- Vinnikov, I.A.; Hajdukiewicz, K.; Reymann, J.; Beneke, J.; Czajkowski, R.; Roth, L.C.; Novak, M.; Roller, A.; Dorner, N.; Starkuviene, V.; et al. Hypothalamic MiR-103 Protects from Hyperphagic Obesity in Mice. J. Neurosci. 2014, 34, 10659–10674. [Google Scholar] [CrossRef] [PubMed]
- Mook, O.R.; Baas, F.; de Wissel, M.B.; Fluiter, K. Evaluation of Locked Nucleic Acid–Modified Small Interfering RNA in Vitro and in Vivo. Mol. Cancer Ther. 2007, 6, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Bramsen, J.B.; Kjems, J. Engineering Small Interfering RNAs by Strategic Chemical Modification. In siRNA Design: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2013; pp. 87–109. [Google Scholar]
- Jackson, A.L.; Burchard, J.; Schelter, J.; Chau, B.N.; Cleary, M.; Lim, L.; Linsley, P.S. Widespread SiRNA “off-Target” Transcript Silencing Mediated by Seed Region Sequence Complementarity. RNA 2006, 12, 1179–1187. [Google Scholar] [CrossRef]
- Paddison, P.J.; Caudy, A.A.; Bernstein, E.; Hannon, G.J.; Conklin, D.S. Short Hairpin RNAs (ShRNAs) Induce Sequence-Specific Silencing in Mammalian Cells. Genes Dev. 2002, 16, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Borel, F.; Kay, M.A.; Mueller, C. Recombinant AAV as a Platform for Translating the Therapeutic Potential of RNA Interference. Mol. Ther. 2014, 22, 692–701. [Google Scholar] [CrossRef]
- Brandt, M.R.G.; Kirste, A.G.; Pozzuto, T.; Schubert, S.; Kandolf, R.; Fechner, H.; Bock, C.-T.; Kurreck, J. Adenovirus Vector-Mediated RNA Interference for the Inhibition of Human Parvovirus B19 Replication. Virus Res. 2013, 176, 155–160. [Google Scholar] [CrossRef]
- Kasar, S.; Salerno, E.; Yuan, Y.; Underbayev, C.; Vollenweider, D.; Laurindo, M.F.; Fernandes, H.; Bonci, D.; Addario, A.; Mazzella, F.; et al. Systemic in Vivo Lentiviral Delivery of MiR-15a/16 Reduces Malignancy in the NZB de Novo Mouse Model of Chronic Lymphocytic Leukemia. Genes Immun. 2012, 13, 109–119. [Google Scholar] [CrossRef]
- Baum, C.; Kustikova, O.; Modlich, U.; Li, Z.; Fehse, B. Mutagenesis and Oncogenesis by Chromosomal Insertion of Gene Transfer Vectors. Hum. Gene Ther. 2006, 17, 253–263. [Google Scholar] [CrossRef]
- Hendrickx, R.; Stichling, N.; Koelen, J.; Kuryk, L.; Lipiec, A.; Greber, U.F. Innate Immunity to Adenovirus. Hum. Gene Ther. 2014, 25, 265–284. [Google Scholar] [CrossRef]
- Haldrup, S.H.; Fabian-Jessing, B.K.; Jakobsen, T.S.; Lindholm, A.B.; Adsersen, R.L.; Aagaard, L.; Bek, T.; Askou, A.L.; Corydon, T.J. Subretinal AAV Delivery of RNAi-Therapeutics Targeting VEGFA Reduces Choroidal Neovascularization in a Large Animal Model. Mol. Ther. Methods Clin. Dev. 2024, 32, 101242. [Google Scholar] [CrossRef]
- Bie, Y.; Zhang, J.; Chen, J.; Zhang, Y.; Huang, M.; Zhang, L.; Zhou, X.; Qiu, Y. Design of Antiviral AGO2-Dependent Short Hairpin RNAs. Virol. Sin. 2024, 39, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Alsing, S.; Doktor, T.K.; Askou, A.L.; Jensen, E.G.; Ahmadov, U.; Kristensen, L.S.; Andresen, B.S.; Aagaard, L.; Corydon, T.J. VEGFA-Targeting MiR-AgshRNAs Combine Efficacy with Specificity and Safety for Retinal Gene Therapy. Mol. Ther. Nucleic Acids 2022, 28, 58–76. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Symons, R.C.A.; Shah, S.M.; Quinlan, E.J.; Tabandeh, H.; Do, D.V.; Reisen, G.; Lockridge, J.A.; Short, B.; Guerciolini, R.; et al. RNAi-Based Treatment for Neovascular Age-Related Macular Degeneration by Sirna-027. Am. J. Ophthalmol. 2010, 150, 33–39.e2. [Google Scholar] [CrossRef]
- Zuckerman, J.E.; Gritli, I.; Tolcher, A.; Heidel, J.D.; Lim, D.; Morgan, R.; Chmielowski, B.; Ribas, A.; Davis, M.E.; Yen, Y. Correlating Animal and Human Phase Ia/Ib Clinical Data with CALAA-01, a Targeted, Polymer-Based Nanoparticle Containing SiRNA. Proc. Natl. Acad. Sci. USA 2014, 111, 11449–11454. [Google Scholar] [CrossRef]
- Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in Humans from Systemically Administered SiRNA via Targeted Nanoparticles. Nature 2010, 464, 1067–1070. [Google Scholar] [CrossRef] [PubMed]
- Hattab, D.; Gazzali, A.M.; Bakhtiar, A. Clinical Advances of SiRNA-Based Nanotherapeutics for Cancer Treatment. Pharmaceutics 2021, 13, 1009. [Google Scholar] [CrossRef]
- Zhou, D.; Zhai, X.; Zhang, R. Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) as a Potential Sero-Diagnostic Biomarker in Non-Small Cell Lung Cancer. PLoS ONE 2023, 18, e0291461. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Zhou, Z.; Chang, Y.; Liu, Y.; Shen, Y.; Li, Q.; Zhang, L. Ribonucleotide Reductase M2 (RRM2): Regulation, Function and Targeting Strategy in Human Cancer. Genes Dis. 2024, 11, 218–233. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Liu, B.; Liu, W.; Ma, Y.; Cao, Y.; Yan, S.; Zhang, P.; Zhou, L.; Zhan, Q.; et al. Targeting LncRNA16 by GalNAc-SiRNA Conjugates Facilitates Chemotherapeutic Sensibilization via the HBB/NDUFAF5/ROS Pathway. Sci. China Life Sci 2024, 67, 663–679. [Google Scholar] [CrossRef]
- Connerty, P.; Moles, E.; de Bock, C.E.; Jayatilleke, N.; Smith, J.L.; Meshinchi, S.; Mayoh, C.; Kavallaris, M.; Lock, R.B. Development of SiRNA-Loaded Lipid Nanoparticles Targeting Long Non-Coding RNA LINC01257 as a Novel and Safe Therapeutic Approach for t(8;21) Pediatric Acute Myeloid Leukemia. Pharmaceutics 2021, 13, 1681. [Google Scholar] [CrossRef]
- Miao, Z.; Li, J.; Wang, Y.; Shi, M.; Gu, X.; Zhang, X.; Wei, F.; Tang, X.; Zheng, L.; Xing, Y. Hsa_circ_0136666 Stimulates Gastric Cancer Progression and Tumor Immune Escape by Regulating the MiR-375/PRKDC Axis and PD-L1 Phosphorylation. Mol. Cancer 2023, 22, 205. [Google Scholar] [CrossRef]
- Dong, J.; Zheng, Z.; Zhou, M.; Wang, Y.; Chen, J.; Cen, J.; Cao, T.; Yang, T.; Xu, Y.; Shu, G.; et al. EGCG-LYS Fibrils-Mediated CircMAP2K2 Silencing Decreases the Proliferation and Metastasis Ability of Gastric Cancer Cells in Vitro and in Vivo. Adv. Sci. 2023, 10, 2304075. [Google Scholar] [CrossRef]
- You, S.; Luo, Z.; Cheng, N.; Wu, M.; Lai, Y.; Wang, F.; Zheng, X.; Wang, Y.; Liu, X.; Liu, J.; et al. Magnetically Responsive Nanoplatform Targeting CircRNA Circ_0058051 Inhibits Hepatocellular Carcinoma Progression. Drug Deliv. Transl. Res. 2023, 13, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Rouget, C.; Papin, C.; Boureux, A.; Meunier, A.-C.; Franco, B.; Robine, N.; Lai, E.C.; Pelisson, A.; Simonelig, M. Maternal MRNA Deadenylation and Decay by the PiRNA Pathway in the Early Drosophila Embryo. Nature 2010, 467, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Williams, Z.; Morozov, P.; Mihailovic, A.; Lin, C.; Puvvula, P.K.; Juranek, S.; Rosenwaks, Z.; Tuschl, T. Discovery and Characterization of PiRNAs in the Human Fetal Ovary. Cell Rep. 2015, 13, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Czech, B.; Munafò, M.; Ciabrelli, F.; Eastwood, E.L.; Fabry, M.H.; Kneuss, E.; Hannon, G.J. PiRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu. Rev. Genet. 2018, 52, 131–157. [Google Scholar] [CrossRef]
- Jensen, S.; Brasset, E.; Parey, E.; Roest Crollius, H.; Sharakhov, I.V.; Vaury, C. Conserved Small Nucleotidic Elements at the Origin of Concerted PiRNA Biogenesis from Genes and LncRNAs. Cells 2020, 9, 1491. [Google Scholar] [CrossRef]
- Weigert, N.; Schweiger, A.-L.; Gross, J.; Matthes, M.; Corbacioglu, S.; Sommer, G.; Heise, T. Detection of a 7SL RNA-Derived Small Non-Coding RNA Using Molecular Beacons in Vitro and in Cells. Biol. Chem. 2023, 404, 1123–1136. [Google Scholar] [CrossRef]
- He, X.; Chen, X.; Zhang, X.; Duan, X.; Pan, T.; Hu, Q.; Zhang, Y.; Zhong, F.; Liu, J.; Zhang, H.; et al. An Lnc RNA (GAS5)/SnoRNA-Derived PiRNA Induces Activation of TRAIL Gene by Site-Specifically Recruiting MLL/COMPASS-like Complexes. Nucleic Acids Res. 2015, 43, 3712–3725. [Google Scholar] [CrossRef]
- Zhong, F.; Zhou, N.; Wu, K.; Guo, Y.; Tan, W.; Zhang, H.; Zhang, X.; Geng, G.; Pan, T.; Luo, H.; et al. A SnoRNA-Derived PiRNA Interacts with Human Interleukin-4 Pre-MRNA and Induces Its Decay in Nuclear Exosomes. Nucleic Acids Res. 2015, 43, 10474–10491. [Google Scholar] [CrossRef]
- Sun, Y.H.; Wang, R.H.; Du, K.; Zhu, J.; Zheng, J.; Xie, L.H.; Pereira, A.A.; Zhang, C.; Ricci, E.P.; Li, X.Z. Coupled Protein Synthesis and Ribosome-Guided PiRNA Processing on MRNAs. Nat. Commun. 2021, 12, 5970. [Google Scholar] [CrossRef]
- Sun, Y.H.; Lee, B.; Li, X.Z. The Birth of PiRNAs: How Mammalian PiRNAs Are Produced, Originated, and Evolved. Mamm. Genome 2022, 33, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Rearick, D.; Prakash, A.; McSweeny, A.; Shepard, S.S.; Fedorova, L.; Fedorov, A. Critical Association of NcRNA with Introns. Nucleic Acids Res. 2011, 39, 2357–2366. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, P.J. Mammalian PiRNAs: Biogenesis, Function, and Mysteries. Spermatogenesis 2014, 4, e27889. [Google Scholar] [CrossRef]
- Guo, B.; Li, D.; Du, L.; Zhu, X. PiRNAs: Biogenesis and Their Potential Roles in Cancer. Cancer Metastasis Rev. 2020, 39, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Ozata, D.M.; Gainetdinov, I.; Zoch, A.; O’Carroll, D.; Zamore, P.D. PIWI-Interacting RNAs: Small RNAs with Big Functions. Nat. Rev. Genet. 2019, 20, 89–108. [Google Scholar] [CrossRef] [PubMed]
- Czech, B.; Hannon, G.J. One Loop to Rule Them All: The Ping-Pong Cycle and PiRNA-Guided Silencing. Trends Biochem. Sci. 2016, 41, 324–337. [Google Scholar] [CrossRef]
- Pippadpally, S.; Venkatesh, T. Deciphering PiRNA Biogenesis through Cytoplasmic Granules, Mitochondria and Exosomes. Arch. Biochem. Biophys. 2020, 695, 108597. [Google Scholar] [CrossRef]
- Perera, B.P.U.; Tsai, Z.T.-Y.; Colwell, M.L.; Jones, T.R.; Goodrich, J.M.; Wang, K.; Sartor, M.A.; Faulk, C.; Dolinoy, D.C. Somatic Expression of PiRNA and Associated Machinery in the Mouse Identifies Short, Tissue-Specific PiRNA. Epigenetics 2019, 14, 504–521. [Google Scholar] [CrossRef]
- Riquelme, I.; Pérez-Moreno, P.; Letelier, P.; Brebi, P.; Roa, J.C. The Emerging Role of PIWI-Interacting RNAs (PiRNAs) in Gastrointestinal Cancers: An Updated Perspective. Cancers 2021, 14, 202. [Google Scholar] [CrossRef]
- Patel, M.Z.; Jiang, Y.; Kakumani, P.K. Somatic PiRNA and PIWI-Mediated Post-Transcriptional Gene Regulation in Stem Cells and Disease. Front. Cell Dev. Biol. 2024, 12, 1495035. [Google Scholar] [CrossRef]
- Jia, D.-D.; Jiang, H.; Zhang, Y.-F.; Zhang, Y.; Qian, L.-L.; Zhang, Y.-F. The Regulatory Function of PiRNA/PIWI Complex in Cancer and Other Human Diseases: The Role of DNA Methylation. Int. J. Biol. Sci. 2022, 18, 3358–3373. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Xiong, Y.; Konno, Y.; Ihira, K.; Xu, D.; Kobayashi, N.; Yue, J.; Watari, H. Critical Roles of PIWIL1 in Human Tumors: Expression, Functions, Mechanisms, and Potential Clinical Implications. Front. Cell Dev. Biol. 2021, 9, 656993. [Google Scholar] [CrossRef]
- Wu, X.; Pan, Y.; Fang, Y.; Zhang, J.; Xie, M.; Yang, F.; Yu, T.; Ma, P.; Li, W.; Shu, Y. The Biogenesis and Functions of PiRNAs in Human Diseases. Mol. Ther. Nucleic Acids 2020, 21, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Mohn, F.; Handler, D.; Brennecke, J. PiRNA-Guided Slicing Specifies Transcripts for Zucchini-Dependent, Phased PiRNA Biogenesis. Science 2015, 348, 812–817. [Google Scholar] [CrossRef]
- Han, B.W.; Wang, W.; Li, C.; Weng, Z.; Zamore, P.D. PiRNA-Guided Transposon Cleavage Initiates Zucchini-Dependent, Phased PiRNA Production. Science 2015, 348, 817–821. [Google Scholar] [CrossRef]
- Aravin, A.A.; Naumova, N.M.; Tulin, A.V.; Vagin, V.V.; Rozovsky, Y.M.; Gvozdev, V.A. Double-Stranded RNA-Mediated Silencing of Genomic Tandem Repeats and Transposable Elements in the D. Melanogaster Germline. Curr. Biol. 2001, 11, 1017–1027. [Google Scholar] [CrossRef]
- Girard, A.; Sachidanandam, R.; Hannon, G.J.; Carmell, M.A. A Germline-Specific Class of Small RNAs Binds Mammalian Piwi Proteins. Nature 2006, 442, 199–202. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Zhou, H.; Zhang, P.; Song, T.; Ying, Z.; Yu, H.; Li, Y.; Zhao, Y.; Zeng, X.; et al. PiRBase: Integrating PiRNA Annotation in All Aspects. Nucleic Acids Res. 2022, 50, D265–D272. [Google Scholar] [CrossRef]
- Guo, C.; Wang, X.; Ren, H. Databases and Computational Methods for the Identification of PiRNA-Related Molecules: A Survey. Comput. Struct. Biotechnol. J. 2024, 23, 813–833. [Google Scholar] [CrossRef]
- Martinez, V.D.; Vucic, E.A.; Thu, K.L.; Hubaux, R.; Enfield, K.S.S.; Pikor, L.A.; Becker-Santos, D.D.; Brown, C.J.; Lam, S.; Lam, W.L. Unique Somatic and Malignant Expression Patterns Implicate PIWI-Interacting RNAs in Cancer-Type Specific Biology. Sci. Rep. 2015, 5, 10423. [Google Scholar] [CrossRef]
- Lima, J.R.S.; Azevedo-Pinheiro, J.; Andrade, R.B.; Khayat, A.S.; de Assumpção, P.P.; Ribeiro-dos-Santos, Â.; Batista dos Santos, S.E.; Moreira, F.C. Identification and Characterization of Polymorphisms in PiRNA Regions. Curr. Issues Mol. Biol. 2022, 44, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Brennecke, J.; Aravin, A.A.; Stark, A.; Dus, M.; Kellis, M.; Sachidanandam, R.; Hannon, G.J. Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila. Cell 2007, 128, 1089–1103. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, I.; Skvortsova, Y.; Kondratieva, S.; Funikov, S.; Azhikina, T. Two Modes of Targeting Transposable Elements by PiRNA Pathway in Human Testis. RNA 2017, 23, 1614–1625. [Google Scholar] [CrossRef] [PubMed]
- Dias Mirandela, M.; Zoch, A.; Leismann, J.; Webb, S.; Berrens, R.V.; Valsakumar, D.; Kabayama, Y.; Auchynnikava, T.; Schito, M.; Chowdhury, T.; et al. Two-Factor Authentication Underpins the Precision of the PiRNA Pathway. Nature 2024, 634, 979–985. [Google Scholar] [CrossRef]
- Zoch, A.; Konieczny, G.; Auchynnikava, T.; Stallmeyer, B.; Rotte, N.; Heep, M.; Berrens, R.V.; Schito, M.; Kabayama, Y.; Schöpp, T.; et al. C19ORF84 Connects PiRNA and DNA Methylation Machineries to Defend the Mammalian Germ Line. Mol. Cell 2024, 84, 1021–1035.e11. [Google Scholar] [CrossRef]
- Rajasethupathy, P.; Antonov, I.; Sheridan, R.; Frey, S.; Sander, C.; Tuschl, T.; Kandel, E.R. A Role for Neuronal PiRNAs in the Epigenetic Control of Memory-Related Synaptic Plasticity. Cell 2012, 149, 693–707. [Google Scholar] [CrossRef]
- Wu, D.; Fu, H.; Zhou, H.; Su, J.; Zhang, F.; Shen, J. Effects of Novel NcRNA Molecules, P15-piRNAs, on the Methylation of DNA and Histone H3 of the CDKN2B Promoter Region in U937 Cells. J. Cell. Biochem. 2015, 116, 2744–2754. [Google Scholar] [CrossRef]
- Sugimoto, K.; Kage, H.; Aki, N.; Sano, A.; Kitagawa, H.; Nagase, T.; Yatomi, Y.; Ohishi, N.; Takai, D. The Induction of H3K9 Methylation by PIWIL4 at the P16Ink4a Locus. Biochem. Biophys. Res. Commun. 2007, 359, 497–502. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, K.; Li, C.; Yao, Y.; Tao, D.; Liu, Y.; Zhang, S.; Ma, Y. Piwil2 Suppresses P53 by Inducing Phosphorylation of Signal Transducer and Activator of Transcription 3 in Tumor Cells. PLoS ONE 2012, 7, e30999. [Google Scholar] [CrossRef]
- Nagamori, I.; Kobayashi, H.; Nishimura, T.; Yamagishi, R.; Katahira, J.; Kuramochi-Miyagawa, S.; Kono, T.; Nakano, T. Relationship between PIWIL4-Mediated H3K4me2 Demethylation and PiRNA-Dependent DNA Methylation. Cell Rep. 2018, 25, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Goh, W.S.S.; Falciatori, I.; Tam, O.H.; Burgess, R.; Meikar, O.; Kotaja, N.; Hammell, M.; Hannon, G.J. PiRNA-Directed Cleavage of Meiotic Transcripts Regulates Spermatogenesis. Genes Dev. 2015, 29, 1032–1044. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Mai, D.; Zhang, B.; Jiang, X.; Zhang, J.; Bai, R.; Ye, Y.; Li, M.; Pan, L.; Su, J.; et al. PIWI-Interacting RNA-36712 Restrains Breast Cancer Progression and Chemoresistance by Interaction with SEPW1 Pseudogene SEPW1P RNA. Mol. Cancer 2019, 18, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, J.; Xue, Y.; Yu, H.; Gong, W.; Wang, P.; Li, Z.; Liu, Y. PIWIL3/OIP5-AS1/MiR-367-3p/CEBPA Feedback Loop Regulates the Biological Behavior of Glioma Cells. Theranostics 2018, 8, 1084–1105. [Google Scholar] [CrossRef]
- Peng, L.; Song, L.; Liu, C.; Lv, X.; Li, X.; Jie, J.; Zhao, D.; Li, D. PiR-55490 Inhibits the Growth of Lung Carcinoma by Suppressing MTOR Signaling. Tumor Biol. 2016, 37, 2749–2756. [Google Scholar] [CrossRef]
- Gou, L.-T.; Dai, P.; Yang, J.-H.; Xue, Y.; Hu, Y.-P.; Zhou, Y.; Kang, J.-Y.; Wang, X.; Li, H.; Hua, M.-M.; et al. Pachytene PiRNAs Instruct Massive MRNA Elimination during Late Spermiogenesis. Cell Res. 2014, 24, 680–700. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Patel, H.; Chen, J.; Wang, J.; Chen, Z.-S.; Wang, H. Epigenetic Modification of M6A Regulator Proteins in Cancer. Mol. Cancer 2023, 22, 102. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gao, L.; Cheng, L.; Lv, G.; Sun, B.; Wang, G.; Tang, Q. The Roles of N6-Methyladenosine and Its Target Regulatory Noncoding RNAs in Tumors: Classification, Mechanisms, and Potential Therapeutic Implications. Exp. Mol. Med. 2023, 55, 487–501. [Google Scholar] [CrossRef]
- Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017, 169, 1187–1200. [Google Scholar] [CrossRef]
- Gao, X.-Q.; Zhang, Y.-H.; Liu, F.; Ponnusamy, M.; Zhao, X.-M.; Zhou, L.-Y.; Zhai, M.; Liu, C.-Y.; Li, X.-M.; Wang, M.; et al. The PiRNA CHAPIR Regulates Cardiac Hypertrophy by Controlling METTL3-Dependent N6-Methyladenosine Methylation of Parp10 MRNA. Nat. Cell Biol. 2020, 22, 1319–1331. [Google Scholar] [CrossRef]
- Han, H.; Fan, G.; Song, S.; Jiang, Y.; Qian, C.; Zhang, W.; Su, Q.; Xue, X.; Zhuang, W.; Li, B. PiRNA-30473 Contributes to Tumorigenesis and Poor Prognosis by Regulating M6A RNA Methylation in DLBCL. Blood 2021, 137, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Mai, D.; Ding, P.; Tan, L.; Zhang, J.; Pan, Z.; Bai, R.; Li, C.; Li, M.; Zhou, Y.; Tan, W.; et al. PIWI-Interacting RNA-54265 Is Oncogenic and a Potential Therapeutic Target in Colorectal Adenocarcinoma. Theranostics 2018, 8, 5213–5230. [Google Scholar] [CrossRef]
- Yin, J.; Jiang, X.; Qi, W.; Ji, C.; Xie, X.; Zhang, D.; Cui, Z.; Wang, C.; Bai, Y.; Wang, J.; et al. PiR-823 Contributes to Colorectal Tumorigenesis by Enhancing the Transcriptional Activity of HSF1. Cancer Sci. 2017, 108, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Jain, N.; Mallick, B. PiR-39980 Mediates Doxorubicin Resistance in Fibrosarcoma by Regulating Drug Accumulation and DNA Repair. Commun. Biol. 2021, 4, 1312. [Google Scholar] [CrossRef]
- Ou, B.; Liu, Y.; Gao, Z.; Xu, J.; Yan, Y.; Li, Y.; Zhang, J. Senescent Neutrophils-Derived Exosomal PiRNA-17560 Promotes Chemoresistance and EMT of Breast Cancer via FTO-Mediated M6A Demethylation. Cell Death Dis. 2022, 13, 905. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yang, M.; Wei, Q.; Song, F.; Zhang, Y.; Wang, X.; Liu, B.; Li, J. Novel Evidence for Oncogenic PiRNA-823 as a Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer. J. Cell. Mol. Med. 2020, 24, 9028–9040. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Z.; Wang, K.; Mao, W.; Li, X.; Wang, G.; Zhang, Y.; Huang, J.; Zhang, N.; Wu, P.; et al. PiRNA-1742 Promotes Renal Cell Carcinoma Malignancy by Regulating USP8 Stability through Binding to HnRNPU and Thereby Inhibiting MUC12 Ubiquitination. Exp. Mol. Med. 2023, 55, 1258–1271. [Google Scholar] [CrossRef]
- Dong, Y.-Z.; Hu, T. Effects of MiR-143 Overexpression on Proliferation, Apoptosis, EGFR and Downstream Signaling Pathways in PC9/GR Cell Line. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1709–1716. [Google Scholar] [CrossRef]
- Mi, T.; Tan, X.; Wang, Z.; Zhang, Z.; Jin, L.; Wang, J.; Li, M.; Wu, X.; He, D. Activation of the P53 Signaling Pathway by PiRNA-MW557525 Overexpression Induces a G0/G1 Phase Arrest Thus Inhibiting Neuroblastoma Growth. Eur. J. Med. Res. 2023, 28, 503. [Google Scholar] [CrossRef]
- Wu, L.; Huang, S.; Tian, W.; Liu, P.; Xie, Y.; Qiu, Y.; Li, X.; Tang, Y.; Zheng, S.; Sun, Y.; et al. PIWI-Interacting RNA-YBX1 Inhibits Proliferation and Metastasis by the MAPK Signaling Pathway via YBX1 in Triple-Negative Breast Cancer. Cell Death Discov. 2024, 10, 7. [Google Scholar] [CrossRef]
- Du, X.; Li, H.; Xie, X.; Shi, L.; Wu, F.; Li, G.; Lai, C.; Heng, B. PiRNA-31115 Promotes Cell Proliferation and Invasion via PI3K/AKT Pathway in Clear Cell Renal Carcinoma. Dis. Markers 2021, 2021, 6915329. [Google Scholar] [CrossRef]
- Fu, A.; Jacobs, D.I.; Hoffman, A.E.; Zheng, T.; Zhu, Y. PIWI-Interacting RNA 021285 Is Involved in Breast Tumorigenesis Possibly by Remodeling the Cancer Epigenome. Carcinogenesis 2015, 36, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Meng, X.; Pan, C.; Qu, F.; Gan, W.; Xiang, Z.; Han, X.; Li, D. PiR-31470 Epigenetically Suppresses the Expression of Glutathione S-Transferase Pi 1 in Prostate Cancer via DNA Methylation. Cell. Signal. 2020, 67, 109501. [Google Scholar] [CrossRef] [PubMed]
- Su, J.-F.; Zhao, F.; Gao, Z.-W.; Hou, Y.-J.; Li, Y.-Y.; Duan, L.-J.; Lun, S.-M.; Yang, H.-J.; Li, J.-K.; Dai, N.-T.; et al. PiR-823 Demonstrates Tumor Oncogenic Activity in Esophageal Squamous Cell Carcinoma through DNA Methylation Induction via DNA Methyltransferase 3B. Pathol. Res. Pract. 2020, 216, 152848. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, Y.; Lü, J.; Zhao, Q.; Guo, Y.; Lu, Z.; Ma, W.; Liu, P.; Pestell, R.G.; Liang, C.; et al. PiRNA-823 Is Involved in Cancer Stem Cell Regulation Through Altering DNA Methylation in Association with Luminal Breast Cancer. Front. Cell Dev. Biol. 2021, 9, 641052. [Google Scholar] [CrossRef]
- Merkerova, M.D.; Krejcik, Z. Transposable Elements and Piwi-interacting RNAs in Hemato-oncology with a Focus on Myelodysplastic Syndrome (Review). Int. J. Oncol. 2021, 59, 105. [Google Scholar] [CrossRef]
- Ernst, C.; Odom, D.T.; Kutter, C. The Emergence of PiRNAs against Transposon Invasion to Preserve Mammalian Genome Integrity. Nat. Commun. 2017, 8, 1411. [Google Scholar] [CrossRef]
- Tang, X.; Xie, X.; Wang, X.; Wang, Y.; Jiang, X.; Jiang, H. The Combination of PiR-823 and Eukaryotic Initiation Factor 3 B (EIF3B) Activates Hepatic Stellate Cells via Upregulating TGF-Β1 in Liver Fibrogenesis. Med. Sci. Monit. 2018, 24, 9151–9165. [Google Scholar] [CrossRef]
- Li, G.; Ni, A.; Tang, Y.; Li, S.; Meng, L. RNA Binding Proteins Involved in Regulation of Protein Synthesis to Initiate Biogenesis of Secondary Tumor in Hepatocellular Carcinoma in Mice. PeerJ 2020, 8, e8680. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Wang, J.; Zhang, P.; Yuan, L.-X.; Ju, L.-L.; Wang, H.-X.; Chen, L.; Cao, Y.-L.; Cai, W.-H.; Ni, Y.; et al. PIWIL1 Interacting RNA PiR-017724 Inhibits Proliferation, Invasion, and Migration, and Inhibits the Development of HCC by Silencing PLIN3. Front. Oncol. 2023, 13, 1203821. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, N.; Li, D.; Wu, Y.; Wang, H.; Wang, J. Circulating Exosomal Small RNAs Are Promising Non-invasive Diagnostic Biomarkers for Gastric Cancer. J. Cell Mol. Med. 2020, 24, 14502–14513. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, J.; Meng, A.; Zhang, L.; Wang, M.; Fan, H.; Peng, W.; Lu, J. Gastric Juice PiR-1245: A Promising Prognostic Biomarker for Gastric Cancer. J. Clin. Lab. Anal. 2020, 34, e23131. [Google Scholar] [CrossRef] [PubMed]
- Vinasco-Sandoval, T.; Moreira, F.C.; Vidal, A.F.; Pinto, P.; Ribeiro-dos-Santos, A.M.; Cruz, R.L.S.; Fonseca Cabral, G.; Anaissi, A.K.M.; Lopes, K.d.P.; Ribeiro-dos-Santos, A.; et al. Global Analyses of Expressed Piwi-Interacting RNAs in Gastric Cancer. Int. J. Mol. Sci. 2020, 21, 7656. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Wang, L.; Chen, X.; Lin, Y.; Zhang, S.; Fan, Z.; Peng, F. Impact of PIWIL1 Single Nucleotide Polymorphisms on Gastric Cancer Risk in a Chinese Population. Genet. Test. Mol. Biomark. 2023, 27, 185–192. [Google Scholar] [CrossRef]
- Sabbah, N.A.; Abdalla, W.M.; Mawla, W.A.; AbdAlMonem, N.; Gharib, A.F.; Abdul-Saboor, A.; Abdelazem, A.S.; Raafat, N. PiRNA-823 Is a Unique Potential Diagnostic Non-Invasive Biomarker in Colorectal Cancer Patients. Genes 2021, 12, 598. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Q.; Zhou, Z.; Tian, Z.; Zheng, X.; Wang, K. PiRNA-18 Inhibition Cell Proliferation, Migration and Invasion in Colorectal Cancer. Biochem. Genet. 2023, 61, 1881–1897. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Jafari-Koshki, T.; Jafarlou, V.; Raeisi, M.; Alizadeh, L.; Roosta, Y.; Matin, S.; Jabari, R.; Sur, D.; Karimi, A. The Role of PiRNAs in Predicting and Prognosing in Cancer: A Focus on PiRNA-823 (a Systematic Review and Meta-Analysis). BMC Cancer 2024, 24, 484. [Google Scholar] [CrossRef]
- Li, S.; Kouznetsova, V.L.; Kesari, S.; Tsigelny, I.F. PiRNA in Machine-Learning-Based Diagnostics of Colorectal Cancer. Molecules 2024, 29, 4311. [Google Scholar] [CrossRef]
- Das, B.; Jain, N.; Mallick, B. PiR-39980 Promotes Cell Proliferation, Migration and Invasion, and Inhibits Apoptosis via Repression of SERPINB1 in Human Osteosarcoma. Biol. Cell 2020, 112, 73–91. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; He, X.; Gong, A.; Gao, J.; Hao, X.; Wang, S.; Fan, Y.; Wang, Z.; Li, M.; et al. PiR-Hsa-211106 Inhibits the Progression of Lung Adenocarcinoma Through Pyruvate Carboxylase and Enhances Chemotherapy Sensitivity. Front. Oncol. 2021, 11, 651915. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Y.; Zhao, S.; Gao, J.; Hao, X.; Wang, Z.; Li, M.; Wang, M.; Liu, Y.; Yu, X.; et al. Serum-Derived PiR-Hsa-164586 of Extracellular Vesicles as a Novel Biomarker for Early Diagnosis of Non-Small Cell Lung Cancer. Front. Oncol. 2022, 12, 850363. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Xu, L.; Wang, Y.; Chen, S.; Li, D.; Huo, X.; Li, R.; Zhu, X.; Chen, N.; Jin, Y.; et al. PiR-27222 Mediates PM2.5-Induced Lung Cancer by Resisting Cell PANoptosis through the WTAP/M6A Axis. Environ. Int. 2024, 190, 108928. [Google Scholar] [CrossRef]
- Xu, L.; Ma, W.; Huo, X.; Luo, J.; Li, R.; Zhu, X.; Kong, X.; Zhao, K.; Jin, Y.; Zhang, M.; et al. New Insights into the Function and Mechanisms of PiRNA PMLCPIR in Promoting PM2.5-Induced Lung Cancer. J. Adv. Res. 2024, in press. [Google Scholar] [CrossRef]
- Huang, S.; Chen, B.; Qiu, P.; Yan, Z.; Liang, Z.; Luo, K.; Huang, B.; Jiang, H. In Vitro Study of Piwi Interaction RNA-31106 Promoting Breast Carcinogenesis by Regulating METTL3-Mediated M6A RNA Methylation. Transl. Cancer Res. 2023, 12, 1588–1601. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, L.; Guo, Y.; Lü, J.; Li, D.; Xie, H.; Wang, Q.; Ma, W.; Liu, P.; Liu, Y.; et al. IL11 Signaling Mediates PiR-2158 Suppression of Cell Stemness and Angiogenesis in Breast Cancer. Theranostics 2023, 13, 2337–2349. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, J.; Sun, L.; Li, M.; He, X.; Jiang, J.; Zhou, Q. Piwi-Interacting RNA-651 Promotes Cell Proliferation and Migration and Inhibits Apoptosis in Breast Cancer by Facilitating DNMT1-Mediated PTEN Promoter Methylation. Cell Cycle 2021, 20, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Ben, S.; Ding, Z.; Xin, J.; Li, F.; Cheng, Y.; Chen, S.; Fan, L.; Zhang, Q.; Li, S.; Du, M.; et al. PiRNA PROPER Suppresses DUSP1 Translation by Targeting N6-Methyladenosine-Mediated RNA Circularization to Promote Oncogenesis of Prostate Cancer. Adv. Sci. 2024, 11, 2402954. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, Y.; Xie, T.; Pu, D.; Ho, V.W.-S.; Sun, J.; Liu, K.; Chan, R.C.-K.; Ding, X.; Teoh, J.Y.-C.; et al. PiRNA-4447944 Promotes Castration-Resistant Growth and Metastasis of Prostate Cancer by Inhibiting NEFH Expression through Forming the PiRNA-4447944-PIWIL2-NEFH Complex. Int. J. Biol. Sci. 2024, 20, 3638–3655. [Google Scholar] [CrossRef]
- Ding, L.; Wang, R.; Xu, W.; Shen, D.; Cheng, S.; Wang, H.; Lu, Z.; Zheng, Q.; Wang, L.; Xia, L.; et al. PIWI-Interacting RNA 57125 Restrains Clear Cell Renal Cell Carcinoma Metastasis by Downregulating CCL3 Expression. Cell Death Discov. 2021, 7, 333. [Google Scholar] [CrossRef]
- Hu, H.; Lu, J.; Xu, M.; Wang, J.; Zhang, Y.; Yang, S.; Wang, X.; Wang, M.; Xie, W.; Xu, W.; et al. PiR-Hsa-23533 Promotes Malignancy in Head and Neck Squamous Cell Carcinoma via USP7. Transl. Oncol. 2024, 45, 101990. [Google Scholar] [CrossRef]
- Yan, Y.; Tian, D.; Zhao, B.; Li, Z.; Huang, Z.; Li, K.; Chen, X.; Zhou, L.; Feng, Y.; Yang, Z. PiR-1919609 Is an Ideal Potential Target for Reversing Platinum Resistance in Ovarian Cancer. Technol. Cancer Res. Treat. 2024, 23, 15330338241249692. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, L.; Zu, W.; Jing, J.; Liu, G.; Sun, T.; Xie, Q. PIWI-Interacting RNA-17458 Is Oncogenic and a Potential Therapeutic Target in Cervical Cancer. J. Cancer 2023, 14, 1648–1659. [Google Scholar] [CrossRef]
- Zhong, Y.; Tian, Y.; Wang, Y.; Bai, J.; Long, Q.; Yan, L.; Gong, Z.; Gao, W.; Tang, Q. Small Extracellular Vesicle PiR-Hsa-30937 Derived from Pancreatic Neuroendocrine Neoplasms Upregulates CD276 in Macrophages to Promote Immune Evasion. Cancer Immunol. Res. 2024, 12, 840–853. [Google Scholar] [CrossRef]
- Nasseri, S.; Sharifi, M.; Mehrzad, V. Effects of Hsa-PiR-32877 Suppression with Antisense LNA GapmeRs on the Proliferation and Apoptosis of Human Acute Myeloid Leukemia Cells. Int. J. Mol. Cell Med. 2023, 12, 18–29. [Google Scholar] [CrossRef]
- Tosar, J.P. Letter to Editor Regarding “PiR-36249 and DHX36 Together Inhibit Testicular Cancer Cells Progression by Upregulating OAS2”. Noncoding RNA Res. 2023, 8, 589–590. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, N. PIWI Interacting RNA-13643 Contributes to Papillary Thyroid Cancer Development through Acting as a Novel Oncogene by Facilitating PRMT1 Mediated GLI1 Methylation. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2023, 1867, 130453. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, T.; Mallick, B. FDFT1 Repression by PiR-39980 Prevents Oncogenesis by Regulating Proliferation and Apoptosis through Hypoxia in Tongue Squamous Cell Carcinoma. Life Sci. 2023, 329, 121954. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Chakravarty, S.; Ray, S.; Saha, H.; Das, K.; Ghosh, I.; Mallick, B.; Biswas, N.; Goswami, S. Correlating Tissue and Plasma-specific PiRNA Changes to Predict Their Possible Role in Pancreatic Malignancy and Chronic Inflammation. Biomed. Rep. 2024, 21, 186. [Google Scholar] [CrossRef]
- Xue, J.; Qin, S.; Ren, N.; Guo, B.; Shi, X.; Jia, E. Extracellular Vesicle Biomarkers in Circulation for the Diagnosis of Gastric Cancer: A Systematic Review and Meta-analysis. Oncol. Lett. 2023, 26, 423. [Google Scholar] [CrossRef]
- Rui, T.; Wang, K.; Xiang, A.; Guo, J.; Tang, N.; Jin, X.; Lin, Y.; Liu, J.; Zhang, X. Serum Exosome-Derived PiRNAs Could Be Promising Biomarkers for HCC Diagnosis. Int. J. Nanomed. 2023, 18, 1989–2001. [Google Scholar] [CrossRef]
- Li, J.; Wang, N.; Zhang, F.; Jin, S.; Dong, Y.; Dong, X.; Chen, Y.; Kong, X.; Tong, Y.; Mi, Q.; et al. PIWI-interacting RNAs Are Aberrantly Expressed and May Serve as Novel Biomarkers for Diagnosis of Lung Adenocarcinoma. Thorac. Cancer 2021, 12, 2468–2477. [Google Scholar] [CrossRef] [PubMed]
- Nayak, R.; Chattopadhyay, T.; Gupta, P.; Mallick, B. Integrative Analysis of Small Non-Coding RNAs Predicts a PiRNA/MiRNA-CCND1/BRAF/HRH1/ATXN3 Regulatory Circuit That Drives Oncogenesis in Glioblastoma. Mol. Omics 2023, 19, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Chiu, P.K.-F.; Wong, C.Y.-P.; Cheng, C.K.-L.; Teoh, J.Y.-C.; Ng, C.-F. Identification of PiRNA Targets in Urinary Extracellular Vesicles for the Diagnosis of Prostate Cancer. Diagnostics 2021, 11, 1828. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Ji, G.; Huang, R.; Chen, H.; Gao, Y.; Wang, W.; Sun, X.; Zhang, J.; Zheng, J.; Wei, Q. PIWI-Interacting RNAs PiR-13643 and PiR-21238 Are Promising Diagnostic Biomarkers of Papillary Thyroid Carcinoma. Aging 2020, 12, 9292–9310. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Ma, D.; Mu, Y.; Tan, X.; Hao, Q.; Feng, L.; Liang, J.; Xin, W.; Chen, Y.; et al. Serum PIWI-Interacting RNAs PiR-020619 and PiR-020450 Are Promising Novel Biomarkers for Early Detection of Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 990–998. [Google Scholar] [CrossRef]
- Baba, A.B.; Rah, B.; Bhat, G.R.; Mushtaq, I.; Parveen, S.; Hassan, R.; Hameed Zargar, M.; Afroze, D. Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within. Front. Pharmacol. 2022, 13, 791272. [Google Scholar] [CrossRef]
- Öner, Ç.; Turgut Coşan, D.; Çolak, E. Estrogen and Androgen Hormone Levels Modulate the Expression of PIWI Interacting RNA in Prostate and Breast Cancer. PLoS ONE 2016, 11, e0159044. [Google Scholar] [CrossRef]
- Cheng, J.; Deng, H.; Xiao, B.; Zhou, H.; Zhou, F.; Shen, Z.; Guo, J. PiR-823, a Novel Non-Coding Small RNA, Demonstrates in Vitro and in Vivo Tumor Suppressive Activity in Human Gastric Cancer Cells. Cancer Lett. 2012, 315, 12–17. [Google Scholar] [CrossRef]
- Lumbreras, B.; Parker, L.A.; Caballero-Romeu, J.P.; Gómez-Pérez, L.; Puig-García, M.; López-Garrigós, M.; García, N.; Hernández-Aguado, I. Variables Associated with False-Positive PSA Results: A Cohort Study with Real-World Data. Cancers 2022, 15, 261. [Google Scholar] [CrossRef]
- Zhang, X.-O.; Dong, R.; Zhang, Y.; Zhang, J.-L.; Luo, Z.; Zhang, J.; Chen, L.-L.; Yang, L. Diverse Alternative Back-Splicing and Alternative Splicing Landscape of Circular RNAs. Genome Res. 2016, 26, 1277–1287. [Google Scholar] [CrossRef]
- Karousi, P.; Artemaki, P.I.; Sotiropoulou, C.D.; Christodoulou, S.; Scorilas, A.; Kontos, C.K. Identification of Two Novel Circular RNAs Deriving from BCL2L12 and Investigation of Their Potential Value as a Molecular Signature in Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 8867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.-O.; Chen, T.; Xiang, J.-F.; Yin, Q.-F.; Xing, Y.-H.; Zhu, S.; Yang, L.; Chen, L.-L. Circular Intronic Long Noncoding RNAs. Mol. Cell 2013, 51, 792–806. [Google Scholar] [CrossRef]
- Zhang, X.-O.; Wang, H.-B.; Zhang, Y.; Lu, X.; Chen, L.-L.; Yang, L. Complementary Sequence-Mediated Exon Circularization. Cell 2014, 159, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Q. Mechanisms Regulating Abnormal Circular RNA Biogenesis in Cancer. Cancers 2021, 13, 4185. [Google Scholar] [CrossRef] [PubMed]
- Pervouchine, D.D. Circular Exonic RNAs: When RNA Structure Meets Topology. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2019, 1862, 194384. [Google Scholar] [CrossRef]
- Liang, D.; Tatomer, D.C.; Luo, Z.; Wu, H.; Yang, L.; Chen, L.-L.; Cherry, S.; Wilusz, J.E. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-MRNA Processing Machinery Is Limiting. Mol. Cell 2017, 68, 940–954.e3. [Google Scholar] [CrossRef]
- Suzuki, H.; Kameyama, T.; Ohe, K.; Tsukahara, T.; Mayeda, A. Nested Introns in an Intron: Evidence of Multi-step Splicing in a Large Intron of the Human Dystrophin Pre-mRNA. FEBS Lett. 2013, 587, 555–561. [Google Scholar] [CrossRef]
- Eger, N.; Schoppe, L.; Schuster, S.; Laufs, U.; Boeckel, J.-N. Circular RNA Splicing. In Circular RNAs: Biogenesis and Functions; Springer: Singapore, 2018; pp. 41–52. [Google Scholar]
- Zaphiropoulos, P.G. Circular RNAs from Transcripts of the Rat Cytochrome P450 2C24 Gene: Correlation with Exon Skipping. Proc. Natl. Acad. Sci. USA 1996, 93, 6536–6541. [Google Scholar] [CrossRef]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs Are Abundant, Conserved, and Associated with ALU Repeats. RNA 2013, 19, 141–157. [Google Scholar] [CrossRef]
- Liang, D.; Wilusz, J.E. Short Intronic Repeat Sequences Facilitate Circular RNA Production. Genes Dev. 2014, 28, 2233–2247. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Wang, S.; Ye, B.; Du, Y.; Li, C.; Xiong, Z.; Qu, Y.; Fan, Z. A Circular RNA Protects Dormant Hematopoietic Stem Cells from DNA Sensor CGAS-Mediated Exhaustion. Immunity 2018, 48, 688–701.e7. [Google Scholar] [CrossRef]
- Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; et al. Circular RNA Profiling Reveals an Abundant CircHIPK3 That Regulates Cell Growth by Sponging Multiple MiRNAs. Nat. Commun. 2016, 7, 11215. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Liao, X.; Gong, Y.; He, J.; Zhou, J.-K.; Tan, S.; Pu, W.; Huang, C.; Wei, Y.-Q.; Peng, Y. Circular RNA F-CircSR Derived from SLC34A2-ROS1 Fusion Gene Promotes Cell Migration in Non-Small Cell Lung Cancer. Mol. Cancer 2019, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Guarnerio, J.; Bezzi, M.; Jeong, J.C.; Paffenholz, S.V.; Berry, K.; Naldini, M.M.; Lo-Coco, F.; Tay, Y.; Beck, A.H.; Pandolfi, P.P. Oncogenic Role of Fusion-CircRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell 2016, 165, 289–302. [Google Scholar] [CrossRef]
- Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell 2015, 58, 870–885. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Li, B.; Luo, Y.-X.; Lin, Q.; Liu, S.-R.; Zhang, X.-Q.; Zhou, H.; Yang, J.-H.; Qu, L.-H. Comprehensive Genomic Characterization of RNA-Binding Proteins across Human Cancers. Cell Rep. 2018, 22, 286–298. [Google Scholar] [CrossRef]
- Neelamraju, Y.; Hashemikhabir, S.; Janga, S.C. The Human RBPome: From Genes and Proteins to Human Disease. J. Proteom. 2015, 127, 61–70. [Google Scholar] [CrossRef]
- Gerstberger, S.; Hafner, M.; Tuschl, T. A Census of Human RNA-Binding Proteins. Nat. Rev. Genet. 2014, 15, 829–845. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-Intron Circular RNAs Regulate Transcription in the Nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef]
- Ivanov, A.; Memczak, S.; Wyler, E.; Torti, F.; Porath, H.T.; Orejuela, M.R.; Piechotta, M.; Levanon, E.Y.; Landthaler, M.; Dieterich, C.; et al. Analysis of Intron Sequences Reveals Hallmarks of Circular RNA Biogenesis in Animals. Cell Rep. 2015, 10, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, J.; Zheng, Y.; Zhang, J.; Chen, S.; Zhao, F. Comprehensive Identification of Internal Structure and Alternative Splicing Events in Circular RNAs. Nat. Commun. 2016, 7, 12060. [Google Scholar] [CrossRef] [PubMed]
- Katrekar, D.; Yen, J.; Xiang, Y.; Saha, A.; Meluzzi, D.; Savva, Y.; Mali, P. Efficient in Vitro and in Vivo RNA Editing via Recruitment of Endogenous ADARs Using Circular Guide RNAs. Nat. Biotechnol. 2022, 40, 938–945. [Google Scholar] [CrossRef]
- Liu, S.; Guo, X.Y.; Shang, Q.J.; Gao, P. The Biogenesis, Biological Functions and Modification of Circular RNAs. Exp. Mol. Pathol. 2023, 131, 104861. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Xu, J.; Wang, Y.; Min, Q.; Chen, X.; Zhang, W.; Chen, J.; Zhan, Q. Nuclear Genome-Derived Circular RNA CircPUM1 Localizes in Mitochondria and Regulates Oxidative Phosphorylation in Esophageal Squamous Cell Carcinoma. Signal Transduct. Target. Ther. 2022, 7, 40. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Xue, W.; Zhang, L.; Yang, L.-Z.; Cao, S.-M.; Lei, Y.-N.; Liu, C.-X.; Guo, S.-K.; Shan, L.; et al. Screening for Functional Circular RNAs Using the CRISPR–Cas13 System. Nat. Methods 2021, 18, 51–59. [Google Scholar] [CrossRef]
- Huang, C.; Liang, D.; Tatomer, D.C.; Wilusz, J.E. A Length-Dependent Evolutionarily Conserved Pathway Controls Nuclear Export of Circular RNAs. Genes Dev. 2018, 32, 639–644. [Google Scholar] [CrossRef]
- Zhou, C.; Molinie, B.; Daneshvar, K.; Pondick, J.V.; Wang, J.; Van Wittenberghe, N.; Xing, Y.; Giallourakis, C.C.; Mullen, A.C. Genome-Wide Maps of M6A CircRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns That Are Distinct from MRNAs. Cell Rep. 2017, 20, 2262–2276. [Google Scholar] [CrossRef]
- Liu, C.-X.; Li, X.; Nan, F.; Jiang, S.; Gao, X.; Guo, S.-K.; Xue, W.; Cui, Y.; Dong, K.; Ding, H.; et al. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell 2019, 177, 865–880.e21. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Lin, J.; Song, Z.; Wang, Q.; Zhao, W.; Wang, Y.; Xiu, X.; Deng, Y.; Li, X.; et al. Exportin 4 Depletion Leads to Nuclear Accumulation of a Subset of Circular RNAs. Nat. Commun. 2022, 13, 5769. [Google Scholar] [CrossRef]
- Ngo, L.H.; Bert, A.G.; Dredge, B.K.; Williams, T.; Murphy, V.; Li, W.; Hamilton, W.B.; Carey, K.T.; Toubia, J.; Pillman, K.A.; et al. Nuclear Export of Circular RNA. Nature 2024, 627, 212–220. [Google Scholar] [CrossRef]
- Wang, M.; Yu, F.; Li, P.; Wang, K. Emerging Function and Clinical Significance of Exosomal CircRNAs in Cancer. Mol. Ther. Nucleic Acids 2020, 21, 367–383. [Google Scholar] [CrossRef]
- O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. RNA Delivery by Extracellular Vesicles in Mammalian Cells and Its Applications. Nat. Rev. Mol. Cell Biol. 2020, 21, 585–606. [Google Scholar] [CrossRef]
- Chen, C.-K.; Cheng, R.; Demeter, J.; Chen, J.; Weingarten-Gabbay, S.; Jiang, L.; Snyder, M.P.; Weissman, J.S.; Segal, E.; Jackson, P.K.; et al. Structured Elements Drive Extensive Circular RNA Translation. Mol. Cell 2021, 81, 4300–4318.e13. [Google Scholar] [CrossRef] [PubMed]
- Welden, J.R.; Margvelani, G.; Arizaca Maquera, K.A.; Gudlavalleti, B.; Miranda Sardón, S.C.; Campos, A.R.; Robil, N.; Lee, D.C.; Hernandez, A.G.; Wang, W.-X.; et al. RNA Editing of Microtubule-Associated Protein Tau Circular RNAs Promotes Their Translation and Tau Tangle Formation. Nucleic Acids Res. 2022, 50, 12979–12996. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wan, J.; Gao, X.; Zhang, X.; Jaffrey, S.R.; Qian, S.-B. Dynamic M6A MRNA Methylation Directs Translational Control of Heat Shock Response. Nature 2015, 526, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Fontemaggi, G.; Turco, C.; Esposito, G.; Di Agostino, S. New Molecular Mechanisms and Clinical Impact of CircRNAs in Human Cancer. Cancers 2021, 13, 3154. [Google Scholar] [CrossRef]
- Zeng, K.; Peng, J.; Xing, Y.; Zhang, L.; Zeng, P.; Li, W.; Zhang, W.; Pan, Z.; Zhou, C.; Lin, J. A Positive Feedback Circuit Driven by M6A-Modified Circular RNA Facilitates Colorectal Cancer Liver Metastasis. Mol. Cancer 2023, 22, 202. [Google Scholar] [CrossRef]
- Lu, J.; Ru, J.; Chen, Y.; Ling, Z.; Liu, H.; Ding, B.; Jiang, Y.; Ma, J.; Zhang, D.; Ge, J.; et al. N 6 -methyladenosine-modified CircSTX6 Promotes Hepatocellular Carcinoma Progression by Regulating the HNRNPD/ATF3 Axis and Encoding a 144 Amino Acid Polypeptide. Clin. Transl. Med. 2023, 13, e1451. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.-L.; Wang, Y.; et al. Extensive Translation of Circular RNAs Driven by N6-Methyladenosine. Cell Res. 2017, 27, 626–641. [Google Scholar] [CrossRef]
- Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; et al. Circ-ZNF609 Is a Circular RNA That Can Be Translated and Functions in Myogenesis. Mol. Cell 2017, 66, 22–37.e9. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Shin, M.-K.; Park, J.; Hwang, H.J.; Locker, N.; Ahn, J.; Kim, D.; Baek, D.; Park, Y.; Lee, Y.; et al. An Interaction between EIF4A3 and EIF3g Drives the Internal Initiation of Translation. Nucleic Acids Res. 2023, 51, 10950–10969. [Google Scholar] [CrossRef]
- Lin, H.-H.; Chang, C.-Y.; Huang, Y.-R.; Shen, C.-H.; Wu, Y.-C.; Chang, K.-L.; Lee, Y.-C.; Lin, Y.-C.; Ting, W.-C.; Chien, H.-J.; et al. Exon Junction Complex Mediates the Cap-Independent Translation of Circular RNA. Mol. Cancer Res. 2023, 21, 1220–1233. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Z.; Zhang, M.; Zhou, H.; Wu, X.; Zhong, J.; Xiao, F.; Huang, N.; Yang, X.; Zeng, R.; et al. Rolling-Translated EGFR Variants Sustain EGFR Signaling and Promote Glioblastoma Tumorigenicity. Neuro-Oncology 2021, 23, 743–756. [Google Scholar] [CrossRef]
- Gao, X.; Xia, X.; Li, F.; Zhang, M.; Zhou, H.; Wu, X.; Zhong, J.; Zhao, Z.; Zhao, K.; Liu, D.; et al. Circular RNA-Encoded Oncogenic E-Cadherin Variant Promotes Glioblastoma Tumorigenicity through Activation of EGFR–STAT3 Signalling. Nat. Cell Biol. 2021, 23, 278–291. [Google Scholar] [CrossRef]
- Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids Are Single-Stranded Covalently Closed Circular RNA Molecules Existing as Highly Base-Paired Rod-like Structures. Proc. Natl. Acad. Sci. USA 1976, 73, 3852–3856. [Google Scholar] [CrossRef]
- Nigro, J.M.; Cho, K.R.; Fearon, E.R.; Kern, S.E.; Ruppert, J.M.; Oliner, J.D.; Kinzler, K.W.; Vogelstein, B. Scrambled Exons. Cell 1991, 64, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Cocquerelle, C.; Daubersies, P.; Majérus, M.A.; Kerckaert, J.P.; Bailleul, B. Splicing with Inverted Order of Exons Occurs Proximal to Large Introns. EMBO J. 1992, 11, 1095–1098. [Google Scholar] [CrossRef]
- Capel, B.; Swain, A.; Nicolis, S.; Hacker, A.; Walter, M.; Koopman, P.; Goodfellow, P.; Lovell-Badge, R. Circular Transcripts of the Testis-Determining Gene Sry in Adult Mouse Testis. Cell 1993, 73, 1019–1030. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Liu, M.; Xu, F.; Zhang, Q.; Zhang, Y.; Weng, X.; Liu, S.; Du, Y.; Zhou, X. Direct Detection of CircRNA in Real Samples Using Reverse Transcription-Rolling Circle Amplification. Anal. Chim. Acta 2020, 1101, 169–175. [Google Scholar] [CrossRef]
- Goo, N.-I.; Kim, D.-E. Rolling Circle Amplification as Isothermal Gene Amplification in Molecular Diagnostics. Biochip. J. 2016, 10, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Dahl, M.; Daugaard, I.; Andersen, M.S.; Hansen, T.B.; Grønbæk, K.; Kjems, J.; Kristensen, L.S. Enzyme-Free Digital Counting of Endogenous Circular RNA Molecules in B-Cell Malignancies. Lab. Investig. 2018, 98, 1657–1669. [Google Scholar] [CrossRef]
- Li, S.; Teng, S.; Xu, J.; Su, G.; Zhang, Y.; Zhao, J.; Zhang, S.; Wang, H.; Qin, W.; Lu, Z.J.; et al. Microarray Is an Efficient Tool for CircRNA Profiling. Brief. Bioinform. 2019, 20, 1420–1433. [Google Scholar] [CrossRef]
- Chrzanowska, N.M.; Kowalewski, J.; Lewandowska, M.A. Use of Fluorescence In Situ Hybridization (FISH) in Diagnosis and Tailored Therapies in Solid Tumors. Molecules 2020, 25, 1864. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhong, Y.; Wang, X.; Shen, J.; An, W. Advances in Circular RNA and Its Applications. Int. J. Med. Sci. 2022, 19, 975–985. [Google Scholar] [CrossRef]
- Luo, J.; Xu, S.; Wang, J.; He, L.; Li, Z. Circular RNA CircWBSCR22 Facilitates Colorectal Cancer Metastasis by Enhancing CHD4’s Protein Stability. Int. J. Biol. Macromol. 2024, 282, 137135. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, C.; Song, Y.; Han, D.; Liu, J.; Song, X.; Chao, F.; Wang, S.; Xu, G.; Chen, G. CircUBE3A(2,3,4,5) Promotes Adenylate-Uridylate-Rich Binding Factor 1 Nuclear Translocation to Suppress Prostate Cancer Metastasis. Cancer Lett. 2024, 588, 216743. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiao, W.; Song, J.; Wang, J.; Chen, G.; Li, D.; Wang, X.; Bao, B.; Du, X.; Cheng, Y.; et al. Circ-HnRNPU Inhibits NONO-Mediated c-Myc Transactivation and MRNA Stabilization Essential for Glycosylation and Cancer Progression. J. Exp. Clin. Cancer Res. 2023, 42, 313. [Google Scholar] [CrossRef]
- Sun, Z.; Dang, P.; Guo, Y.; Liu, S.; Hu, S.; Sun, H.; Xu, Y.; Wang, W.; Chen, C.; Liu, J.; et al. Targeting CircAURKA Prevents Colorectal Cancer Progression via Enhancing CTNNB1 Protein Degradation. Oncogene 2024, 43, 3388–3401. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Panda, A.C.; Munk, R.; Grammatikakis, I.; Dudekula, D.B.; De, S.; Kim, J.; Noh, J.H.; Kim, K.M.; Martindale, J.L.; et al. Identification of HuR Target Circular RNAs Uncovers Suppression of PABPN1 Translation by CircPABPN1. RNA Biol. 2017, 14, 361–369. [Google Scholar] [CrossRef]
- Lv, Y.; Yuan, Z.; Chen, D.; Chen, Z.; Zhu, X.; Ying, X.; Huang, Y.; Ji, W.; Qi, D. Circular RNA LMBR1 Inhibits Bladder Cancer Progression by Enhancing Expression of the Protein ALDH1A3. Noncoding RNA Res. 2024, 9, 1235–1248. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Zuo, Z.; Cui, D.; Xu, Y.; Li, L.; Jiang, Y. Dual Role of Exosomal CircCMTM3 Derived from GSCs in Impeding Degradation and Promoting Phosphorylation of STAT5A to Facilitate Vasculogenic Mimicry Formation in Glioblastoma. Theranostics 2024, 14, 5698–5724. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Y.; Chang, W.; Feng, M.; Yang, Y.; Zhu, X.; Liu, Z.; Fu, Y. CircSEC24B Activates Autophagy and Induces Chemoresistance of Colorectal Cancer via OTUB1-Mediated Deubiquitination of SRPX2. Cell Death Dis. 2024, 15, 693. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, D.J.; Sklirou, E.; Corradi, D.; Grassani, C.; Kontogeorgakos, V.; Rao, U.N.M. Immunohistochemical Analysis of the Endoribonucleases Drosha, Dicer and Ago2 in Smooth Muscle Tumours of Soft Tissues. Histopathology 2012, 60, E28–E36. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Okholm, T.L.H.; Venø, M.T.; Kjems, J. Circular RNAs Are Abundantly Expressed and Upregulated during Human Epidermal Stem Cell Differentiation. RNA Biol. 2018, 15, 280–291. [Google Scholar] [CrossRef]
- Hsiao, K.-Y.; Lin, Y.-C.; Gupta, S.K.; Chang, N.; Yen, L.; Sun, H.S.; Tsai, S.-J. Noncoding Effects of Circular RNA CCDC66 Promote Colon Cancer Growth and Metastasis. Cancer Res. 2017, 77, 2339–2350. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Yang, J.; Ran, F.; Shi, Y.; Yang, L.; Duan, Y.; Shi, Z.; Li, X.; Zhang, J.; Li, Z.; et al. CircBIRC6 Affects Prostate Cancer Progression by Regulating MiR-574-5p and DNAJB1. Cancer Biol. Ther. 2024, 25, 2399363. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Y.; Li, Q.; Yu, C.; Gao, Y.; Tian, B.; Xia, W.; Wang, W.; Xin, L.; Lin, H.; et al. EIF4A3-Mediated Oncogenic CircRNA Hsa_circ_0001165 Advances Esophageal Squamous Cell Carcinoma Progression through the MiR-381-3p/TNS3 Pathway. Cell Biol. Toxicol. 2024, 40, 84. [Google Scholar] [CrossRef]
- Zhang, Y.E.; Liang, Y.; Wu, Y.; Song, L.; Zhang, Z. CircTIAM1 Overexpression Promotes the Progression of Papillary Thyroid Cancer by Regulating the MiR-338-3p/LASP1 Axis. Oncol. Res. 2024, 32, 1747–1763. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, J. Hsa_circ_0129047 Upregulates LYVE1 to Inhibit Hepatocellular Carcinoma Progression by Sponging MiR-492. Dis. Markers 2023, 2023, 6978234. [Google Scholar] [CrossRef]
- Su, X.; Hu, B.; Yi, J.; Zhao, Q.; Zhou, Y.; Zhu, X.; Wu, D.; Fan, Y.; Lin, J.; Cao, C.; et al. Crosstalk between CircBMI1 and MiR-338-5p/ID4 Inhibits Acute Myeloid Leukemia Progression. J. Leukoc. Biol. 2024, 116, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ding, X.; Fang, X.; Xu, J.; Chen, Y.; Qian, Y.; Zhang, J.; Yu, D.; Zhang, X.; Ma, X.; et al. Circ6834 Suppresses Non-Small Cell Lung Cancer Progression by Destabilizing ANHAK and Regulating MiR-873-5p/TXNIP Axis. Mol. Cancer 2024, 23, 128. [Google Scholar] [CrossRef]
- Gibb, E.A.; Brown, C.J.; Lam, W.L. The Functional Role of Long Non-Coding RNA in Human Carcinomas. Mol. Cancer 2011, 10, 38. [Google Scholar] [CrossRef]
- Entezari, M.; Ghanbarirad, M.; Taheriazam, A.; Sadrkhanloo, M.; Zabolian, A.; Goharrizi, M.A.S.B.; Hushmandi, K.; Aref, A.R.; Ashrafizadeh, M.; Zarrabi, A.; et al. Long Non-Coding RNAs and Exosomal LncRNAs: Potential Functions in Lung Cancer Progression, Drug Resistance and Tumor Microenvironment Remodeling. Biomed. Pharmacother. 2022, 150, 112963. [Google Scholar] [CrossRef]
- Kleaveland, B.; Shi, C.Y.; Stefano, J.; Bartel, D.P. A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Cell 2018, 174, 350–362.e17. [Google Scholar] [CrossRef]
- Silenzi, V.; D’Ambra, E.; Santini, T.; D’Uva, S.; Setti, A.; Salvi, N.; Nicoletti, C.; Scarfò, R.; Cordella, F.; Mongiardi, B.; et al. A Tripartite CircRNA/MRNA/MiRNA Interaction Regulates Glutamatergic Signaling in the Mouse Brain. Cell Rep. 2024, 43, 114766. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhao, G.; Yan, X.; Lv, Z.; Yin, H.; Zhang, S.; Song, W.; Li, X.; Li, L.; Du, Z.; et al. A Novel FLI1 Exonic Circular RNA Promotes Metastasis in Breast Cancer by Coordinately Regulating TET1 and DNMT1. Genome Biol. 2018, 19, 218. [Google Scholar] [CrossRef]
- Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. CircRNA Biogenesis Competes with Pre-MRNA Splicing. Mol. Cell 2014, 56, 55–66. [Google Scholar] [CrossRef]
- Barbagallo, D.; Caponnetto, A.; Cirnigliaro, M.; Brex, D.; Barbagallo, C.; D’Angeli, F.; Morrone, A.; Caltabiano, R.; Barbagallo, G.; Ragusa, M.; et al. CircSMARCA5 Inhibits Migration of Glioblastoma Multiforme Cells by Regulating a Molecular Axis Involving Splicing Factors SRSF1/SRSF3/PTB. Int. J. Mol. Sci. 2018, 19, 480. [Google Scholar] [CrossRef]
- Holdt, L.M.; Stahringer, A.; Sass, K.; Pichler, G.; Kulak, N.A.; Wilfert, W.; Kohlmaier, A.; Herbst, A.; Northoff, B.H.; Nicolaou, A.; et al. Circular Non-Coding RNA ANRIL Modulates Ribosomal RNA Maturation and Atherosclerosis in Humans. Nat. Commun. 2016, 7, 12429. [Google Scholar] [CrossRef]
- Yang, Q.; Du, W.W.; Wu, N.; Yang, W.; Awan, F.M.; Fang, L.; Ma, J.; Li, X.; Zeng, Y.; Yang, Z.; et al. A Circular RNA Promotes Tumorigenesis by Inducing C-Myc Nuclear Translocation. Cell Death Differ. 2017, 24, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Conn, V.M.; Gabryelska, M.; Toubia, J.; Kirk, K.; Gantley, L.; Powell, J.A.; Cildir, G.; Marri, S.; Liu, R.; Stringer, B.W.; et al. Circular RNAs Drive Oncogenic Chromosomal Translocations within the MLL Recombinome in Leukemia. Cancer Cell 2023, 41, 1309–1326.e10. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Xia, W.; Chen, R.; Wang, S.; Xu, Y.; Ma, Z.; Xu, W.; Zhang, E.; Wang, J.; Fang, T.; et al. The Circular RNA CircPRKCI Promotes Tumor Growth in Lung Adenocarcinoma. Cancer Res. 2018, 78, 2839–2851. [Google Scholar] [CrossRef]
- Hanniford, D.; Ulloa-Morales, A.; Karz, A.; Berzoti-Coelho, M.G.; Moubarak, R.S.; Sánchez-Sendra, B.; Kloetgen, A.; Davalos, V.; Imig, J.; Wu, P.; et al. Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell 2020, 37, 55–70.e15. [Google Scholar] [CrossRef]
- Ferreira, H.J.; Davalos, V.; de Moura, M.C.; Soler, M.; Perez-Salvia, M.; Bueno-Costa, A.; Setien, F.; Moran, S.; Villanueva, A.; Esteller, M. Circular RNA CpG Island Hypermethylation-Associated Silencing in Human Cancer. Oncotarget 2018, 9, 29208–29219. [Google Scholar] [CrossRef]
- Jakobsen, T.; Dahl, M.; Dimopoulos, K.; Grønbæk, K.; Kjems, J.; Kristensen, L.S. Genome-Wide Circular RNA Expression Patterns Reflect Resistance to Immunomodulatory Drugs in Multiple Myeloma Cells. Cancers 2021, 13, 365. [Google Scholar] [CrossRef]
- Bradley, R.K.; Anczuków, O. RNA Splicing Dysregulation and the Hallmarks of Cancer. Nat. Rev. Cancer 2023, 23, 135–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, J.; Gu, C.; Yang, Y. Alternative Splicing and Cancer: A Systematic Review. Signal Transduct. Target. Ther. 2021, 6, 78. [Google Scholar] [CrossRef]
- Kong, Y.; Luo, Y.; Zheng, S.; Yang, J.; Zhang, D.; Zhao, Y.; Zheng, H.; An, M.; Lin, Y.; Ai, L.; et al. Mutant KRAS Mediates CircARFGEF2 Biogenesis to Promote Lymphatic Metastasis of Pancreatic Ductal Adenocarcinoma. Cancer Res. 2023, 83, 3077–3094. [Google Scholar] [CrossRef]
- Aherrahrou, R.; Lue, D.; Civelek, M. Genetic Regulation of Circular RNA Expression in Human Aortic Smooth Muscle Cells and Vascular Traits. Hum. Genet. Genom. Adv. 2023, 4, 100164. [Google Scholar] [CrossRef]
- Kramer, M.C.; Liang, D.; Tatomer, D.C.; Gold, B.; March, Z.M.; Cherry, S.; Wilusz, J.E. Combinatorial Control of Drosophila Circular RNA Expression by Intronic Repeats, HnRNPs, and SR Proteins. Genes Dev. 2015, 29, 2168–2182. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.; Jin, M.; Jia, Q.; Wu, Y.; Hart, K.; Bargoma, E.; Pangallo, J.; Bradley, R.K.; Abdel-Wahab, O.; Jia, Z.; et al. RNA Splicing Factor Mutations Drive Aberrant Canonical and Cryptic Circular RNA Biogenesis in Leukemia. Blood 2023, 142, 1395. [Google Scholar] [CrossRef]
- Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA Binding Protein Quaking Regulates Formation of CircRNAs. Cell 2015, 160, 1125–1134. [Google Scholar] [CrossRef]
- Wang, M.; Hou, J.; Müller-McNicoll, M.; Chen, W.; Schuman, E.M. Long and Repeat-Rich Intronic Sequences Favor Circular RNA Formation under Conditions of Reduced Spliceosome Activity. iScience 2019, 20, 237–247. [Google Scholar] [CrossRef]
- Shu, X.; Yi, J.; Li, J.; Ying, Y.; Tang, Y.; Chen, Z.; Wang, J.; Zhang, F.; Lu, D.; Wu, Y.; et al. N6-Methyladenosine-Modified CircRPS6KC1 Regulated Cellular Senescence in Prostate Cancer via FOXM1/PCNA Axis. Cell. Signal. 2025, 125, 111510. [Google Scholar] [CrossRef]
- Pisignano, G.; Michael, D.C.; Visal, T.H.; Pirlog, R.; Ladomery, M.; Calin, G.A. Going Circular: History, Present, and Future of CircRNAs in Cancer. Oncogene 2023, 42, 2783–2800. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; Yang, Y.; Liu, Z.; Sun, S.; Li, R.; Zhu, H.; Li, T.; Zheng, J.; Li, J.; et al. Circular RNAs in Human Diseases. MedComm 2024, 5, e699. [Google Scholar] [CrossRef]
- Vo, J.N.; Cieslik, M.; Zhang, Y.; Shukla, S.; Xiao, L.; Zhang, Y.; Wu, Y.-M.; Dhanasekaran, S.M.; Engelke, C.G.; Cao, X.; et al. The Landscape of Circular RNA in Cancer. Cell 2019, 176, 869–881.e13. [Google Scholar] [CrossRef]
- Gao, Y.; Shang, S.; Guo, S.; Li, X.; Zhou, H.; Liu, H.; Sun, Y.; Wang, J.; Wang, P.; Zhi, H.; et al. Lnc2Cancer 3.0: An Updated Resource for Experimentally Supported LncRNA/CircRNA Cancer Associations and Web Tools Based on RNA-Seq and ScRNA-Seq Data. Nucleic Acids Res. 2021, 49, D1251–D1258. [Google Scholar] [CrossRef]
- Meng, X.; Hu, D.; Zhang, P.; Chen, Q.; Chen, M. CircFunBase: A Database for Functional Circular RNAs. Database 2019, 2019, baz003. [Google Scholar] [CrossRef]
- Yang, J.-H.; Shao, P.; Zhou, H.; Chen, Y.-Q.; Qu, L.-H. DeepBase: A Database for Deeply Annotating and Mining Deep Sequencing Data. Nucleic Acids Res. 2010, 38, D123–D130. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Q.; Shen, J.; Yang, B.B.; Ding, X. Circbank: A Comprehensive Database for CircRNA with Standard Nomenclature. RNA Biol. 2019, 16, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Qu, H. CircVAR Database: Genome-Wide Archive of Genetic Variants for Human Circular RNAs. BMC Genom. 2020, 21, 750. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Qiu, Z.; Chi-Shing Cho, W.; Liu, Z.; Chen, S.; Li, H.; Chen, K.; Li, Y.; Zuo, C.; Qiu, M. Synthetic CircRNA Therapeutics: Innovations, Strategies, and Future Horizons. MedComm 2024, 5, e720. [Google Scholar] [CrossRef]
- Chen, R.; Wang, S.K.; Belk, J.A.; Amaya, L.; Li, Z.; Cardenas, A.; Abe, B.T.; Chen, C.-K.; Wender, P.A.; Chang, H.Y. Engineering Circular RNA for Enhanced Protein Production. Nat. Biotechnol. 2023, 41, 262–272. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Wang, H.; Cao, J.; Huang, X.; Chen, Z.; Xu, P.; Sun, G.; Xu, J.; Lv, J.; et al. Circular RNA CircNRIP1 Acts as a MicroRNA-149-5p Sponge to Promote Gastric Cancer Progression via the AKT1/MTOR Pathway. Mol. Cancer 2019, 18, 20. [Google Scholar] [CrossRef]
- Sun, Y.-M.; Wang, W.-T.; Zeng, Z.-C.; Chen, T.-Q.; Han, C.; Pan, Q.; Huang, W.; Fang, K.; Sun, L.-Y.; Zhou, Y.-F.; et al. CircMYBL2, a CircRNA from MYBL2, Regulates FLT3 Translation by Recruiting PTBP1 to Promote FLT3-ITD AML Progression. Blood 2019, 134, 1533–1546. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.; He, L.; Zhang, J.; Zhu, X.; Liu, N.; Wang, J.; Lu, T.; He, L.; Tian, Y.; et al. Circular RNA CircIPO11 Drives Self-Renewal of Liver Cancer Initiating Cells via Hedgehog Signaling. Mol. Cancer 2021, 20, 132. [Google Scholar] [CrossRef]
- Xia, Q.; Ding, T.; Zhang, G.; Li, Z.; Zeng, L.; Zhu, Y.; Guo, J.; Hou, J.; Zhu, T.; Zheng, J.; et al. Circular RNA Expression Profiling Identifies Prostate Cancer- Specific CircRNAs in Prostate Cancer. Cell. Physiol. Biochem. 2018, 50, 1903–1915. [Google Scholar] [CrossRef]
- Enuka, Y.; Lauriola, M.; Feldman, M.E.; Sas-Chen, A.; Ulitsky, I.; Yarden, Y. Circular RNAs Are Long-Lived and Display Only Minimal Early Alterations in Response to a Growth Factor. Nucleic Acids Res. 2016, 44, 1370–1383. [Google Scholar] [CrossRef]
- Leung, K.T.; Cai, J.; Liu, Y.; Chan, K.Y.Y.; Shao, J.; Yang, H.; Hu, Q.; Xue, Y.; Wu, X.; Guo, X.; et al. Prognostic Implications of CD9 in Childhood Acute Lymphoblastic Leukemia: Insights from a Nationwide Multicenter Study in China. Leukemia 2024, 38, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.T.; Zhang, C.; Chan, K.Y.Y.; Li, K.; Cheung, J.T.K.; Ng, M.H.L.; Zhang, X.-B.; Sit, T.; Lee, W.Y.W.; Kang, W.; et al. CD9 Blockade Suppresses Disease Progression of High-Risk Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia and Enhances Chemosensitivity. Leukemia 2020, 34, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yuan, L.; Li, J.; Liu, Y.; Wang, H.; Ren, X. CircDENND4C, a Novel Serum Marker for Epithelial Ovarian Cancer, Acts as a Tumor Suppressor by Downregulating MiR-200b/c. Ann. Med. 2023, 55, 908–919. [Google Scholar] [CrossRef]
- Sun, X.-H.; Wang, Y.-T.; Li, G.-F.; Zhang, N.; Fan, L. Serum-Derived Three-CircRNA Signature as a Diagnostic Biomarker for Hepatocellular Carcinoma. Cancer Cell Int. 2020, 20, 226. [Google Scholar] [CrossRef]
- Omid-Shafaat, R.; Moayeri, H.; Rahimi, K.; Menbari, M.; Vahabzadeh, Z.; Hakhamaneshi, M.; Nouri, B.; Ghaderi, B.; Abdi, M. Serum Circ-FAF1/Circ-ELP3: A Novel Potential Biomarker for Breast Cancer Diagnosis. J. Clin. Lab. Anal. 2021, 35, e24008. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Dong, X.; Song, X. Tumor Educated Platelet: The Novel BioSource for Cancer Detection. Cancer Cell Int. 2023, 23, 91. [Google Scholar] [CrossRef]
- Sultana, Q.; Kar, J.; Verma, A.; Sanghvi, S.; Kaka, N.; Patel, N.; Sethi, Y.; Chopra, H.; Kamal, M.A.; Greig, N.H. A Comprehensive Review on Neuroendocrine Neoplasms: Presentation, Pathophysiology and Management. J. Clin. Med. 2023, 12, 5138. [Google Scholar] [CrossRef]
- Huang, D.; Zhu, X.; Ye, S.; Zhang, J.; Liao, J.; Zhang, N.; Zeng, X.; Wang, J.; Yang, B.; Zhang, Y.; et al. Tumour Circular RNAs Elicit Anti-Tumour Immunity by Encoding Cryptic Peptides. Nature 2024, 625, 593–602. [Google Scholar] [CrossRef]
- Naseer, Q.A.; Malik, A.; Zhang, F.; Chen, S. Exploring the Enigma: History, Present, and Future of Long Non-Coding RNAs in Cancer. Discov. Oncol. 2024, 15, 214. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Fernandes, J.C.R.; Acuña, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA 2019, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science 2010, 329, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Cao, J. The Functional Role of Long Non-Coding RNAs and Epigenetics. Biol. Proced. Online 2014, 16, 42. [Google Scholar] [CrossRef]
- Qian, Y.; Shi, L.; Luo, Z. Long Non-Coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front. Med. 2020, 7, 612393. [Google Scholar] [CrossRef] [PubMed]
- Karimi, B.; Dehghani Firoozabadi, A.; Peymani, M.; Ghaedi, K. Circulating Long Noncoding RNAs as Novel Bio-Tools: Focus on Autoimmune Diseases. Hum. Immunol. 2022, 83, 618–627. [Google Scholar] [CrossRef]
- Liang, J.; Xie, F.; Feng, J.; Huang, C.; Shen, J.; Han, Z.; Luo, W.; He, J.; Chen, H. Progress in the Application of Body Fluid and Tissue Level MRNAs-Non-Coding RNAs for the Early Diagnosis and Prognostic Evaluation of Systemic Lupus Erythematosus. Front. Immunol. 2022, 13, 1020891. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.; Li, H.; Deng, X.; Sheng, M. Application Value of Circulating LncRNA in Diagnosis, Treatment, and Prognosis of Breast Cancer. Funct. Integr. Genom. 2023, 23, 61. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Fullwood, M.J. Roles, Functions, and Mechanisms of Long Non-Coding RNAs in Cancer. Genom. Proteom. Bioinform. 2016, 14, 42–54. [Google Scholar] [CrossRef]
- Karimi, B.; Mokhtari, K.; Rozbahani, H.; Peymani, M.; Nabavi, N.; Entezari, M.; Rashidi, M.; Taheriazam, A.; Ghaedi, K.; Hashemi, M. Pathological Roles of MiRNAs and Pseudogene-Derived LncRNAs in Human Cancers, and Their Comparison as Prognosis/Diagnosis Biomarkers. Pathol. Res. Pract. 2024, 253, 155014. [Google Scholar] [CrossRef]
- Kritika, C. Transforming “Junk” DNA into Cancer Warriors: The Role of Pseudogenes in Hepatocellular Carcinoma. Cancer Diagn. Progn. 2024, 4, 214–222. [Google Scholar] [CrossRef]
- Sun, T.-T.; He, J.; Liang, Q.; Ren, L.-L.; Yan, T.-T.; Yu, T.-C.; Tang, J.-Y.; Bao, Y.-J.; Hu, Y.; Lin, Y.; et al. LncRNA GClnc1 Promotes Gastric Carcinogenesis and May Act as a Modular Scaffold of WDR5 and KAT2A Complexes to Specify the Histone Modification Pattern. Cancer Discov. 2016, 6, 784–801. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Lv, X.; Ru, Y.; Zhou, F.; Wang, N.; Xi, H.; Zhang, K.; Li, J.; Chang, R.; Xie, T.; et al. Circulating Exosomal Gastric Cancer–Associated Long Noncoding RNA1 as a Biomarker for Early Detection and Monitoring Progression of Gastric Cancer. JAMA Surg. 2020, 155, 572. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Lv, X.; Ru, Y.; Dong, J.; Chang, R.; Wu, D.; Chen, L.; Wang, X.; Guo, X. Circulating Exosomal Gastric Cancer-Associated Long Noncoding RNA1 as a Noninvasive Biomarker for Predicting Chemotherapy Response and Prognosis of Advanced Gastric Cancer: A Multi-Cohort, Multi-Phase Study. EBioMedicine 2022, 78, 103971. [Google Scholar] [CrossRef]
- Yang, J.; Qi, M.; Fei, X.; Wang, X.; Wang, K. LncRNA H19: A Novel Oncogene in Multiple Cancers. Int. J. Biol. Sci. 2021, 17, 3188–3208. [Google Scholar] [CrossRef]
- Alipoor, B.; Parvar, S.N.; Sabati, Z.; Ghaedi, H.; Ghasemi, H. An Updated Review of the H19 LncRNA in Human Cancer: Molecular Mechanism and Diagnostic and Therapeutic Importance. Mol. Biol. Rep. 2020, 47, 6357–6374. [Google Scholar] [CrossRef]
- Guo, G.; Kang, Q.; Chen, Q.; Chen, Z.; Wang, J.; Tan, L.; Chen, J.-L. High Expression of Long Non-coding RNA H19 Is Required for Efficient Tumorigenesis Induced by Bcr-Abl Oncogene. FEBS Lett. 2014, 588, 1780–1786. [Google Scholar] [CrossRef]
- Asadi, M.; Gholampour, M.A.; Kompani, F.; Alizadeh, S. Expression of Long Non-Coding RNA H19 in Acute Lymphoblastic Leukemia. Cell J. 2023, 25, 1. [Google Scholar] [CrossRef]
- Rojas, Á.; Gil-Gómez, A.; de la Cruz-Ojeda, P.; Muñoz-Hernández, R.; Sánchez-Torrijos, Y.; Gallego-Durán, R.; Millán, R.; Rico, M.C.; Montero-Vallejo, R.; Gato-Zambrano, S.; et al. Long Non-coding RNA H19 as a Biomarker for Hepatocellular Carcinoma. Liver Int. 2022, 42, 1410–1422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhou, J.; Zhang, W.; Lin, J.; Ma, J.; Wen, X.; Yuan, Q.; Li, X.; Xu, Z.; Qian, J. H19 Overexpression Promotes Leukemogenesis and Predicts Unfavorable Prognosis in Acute Myeloid Leukemia. Clin. Epigenet. 2018, 10, 47. [Google Scholar] [CrossRef]
- May, A.M.; Frey, A.-V.; Bogatyreva, L.; Benkisser-Petersen, M.; Hauschke, D.; Lübbert, M.; Wäsch, R.; Werner, M.; Hasskarl, J.; Lassmann, S. ID2 and ID3 Protein Expression Mirrors Granulopoietic Maturation and Discriminates between Acute Leukemia Subtypes. Histochem. Cell Biol. 2014, 141, 431–440. [Google Scholar] [CrossRef]
- Zhao, T.-F.; Jia, H.-Z.; Zhang, Z.-Z.; Zhao, X.-S.; Zou, Y.-F.; Zhang, W.; Wan, J.; Chen, X.-F. LncRNA H19 Regulates ID2 Expression through Competitive Binding to Hsa-MiR-19a/b in Acute Myelocytic Leukemia. Mol. Med. Rep. 2017, 16, 3687–3693. [Google Scholar] [CrossRef] [PubMed]
- Nokkeaw, A.; Thamjamrassri, P.; Chantaravisoot, N.; Tangkijvanich, P.; Ariyachet, C. Long Non-Coding RNA H19 Promotes Proliferation in Hepatocellular Carcinoma Cells via H19/MiR-107/CDK6 Axis. Oncol. Res. 2023, 31, 989–1005. [Google Scholar] [CrossRef]
- Wang, K.C.; Yang, Y.W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B.R.; Protacio, A.; Flynn, R.A.; Gupta, R.A.; et al. A Long Noncoding RNA Maintains Active Chromatin to Coordinate Homeotic Gene Expression. Nature 2011, 472, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, Q.; Wu, X.; Chen, P. LncRNA HOTTIP Promotes Ovarian Cancer Cell Invasion And Metastasis By Stabilizing Hif-1α In The Anoxic Cellular Microenvironment. Acta Endocrinol. (Buchar.) 2022, 18, 263–270. [Google Scholar] [CrossRef]
- Feng, H.; Zhao, F.; Luo, J.; Xu, S.; Liang, Z.; Xu, W.; Bao, Y.; Qin, G. Long Non-Coding RNA HOTTIP Exerts an Oncogenic Function by Regulating HOXA13 in Nasopharyngeal Carcinoma. Mol. Biol. Rep. 2023, 50, 6807–6818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, Z.; Fu, Y.; Wang, J. Long Non-Coding RNA HOTTIP Promotes Renal Cell Carcinoma Progression through the Regulation of the MiR-506 Pathway. Aging 2024, 16, 10832–10840. [Google Scholar] [CrossRef]
- Quagliata, L.; Matter, M.S.; Piscuoglio, S.; Arabi, L.; Ruiz, C.; Procino, A.; Kovac, M.; Moretti, F.; Makowska, Z.; Boldanova, T.; et al. Long Noncoding RNA HOTTIP/HOXA13 Expression Is Associated with Disease Progression and Predicts Outcome in Hepatocellular Carcinoma Patients. Hepatology 2014, 59, 911–923. [Google Scholar] [CrossRef]
- Liu, T.; Wang, H.; Yu, H.; Bi, M.; Yan, Z.; Hong, S.; Li, S. The Long Non-Coding RNA HOTTIP Is Highly Expressed in Colorectal Cancer and Enhances Cell Proliferation and Invasion. Mol. Ther. Nucleic Acids 2020, 19, 612–618. [Google Scholar] [CrossRef]
- Wei, H.; Xu, Z.; Chen, L.; Wei, Q.; Huang, Z.; Liu, G.; Li, W.; Wang, J.; Tang, Q.; Pu, J. Long Non-Coding RNA PAARH Promotes Hepatocellular Carcinoma Progression and Angiogenesis via Upregulating HOTTIP and Activating HIF-1α/VEGF Signaling. Cell Death Dis. 2022, 13, 102. [Google Scholar] [CrossRef]
- Jin, J.; Byun, J.-K.; Choi, Y.-K.; Park, K.-G. Targeting Glutamine Metabolism as a Therapeutic Strategy for Cancer. Exp. Mol. Med. 2023, 55, 706–715. [Google Scholar] [CrossRef]
- Kim, S.S.; Baek, G.O.; Son, J.A.; Ahn, H.R.; Yoon, M.K.; Cho, H.J.; Yoon, J.H.; Nam, S.W.; Cheong, J.Y.; Eun, J.W. Early Detection of Hepatocellular Carcinoma via Liquid Biopsy: Panel of Small Extracellular Vesicle-derived Long Noncoding RNAs Identified as Markers. Mol. Oncol. 2021, 15, 2715–2731. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Jiang, Y.; Wang, N.; Su, H.; Han, X. Long Noncoding RNAs MALAT1 and HOTTIP Act as Serum Biomarkers for Hepatocellular Carcinoma. Cancer Control 2024, 31, 10732748241284821. [Google Scholar] [CrossRef]
- Ali Akbar-Esfahani, S.; Karimipoor, M.; Bahreini, F.; Soltania, A.R.; Aletaha, N.; Mahdavinezhad, A. Diagnostic Value of Plasma Long Non-Coding RNA HOTTIP as a Non-Invasive Biomarker for Colorectal Cancer (A Case- Control Study). Int. J. Mol. Cell. Med. 2019, 8, 240–247. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Zhang, Q.; Liu, B.; Cheng, Y.; Zhang, Y.; Sun, Y.; Liu, J.; Gen, H. Exosomal Long Non-Coding RNA HOTTIP Increases Resistance of Colorectal Cancer Cells to Mitomycin via Impairing MiR-214-Mediated Degradation of KPNA3. Front. Cell Dev. Biol. 2021, 8, 582723. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Xu, Q.; Sun, L.; Wen, J.; Fang, X.; Xing, C.; Yuan, Y. Four Novel Polymorphisms in Long Non-Coding RNA HOTTIP Are Associated with the Risk and Prognosis of Colorectal Cancer. Biosci. Rep. 2019, 39, BSR20180573. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Guan, M.-X.; Zhou, T.; Cai, X.; Shan, G. Emerging Functions of Mitochondria-Encoded Noncoding RNAs. Trends Genet. 2023, 39, 125–139. [Google Scholar] [CrossRef]
- Piergentili, R.; Sechi, S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int. J. Mol. Sci. 2024, 25, 7498. [Google Scholar] [CrossRef]
- Burzio, V.A.; Villota, C.; Villegas, J.; Landerer, E.; Boccardo, E.; Villa, L.L.; Martínez, R.; Lopez, C.; Gaete, F.; Toro, V.; et al. Expression of a Family of Noncoding Mitochondrial RNAs Distinguishes Normal from Cancer Cells. Proc. Natl. Acad. Sci. USA 2009, 106, 9430–9434. [Google Scholar] [CrossRef]
- Villegas, J.; Burzio, V.; Villota, C.; Landerer, E.; Martinez, R.; Santander, M.; Martinez, R.; Pinto, R.; Vera, M.I.; Boccardo, E.; et al. Expression of a Novel Non-Coding Mitochondrial RNA in Human Proliferating Cells. Nucleic Acids Res. 2007, 35, 7336–7347. [Google Scholar] [CrossRef]
- Owens, G.K.; Kumar, M.S.; Wamhoff, B.R. Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiol. Rev. 2004, 84, 767–801. [Google Scholar] [CrossRef]
- Kong, P.; Wang, X.; Gao, Y.K.; Zhang, D.D.; Huang, X.F.; Song, Y.; Zhang, W.D.; Guo, R.J.; Li, H.; Han, M. RGS5 Maintaining Vascular Homeostasis Is Altered by the Tumor Microenvironment. Biol. Direct 2023, 18, 78. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X.; Cao, J.; Yang, Z.; Cao, X.; Zhang, Y.; Liang, L.; Zheng, M.; Liu, X.; Zhang, J.; et al. SM22α+ Vascular Mural Cells Are Essential for Vessel Stability in Tumors and Undergo Phenotype Transition Regulated by Notch Signaling. J. Exp. Clin. Cancer Res. 2020, 39, 1–14. [Google Scholar] [CrossRef]
- Bongolo, C.C.; Thokerunga, E.; Fidele, N.B.; Souraka, T.D.M.; Kisembo, P.; Rugera, S.P.; Worley, P.F.; Tu, J.C. Upregulation of the Long Non-Coding RNA, LIPCAR Promotes Proliferation, Migration, and Metastasis of Hepatocellular Carcinoma. Cancer Biomark. 2022, 35, 245–256. [Google Scholar] [CrossRef]
- Wang, H.; Song, T.; Zhao, Y.; Zhao, J.; Wang, X.; Fu, X. Long Non-Coding RNA LICPAR Regulates Atrial Fibrosis via TGF-β/Smad Pathway in Atrial Fibrillation. Tissue Cell 2020, 67, 101440. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, S.; Zhou, L.; Li, X.; Meng, Y.; Li, Y.; Li, L.; Jiao, B.; Bai, L.; Yu, Y.; et al. Aberrant Shuttling of Long Noncoding RNAs during the Mitochondria-Nuclear Crosstalk in Hepatocellular Carcinoma Cells. Am. J. Cancer Res. 2019, 9, 1008. [Google Scholar]
- Xu, Q.; Liao, Z.; Gong, Z.; Liu, X.; Yang, Y.; Wang, Z.; Yang, W.; Hou, L.; Yang, J.; Song, J.; et al. Down-Regulation of EVA1A by MiR-103a-3p Promotes Hepatocellular Carcinoma Cells Proliferation and Migration. Cell Mol. Biol. Lett. 2022, 27, 93. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, X. MiR-103a-3p Contributes to the Progression of Colorectal Cancer by Regulating GREM2 Expression. Yonsei Med. J. 2022, 63, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huhe, M.; Lou, J. MicroRNA-103a-3p Promotes Cell Proliferation and Invasion in Non-Small-Cell Lung Cancer Cells through Akt Pathway by Targeting PTEN. BioMed Res. Int. 2021, 2021, 7590976. [Google Scholar] [CrossRef]
- Fang, P.; Jiang, Q.; Liu, S.; Gu, J.; Hu, K.; Wang, Z. Circ_0002099 Is a Novel Molecular Therapeutic Target for Bladder Cancer. Drug Dev. Res. 2022, 83, 1890–1905. [Google Scholar] [CrossRef]
- Huang, J.; Lin, F.; Xu, C.; Xu, Y. LINC00662 Facilitates Osteosarcoma Progression via Sponging MiR-103a-3p and Regulating SIK2 Expression. J. Tissue Eng. Regen. Med. 2021, 15, 1082–1091. [Google Scholar] [CrossRef]
- Chen, Z.; He, Q.; Lu, T.; Wu, J.; Shi, G.; He, L.; Zong, H.; Liu, B.; Zhu, P. McPGK1-Dependent Mitochondrial Import of PGK1 Promotes Metabolic Reprogramming and Self-Renewal of Liver TICs. Nat. Commun. 2023, 14, 1121. [Google Scholar] [CrossRef]
- Li, J.; Bai, R.; Yang, W.; Miao, H.; Li, Y.; Dai, H.; Li, L.; Zhao, Y.; Song, X. The Mitochondrial-derived LncRNA MDL1 Mediates a Mitochondria-to-nucleus Retrograde Regulation by Inhibiting the Nuclear Translocation of P53. MedComm—Oncology 2022, 1, e15. [Google Scholar] [CrossRef]
- Fischer, M. Census and Evaluation of P53 Target Genes. Oncogene 2017, 36, 3943–3956. [Google Scholar] [CrossRef] [PubMed]
- Garrido, P.; Casas-Benito, A.; Larrayoz, I.M.; Narro-Íñiguez, J.; Rubio-Mediavilla, S.; Zozaya, E.; Martín-Carnicero, A.; Martínez, A. Expression of Mitochondrial Long Non-Coding RNAs, MDL1 and MDL1AS, Are Good Prognostic and/or Diagnostic Biomarkers for Several Cancers, Including Colorectal Cancer. Cancers 2024, 16, 960. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Sun, H.; Wang, C.; Liu, W.; Liu, M.; Zhu, Y.; Xu, W.; Jin, H.; Li, J. Mitochondrial Genome-Derived CircRNA Mc-COX2 Functions as an Oncogene in Chronic Lymphocytic Leukemia. Mol. Ther. Nucleic Acids 2020, 20, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Li, J.; Hu, S.; Deng, Y.; Yin, H.; Bao, X.; Zhang, Q.C.; Wang, G.; Wang, B.; et al. Identification of MeacciRNAs and Their Roles in the Mitochondrial Entry of Proteins. Sci. China Life Sci. 2020, 63, 1429–1449. [Google Scholar] [CrossRef]
- Sainero-Alcolado, L.; Liaño-Pons, J.; Ruiz-Pérez, M.V.; Arsenian-Henriksson, M. Targeting Mitochondrial Metabolism for Precision Medicine in Cancer. Cell Death Differ. 2022, 29, 1304–1317. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, B.; Huang, Y.; Zhang, Y.; Jiang, Y.; Ma, L.; Shen, Y.-Q. Mitochondrial DNA-Targeted Therapy: A Novel Approach to Combat Cancer. Cell Insight 2023, 2, 100113. [Google Scholar] [CrossRef]
- Bonekamp, N.A.; Peter, B.; Hillen, H.S.; Felser, A.; Bergbrede, T.; Choidas, A.; Horn, M.; Unger, A.; Di Lucrezia, R.; Atanassov, I.; et al. Small-Molecule Inhibitors of Human Mitochondrial DNA Transcription. Nature 2020, 588, 712–716. [Google Scholar] [CrossRef]
- Araya, M.; Sepúlveda, F.; Villegas, J.; Alarcón, L.; Burzio, L.O.; Burzio, V.A.; Borgna, V. Knockdown of Antisense Noncoding Mitochondrial RNA Reduces Tumorigenicity of Patient-Derived Clear Cell Renal Carcinoma Cells in an Orthotopic Xenograft Mouse Model. Cancers 2024, 16, 830. [Google Scholar] [CrossRef]
- Fitzpatrick, C.; Bendek, M.F.; Briones, M.; Farfán, N.; Silva, V.A.; Nardocci, G.; Montecino, M.; Boland, A.; Deleuze, J.F.; Villegas, J.; et al. Mitochondrial NcRNA Targeting Induces Cell Cycle Arrest and Tumor Growth Inhibition of MDA-MB-231 Breast Cancer Cells through Reduction of Key Cell Cycle Progression Factors. Cell Death Dis. 2019, 10, 423. [Google Scholar] [CrossRef] [PubMed]
- Bendek, M.F.; Fitzpatrick, C.; Jeldes, E.; Boland, A.; Deleuze, J.F.; Farfán, N.; Villegas, J.; Nardocci, G.; Montecino, M.; Burzio, L.O.; et al. Inverse Modulation of Aurora Kinase A and Topoisomerase IIα in Normal and Tumor Breast Cells upon Knockdown of Mitochondrial ASncmtRNA. Noncoding RNA 2023, 9, 59. [Google Scholar] [CrossRef] [PubMed]
Abbreviation General Term | Definition | Abbreviation Cancer | Definition |
---|---|---|---|
AAV | Adeno-associated virus | ALCL | Anaplastic large-cell lymphoma |
agshRNA | Ago2-dependent shRNA | ATLL | Adult T-cell leukemia/lymphoma |
ASO | Antisense oligonucleotide | ALL | Acute lymphoblastic leukemia |
ceRNA | Competing endogenous RNA | B-ALL | B-type acute lymphoblastic leukemia |
CNV | Copy number variation | BlC | Bladder cancer |
CT | Clinical trial | BrC | Breast cancer |
DNMT | DNA methyltransferase | CC | Cervical cancer |
ds | Double-stranded | ccRCC | Clear cell renal cell carcinoma |
EBV | Epstein–Barr virus | CLL | Chronic lymphocytic leukemia |
EMT | Epithelial–mesenchymal transition | ChC | Cholangiocarcinoma |
eRNA | Enhancer RNA | CRC | Colorectal cancer |
EV | Extracellular vesicles | DLBCL | Diffuse large B-cell lymphoma |
GCO | Global Cancer Observatory | EOC | Epithelial ovarian cancer |
GWAS | Genome-wide association studies | GB | Glioblastoma |
HTLV-1 | Human T-cell leukemia virus type 1 | GC | Gastric cancer |
IARC | International Agency for Research on Cancer | GcC | Gastric cardia cancer |
IRES | Internal ribosome entry site | HCC | Hepatocellular carcinoma |
lincRNA | Long intergenic ncRNA | HNC | Head and neck cancer |
LNA | Locked nucleic acid | ||
LNP | Lipid nanoparticle | LAC | Lung adenocarcinoma |
miRNA/miR | microRNA | LarC | Laryngeal cancer |
MRE | miRNA recognition element | LC | Lung cancer |
mRNA | Messenger RNA | Me | Melanome |
MTD | Maximum tolerated dose | MF-CTCL | Mycosis fungoides-type cutaneous T-cell lymphoma |
mtDNA | Mitochondrial DNA | MPM | Malignant pleural mesothelioma |
mt-ncRNA | Mitochondrial noncoding RNA | NEN | Neuroendocrine neoplasm |
m6A | N6-methyladenosine | NSCLC | Non-small-cell lung cancer |
NamiRNA | Nuclear activating miRNA | OC | Ovarian cancer |
NCI | National Cancer Institute | PaC | Pancreatic cancer |
nDNA | Nuclear DNA | PDAC | Pancreaticobiliary cancer |
NER | Nucleotide base repair | PM | Peritoneal mesothelioma |
nPC | Non-protein-coding | PTC | Papillary thyroid carcinoma |
nt | Nucleotide | PrC | Prostate cancer |
PEG | Polyethylene glycol | RC | Renal cancer |
PC | Protein-coding | Sa | Sarcoma |
piRNA | Piwi-interacting RNA | SCLC | Small-cell lung cancer |
PS | Nucleotide phosphorothioate | TNBC | Triple-negative breast cancer |
PSA | Prostate-specific antigen | ThC | Thyroid cancer |
PTGS | Post-transcriptional gene silencing | ||
RBP | RNA-binding protein | ||
RNAi | RNA interference | ||
rRNA | Ribosomal RNA | ||
shRNA | Short hairpin RNA | ||
siLNA | Combination of mixmers and siRNA | ||
sncRNA | Short noncoding RNA | ||
snoRNA | Small nucleolar RNA | ||
SNP | Single-nucleotide polymorphism | ||
snRNA | Small nuclear RNA | ||
snRNP | Small nuclear ribonucleoprotein | ||
SNV | Single-nucleotide variant | ||
ss | Single-stranded | ||
TE | Transposable element | ||
TERC | Telomerase RNA component | ||
TGS | Transcriptional gene silencing | ||
tRNA | Transfer RNA | ||
UTR | Untranslated region | ||
VM | Vasculogenic mimicry | ||
WHO | World Health Organization |
Drug Strategy 1 | Drug Name | Target | Cancer Type 2 | Recruitment Status 3 | Clinical Trial Phase | Clinical Trial Identifier 4 | Ref. 5 |
---|---|---|---|---|---|---|---|
LNA | LNA-i-Mir-221 | miRNA-221 | BrC, CRC, GC, GB, HCC, OC, PC, PM | Completed | Phase 1 | NCT04811898 | [222] |
Cobomarsen/ MRG-106 | miR-155 | MF-CTCL, CLL, DLBCL, ATLL | Completed | Phase 1 | NCT02580552 | [223] | |
MF-CTCL | Terminated | Phase 2 | NCT03837457 | n/a | |||
MF-CTCL | Terminated | Phase 2 | NCT03713320 | n/a | |||
miRNA-M | MRX34 | miR-34a | HCC, Mel, SCLC, TNBC, Sa, BlC, RC, OC | Terminated | Phase 1 | NCT01829971 | [224] |
MRX34 | miR-34a | Me | Withdrawn | Phase 1 | NCT02862145 | n/a | |
Targomir | miR-16 | MPM, NSCLC | Completed | Phase 1 | NCT02369198 | [225] | |
INT-1B3 | miR-193a-3p | Adv. mal. | Terminated | Phase 1 | NCT04675996 | [226] | |
ASO | Andes-1537 | ASncmtRNA-1 ASncmtRNA-2 | AUST | Terminated | Phase 1 | NCT02508441 | [227] |
GBTC, CC, GC, PaC, CRC | Completed | Phase 1 | NCT03985072 | n/a |
ncRNA Type | Clinical Trials Identifier 1 | Start Year | Recruitment Status 2 | Biomarker Purpose | Sample Analyzed | Cancer Type 3 |
---|---|---|---|---|---|---|
miRNA | NCT06738225 | 2025 | Not yet recruiting | Diagnostic | Serum | CRC |
miRNA | NCT06610851 | 2024 | Recruiting | Diagnostic | Blood | Gliomas, grades 2 and 3 |
miRNA | NCT06203496 | 2024 | Recruiting | Diagnostic | Blood | Gliomas, grade 4 |
miRNA | NCT06730035 | 2024 | Active, not recruiting | Prognostic | Blood | CRC |
miRNA | NCT06702891 | 2024 | Not yet recruiting | Diagnostic | Multiple biological samples, e.g., serum and tissue | GcC |
miRNA | NCT06224166 | 2023 | Recruiting | Diagnostic | Tissue samples, blood and saliva evaluated | HNC |
miRNA | NCT06001099 | 2023 | Recruiting | Diagnostic | Blood | Gynecologic cancers |
miRNA | NCT05901376 | 2023 | Recruiting | Diagnostic | Blood | GA |
miRNA | NCT06240195 | 2023 | Recruiting | Prognostic | Blood, plasma | TNBC, metastatic phase |
miRNA | NCT05697224 | 2023 | Not yet recruiting | Diagnostic and prognostic | Urine | Bilharzial BlC |
miRNA | NCT05746858 | 2023 | Not yet recruiting | Prognostic | Plasma, serum | DLBCL, relapsed/ refractory |
miRNA | NCT06320184 | 2023 | Active, not recruiting | Diagnostic | Blood | LC |
piRNA | NCT06320418 | 2022 | Active, not recruiting | Prognostic | Tissue | OC |
piRNA | NCT04835454 | 2021 | Unknown status | Diagnostic | Not specified | PrC |
ncRNA Type | Clinical Trials Identifier 1 | Start Year | Recruitment Status 2 | Biomarker Purpose | Samples Analyzed | Cancer Type 3 |
---|---|---|---|---|---|---|
circRNA | NCT06649253 | 2025 | Not yet recruiting | Diagnostic and prognostic | Bone tissue and blood | B-ALL |
circRNA | NCT06617585 | 2024 | Not yet recruiting | Diagnostic | Serum | EOC |
circRNA | NCT06042842 | 2023 | Not yet recruiting | Diagnostic | Plasma | HCC |
circRNA | NCT05934045 | 2023 | Active, not recruiting | Prognostic | Serum | ALCL |
circRNA | NCT05771337 | 2023 | Not yet recruiting | Diagnostic | Serum | BrC |
circRNA | NCT05377736 | 2022 | Enrolling by invitation | Diagnostic | Tissue and blood | ThC |
circRNA | NCT04464122 | 2020 | Recruiting | Diagnostic and prognostic | Blood | NENs (pulmonary and gastro-entero-pancreatic) |
circRNA | NCT04584996 | 2020 | Unknown | Diagnostic and prognostic | Tissue, blood, bile, and biopsy | PDAC |
circRNA | NCT03334708 | 2017 | Recruiting | Diagnostic | Blood | PDAC |
lncRNA | NCT06531850 | 2024 | Recruiting | Diagnostic | Serum | LC |
lncRNA | NCT06307249 | 2023 | Recruiting | Prognostic and predictive | Blood, tissue | CRC, LC, OC, BrC |
lncRNA | NCT06334835 | 2023 | Recruiting | Diagnostic and prognostic | Bone marrow mononuclear cells | T-ALL |
lncRNA | NCT06065592 | 2019 | Recruiting | Prognostic and predictive | Blood and tissue | CRC |
lncRNA | NCT06544005 | 2022 | Active, not recruiting | Prognostic | Blood | HCC, metastatic phase |
lncRNA | NCT04729855 | 2022 | Active, not recruiting | Prognostic and diagnostic | Blood and tissue | CRC |
lncRNA | NCT05943093 | 2023 | Not yet recruiting | Predictive | Unspecified | ALL |
lncRNA | NCT05270174 | 2023 | Not yet recruiting | Diagnostic | Urinary exosomes | BlC |
lncRNA | NCT05397548 | 2022 | Unknown | Diagnostic | Blood exosomes and tissue | GC |
lncRNA | NCT05088811 | 2021 | Unknown | Diagnostic | Serum | HCC |
lncRNA | NCT04269746 | 2020 | Unknown | Diagnostic | Blood | CRC |
lncRNA | NCT03469544 | 2018 | Unknown | Diagnostic | Blood | ThC |
lncRNA | NCT03738319 | 2018 | Unknown | Diagnostic and prognostic | Blood exosomes | HG-SOC |
lncRNA | NCT05647941 | 2018 | Unknown | Predictive | Circulating exosomes | GC |
lncRNA | NCT03057171 | 2015 | Unknown | Predictive | Tissue | GC |
lncRNA | NCT06534242 | 2022 | Completed | Prognostic and predictive | Blood | CRC |
lncRNA | NCT05708209 | 2022 | Completed | Diagnostic | Saliva | OSCC |
lncRNA | NCT05141383 | 2022 | Completed | Diagnostic and prognostic | Blood and urine | PrC |
lncRNA | NCT06357689 | 2021 | Completed | Predictive | Blood | BrC |
lncRNA | NCT06432413 | 2021 | Completed | Prognostic | Serum | CRC |
lncRNA | NCT04767750 | 2020 | Completed | Predictive | Blood | HCC |
lncRNA | NCT06531902 | 2020 | Completed | Diagnostic | Blood | CRC |
lncRNA | NCT06427278 | 2019 | Completed | Predictive | Blood | CRC |
lncRNA | NCT05334849 | 2018 | Completed | Predictive | Blood | GC |
lncRNA | NCT05730855 | 2022 | Completed | Diagnostic | Saliva | OrC |
lncRNA | NCT03830619 | 2017 | Completed | Diagnostic | Serum exosomes | LC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piergentili, R.; Sechi, S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025, 17, 471. https://doi.org/10.3390/pharmaceutics17040471
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics. 2025; 17(4):471. https://doi.org/10.3390/pharmaceutics17040471
Chicago/Turabian StylePiergentili, Roberto, and Stefano Sechi. 2025. "Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials" Pharmaceutics 17, no. 4: 471. https://doi.org/10.3390/pharmaceutics17040471
APA StylePiergentili, R., & Sechi, S. (2025). Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics, 17(4), 471. https://doi.org/10.3390/pharmaceutics17040471