Synthesis Mechanism and Therapeutic Effects of Thiosulfinates and Polysulfides of Different Species of Garlic from the Allium Genus
Abstract
:1. Introduction
2. Biochemical Garlic Composition
3. Thiosulfinate and Polysulfide Synthesis Mechanism
4. Extraction and Analysis of Sulfur Compounds
5. Genus Allium Therapeutic Effects
5.1. Antimicrobial and Antiviral Properties
5.2. Anticancer Properties
5.3. Antihypertensive Properties
5.4. Antiinflammatory and Antioxidant Properties
5.5. Dosage and Contraindications
6. Therapeutic Advances and Future Prospects of Sulfur Compounds (Thiosulfinates and Polysulfides) from the Allium genus
7. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DADS | Diallyl disulfide |
DATS | Diallyl trisulfide |
SAC | S-allylcysteine |
SAMC | S-allylmercaptocysteine |
UAE | Ultrasound-assisted extraction |
MAE | Microwave- assisted extraction |
HSHE | High-speed shear homogenization extraction |
UAEE | Ultrasound-assisted enzymatic extraction |
UMAE | Microwave ultrasound-assisted extraction |
pH3 | Phospho-histone 3 |
TP53 | Tumor suppressor gene |
CYP | Cytochrome P450 |
HMG-CoA | Hydroxymethylglutaryl- coenzyme A reductase |
AMPK | AMP-activated protein kinase |
SREBP-1 | Sterol regulatory element binding protein 1 |
SREBP-226 | Sterol regulatory element binding protein 226 |
LDL | Low-density lipoproteins |
ADP | Adenosine diphosphate |
IL-1 | Interleukin-1 |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
TNF-α | Tumor necrosis factor alpha |
E2 | Prostaglandin E2 |
NO | Nitric oxide |
(GSK)-3β | Glycogen synthase kinase |
Mo-Pt | Molybdopterin |
Nrf2 | Nuclear factor erythroid type 2 |
NSAIDs | Non-steroidal anti-inflammatory drugs |
PTP1B | Protein tyrosine phosphatase 1B |
MDA-MB-231 | Epithelial adenocarcinoma |
MCF-7 cells | Human breast cancer cell line |
References
- Martínez-Cortés, D.M.; Vera-Pérez, J.; Valencia-del-Toro, G.; Franco-Hernández, M.O.; Yolanda, G.G. RP-UHPLC method development and validation for the rapid determination of phenolic antioxidants from Allium cepa and Allium sativum extracts. J. Pharm. Biomed. Anal. 2025, 257, 116698. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Concepción, R.H.; Castro-Velasco, L.N.; Martínez-Santiago, E. Efectos terapéuticos del ajo (Allium sativum). Salud Adm. 2016, 3, 39–47. [Google Scholar]
- Arbach, M. Diallyl Polysulfides from Garlic Mode of Action and Applications in Agriculture. Ph.D. Thesis, University of East Anglia, School of Pharmacy, Norwich, UK, 2014. [Google Scholar]
- Rodrigo, A.; Oscar, S. Cultivo de ajo chileno o pie de elefante (Allium ampeloprasum var ampeloprasum). Boletín Hortícola Pampeano 2020, 8, 25–30. [Google Scholar]
- Tránsito, L.L. Propiedades farmacológicas e indicaciones terapéuticas. OFFAM 2007, 1, 1–4. [Google Scholar]
- Angélica, G.V.S. Efecto de Dialil Trisulfuro Sobre Alteraciones del Desarrollo Poblacional y Expresión Genética Inducidas por UVB en Daphnia Magna. Bachelor’s Thesis, Benemérita Universidad Autónoma de Puebla, Mexico City, Mexico, 2020; pp. 1–36. [Google Scholar]
- Eric, B. Garlic and Other Alliums: The Lore and the Science; Royal Society of Chemistry: London, UK, 2010; Volume 1, pp. 1–454. [Google Scholar]
- Jayaswall, K.; Kumar, D.; Jayaswal, D.; Sharma, H.; Kumar, S.; Unamba, C. Allium sativum and Allium cepa offer excellent potential for introgression and production of allicin and high total soluble solids into closely related wild Alliums. S. Afr. J. Bot. 2025, 176, 207–218. [Google Scholar] [CrossRef]
- Poojary, M.M.; Putnik, P.; Kovačević, D.B.; Barba, F.J.; Lorenzo, J.M.; Dias, D.A.; Shpigelman, A. Stability and extraction of bioactive sulfur compounds from Allium genus processed by traditional and innovative technologies. J. Food Compos. Anal. 2017, 61, 28–39. [Google Scholar] [CrossRef]
- Stoll, A.; Seebeck, E. Chemical Investigations on Alliin, the Specific Principle of Garlic. In Advances in Enzymology and Related Areas of Molecular Biology; Nord, F.F., Ed.; Interscience Publishers, Inc.: Hoboken, NJ, USA, 1951; Volume 11, pp. 377–400. [Google Scholar] [CrossRef]
- Chhabria, S.; Desai, K. Purification and characterisation of alliinase produced by Cupriavidus necator and its application for generation of cytotoxic agent: Allicin. Saudi J. Biol. Sci. 2018, 25, 1429–1438. [Google Scholar] [CrossRef]
- Ezeorba, T.P.C.; Ezugwu, A.L.; Chukwuma, I.F.; Anaduaka, E.G.; Udenigwe, C.C. Health-promoting properties of bioactive proteins and peptides of garlic (Allium sativum). Food Chem. 2023, 435, 137632. [Google Scholar] [CrossRef]
- Bastaki, S.M.A.; Ojha, S.; Kalasz, H.; Adeghate, E. Chemical constituents and medicinal properties of Allium species. Mol. Cell. Biochem. 2021, 476, 4301–4321. [Google Scholar] [CrossRef]
- Milenys, G.M.; Greta, G.I.; Carolina, M.H.; Aliena, C.D. Revisión bibliográfica sobre el uso terapéutico del ajo Bibliografic review about the therapeutic use of garlic. Rev. Cuba. De Med. Física Y Rehabil. 2014, 6, 67–71. [Google Scholar]
- Ozgur, C. Antibiofilm, Mutagenic and Antimutagenic Activity of Allium sphaerocephalon. J. Pure Appl. Microbiol. 2014, 8, 2879–2885. Available online: https://www.researchgate.net/publication/287306045 (accessed on 27 March 2024).
- Kurnia, D.; Ajiati, D.; Heliawati, L.; Sumiarsa, D. Potential of flavonol and sulfur compounds from Allium leaves as an antioxidant and xanthine oxidase inhibition in silico study. Food Chem. Adv. 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Pareja, L.; Andrea, G.P.P. Obtención y Caracterización de la Oleoresina del ajo (Allium sativum). 2008. Available online: https://repositorio.utp.edu.co/server/api/core/bitstreams/c0668901-df27-48ab-b0fb-da76003c88af/content (accessed on 22 February 2024).
- Manabe, T.; Hasumi, A.; Sugiyama, M.; Yamazaki, M.; Saito, K. Alliinase [S-alk(en)yl-L-cysteine sulfoxide lyase] from Allium tuberosum (Chinese chive) Purification, localization, cDNA cloning and heterologous functional expression. Eur. J. Biochem. 1998, 257, 21–30. [Google Scholar]
- Tobkin, H.E., Jr.; Mazelis, M. Alliin Lyase: Preparation and Characterization of the Homogeneous Enzume from Onion Bulbs. Arch. Biochem. Biophys. 1979, 193, 150–157. [Google Scholar]
- Clark, S.A.; Shaw, M.L.; Every, D.; Lancaster, J.E. Physical Characterization of Alliinase, the Flavor Generating Enzyme in Onions. J. Food Biochem. 1998, 1, 91–103. [Google Scholar] [CrossRef]
- Rivas López, V. Allium sativum Como Fuente Potencial de Moléculas Anticancerígenas. Bachelor’s Thesis, Universidad Complutense, Madrid, Spain, 2016; pp. 1–27. [Google Scholar]
- Jikah, A.N.; Edo, G.I. Mechanisms of action by sulphur compounds in Allium sativum. A review. Pharmacol. Res. Mod. Chin. Med. 2023, 9, 1–11. [Google Scholar] [CrossRef]
- Díaz Villagómez, D.G.; Villegas Gómez, C.; Cruz Cruz, D.; Hernández Ramírez, R.E. Análisis fitoquímico: Una visión integral de los métodos de extracción de productos naturales. Nat. Y Tecnol. 2023, 10, 1–6. [Google Scholar]
- Thomas-Brown, P.G.; Ruddock, P.L.; Gossell-Williams, M.; Turfus, S.C.; Delgoda, R.; Picking, D.; Gurley, B.J. Chapter 2: Pharmacokinetics. Pharmacognosy 2024, 1, 559–577. [Google Scholar] [CrossRef]
- Moya Salvador, A. Compuestos Organosulfurados Presentes en Aliáceas y sus Propiedades Saludables. Master’s Thesis, Universidad de Sevilla, Sevilla, Spain, 2020; pp. 1–60. [Google Scholar]
- Trio, P.Z.; You, S.; He, X.; He, J.; Sakao, K.; Hou, D.X. Chemopreventive functions and molecular mechanisms of garlic organosulfur compounds. Food Funct. 2014, 5, 833–844. [Google Scholar] [CrossRef]
- Tran, A.-S.N.; Pham, V.H.; Duong, C.D.; Bui, Q.T.P. Extraction conditions, chemical composition and biological activity of essential oil of Allium schoenoprasum L. bulb from Quang Tri province. Vietnam. Food Chem. Adv. 2024, 4, 100574. [Google Scholar] [CrossRef]
- Hall, A.; Troupin, A.; Londono-Renteria, B.; Colpitts, T.M. Garlic organosulfur compounds reduce inflammation and oxidative stress during dengue virus infection. Viruses 2017, 9, 159. [Google Scholar] [CrossRef] [PubMed]
- Shin, I.S.; Hong, J.; Jeon, C.M.; Shin, N.R.; Kwon, O.K.; Kim, H.S.; Kim, J.C.; Oh, S.R.; Ahn, K.S. Diallyl-disulfide, an organosulfur compound of garlic, attenuates airway inflammation via activation of the Nrf-2/HO-1 pathway and NF-kappa B suppression. Food Chem. Toxicol. 2013, 62, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hu, P.; Ma, Y.; Tong, L.; Wang, D.; Wu, Y.; Chen, Z.; Huang, C. Identification of a pro-elongation effect of diallyl disulfide, a major organosulfur compound in garlic oil, on microglial process. J. Nutr. Biochem. 2020, 78, 108323. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.-M.; Ban, J.O.; Park, K.-R.; Lee, C.K.; Jeong, H.-S.; Han, S.B.; Hong, J.T. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol. Ther. 2014, 142, 183–195. [Google Scholar] [CrossRef]
- Betancourt, C.; de los Ángeles, M. Extracción y purificación de alicina a partir de ajo (Allium sativum L.): Implicaciones analíticas. Master’s Thesis, Instituto Politécnico Nacional, Mexico City, Mexico, 2010; pp. 1–88. [Google Scholar]
- Mehra, R.; Jasrotia, R.S.; Mahajan, A.; Sharma, D.; Iquebal, M.A.; Kaul, S.; Dhar, M.K. Transcriptome analysis of Snow Mountain Garlic for unraveling the organosulfur metabolic pathway. Genomics 2020, 112, 99–107. [Google Scholar] [CrossRef]
- Malaphong, C.; Tangwanitchakul, A.; Boriboon, S.; Tangtreamjitmun, N. A simple and rapid HPLC method for determination of S-allyl-L-cystein and its use in quality control of black garlic samples. LWT 2022, 160, 113290. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Wang, C.W.; Zhang, J.; Xu, P.P.; Xue, Y.T.; Wang, Q. Effects of different extraction methods on physicochemical characteristics and bioactivities of fig (Ficus carica L.) leaves polysaccharides. Arab. J. Chem. 2023, 16, 105319. [Google Scholar] [CrossRef]
- Akullo, J.O.; Kiage-Mokua, B.N.; Nakimbugwe, D.; Ng’ang’a, J.; Kinyuru, J. Phytochemical profile and antioxidant activity of various solvent extracts of two varieties of ginger and garlic. Heliyon 2023, 9, e18806. [Google Scholar] [CrossRef]
- Jafari, F.; Khalilzadeh, S.; Nejatbakhsh, F.; Naderi, M. Therapeutic effects of garlic (Allium sativum) on female reproductive system: A systematic review. Heliyon 2023, 9, e22555. [Google Scholar] [CrossRef]
- Alejandra, C.M.E. Estudio Comparativo de la Calidad del Extracto de ajo Obtenido por Arrastre de Vapor e Hidrodestilación Sometido Previamente a un Proceso de Deshidratación. Bachelor’s Thesis, Universidad Autónoma Agraria Antonio Navarro, Saltillo, Mexico, 2018; pp. 1–75. [Google Scholar]
- Liberal, Â.; Molina, A.K.; Pereira, C.; Dias, M.I.; Ferreira, I.C.F.R.; Barros, L. Solid- liquid extraction of polyphenols. Technol. Recover. Polyphen. AgroFood By-Prod. Wastes 2022, 1, 73–112. [Google Scholar] [CrossRef]
- Ravindra, J.; Yathisha, U.G.; Nanjappa, D.P.; Kalladka, K.; Dhakal, R.; Chakraborty, A.; Chakraborty, G. Allicin extracted from Allium sativum shows potent anti-cancer and antioxidant properties in zebrafish. Biomed. Pharmacother. 2023, 169, 115854. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, D.; Nie, J. Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. Int. J. Biol. Macromol. 2008, 43, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Cravotto, G. Microwave-assisted Extraction for Bioactive Compounds, 1st ed.; Chemat, F., Cravotto, G., Eds.; Springer: New York, NY, USA, 2013; Volume 1. [Google Scholar] [CrossRef]
- Upadhyay, S.; Ahmad, R.; Ghildiyal, S.; Baluni, M.; Singh, A.; Husain, I.; Ahmad, I.; Pal, S.; Mansour, L.; Siddiqui, S. Anticancer potential of Allium sativum against triple-negative breast cancer cells: Evidence from ROS-mediated cell cycle arrest and apoptosis. South Afr. J. Bot. 2025, 179, 31–38. [Google Scholar] [CrossRef]
- Okoro, B.C.; Dokunmu, T.M.; Okafor, E.; Sokoya, I.A.; Israel, E.N.; Olusegun, D.O.; Bella-Omunagbe, M.; Ebubechi, U.M.; Ugbogu, E.A.; Iweala, E.E.J. The ethnobotanical, bioactive compounds, pharmacological activities and toxicological evaluation of garlic (Allium sativum): A review. Pharmacol. Res. -Mod. Chin. Med. 2023, 8, 100273. [Google Scholar] [CrossRef]
- Gargi, B.; Singh, P.; Painuli, S.; Rai, N.; Semwal, P.; Cruz-Martins, N.; Sharma, R. Literature-based screening and bibliometric analysis of the chemical composition, antioxidant and antimicrobial potential of essential oils isolated from Allium genus: 23 years of investigation. Pharmacol. Res. -Mod. Chin. Med. 2024, 10, 100354. [Google Scholar] [CrossRef]
- Vuković, S.; Popović-Djordjević, J.B.; Kostić, A.Ž.; Pantelić, N.D.; Srećković, N.; Akram, M.; Laila, U.; Katanić Stanković, J.S. Allium Species in the Balkan Region—Major Metabolites, Antioxidant and Antimicrobial Properties. Horticulturae 2023, 9, 408. [Google Scholar] [CrossRef]
- Clara, C.O. Estudio del Efecto Inhibidor de Extractos de Allium Sativum en Bacterias Patógenas y Alterantes de la Carne. 2023. Available online: https://uvadoc.uva.es/bitstream/handle/10324/61252/TFG-M-N3101.pdf?sequence=1&isAllowed=y (accessed on 20 June 2024).
- Arellano-Buendía, A.S.; Juárez-Rojas, J.G.; García-Arroyo, F.E.; Sánchez-Lozada, L.G.; Osorio-Alonso, H. Molecular mechanisms of the beneficial effects of allicin on cardiovascular disease. Arch. De Cardiol. De Mex. 2022, 92, 362–370. [Google Scholar] [CrossRef]
- Guillamon, E. Efecto de compuestos fitoquímicos del género Allium sobre el sistema inmune y la respuesta inflamatoria. Ars Pharm. (Internet) 2018, 59, 185–196. [Google Scholar] [CrossRef]
- Ojo, O.A.; Adegboyega, A.E.; Johnson, G.I.; Umedum, N.L.; Onuh, K.; Adeduro, M.N.; Nwobodo, V.O.; Elekan, A.O.; Alemika, T.E.; Johnson, T.O. Deciphering the interactions of compounds from Allium sativum targeted towards identification of novel PTP 1B inhibitors in diabetes treatment: A computational approach. Inform. Med. Unlocked 2021, 26, 100719. [Google Scholar] [CrossRef]
- El Faqer, O.; Rais, S.; Ouadghiri, Z.; El Faqer, A.; Benchama, Z.; El Ouaddari, A.; Dakir, M.; El Amrani, A.; Mtairag, E.M. Physicochemical properties, GC–MS profiling, and antibacterial potential of Allium sativum essential oil: In vitro and in silico approaches. Sci. Afr. 2024, 26, e02484. [Google Scholar] [CrossRef]
- Xu, Z.; Qiu, Z.; Liu, Q.; Huang, Y.; Li, D.; Shen, X.; Fan, K.; Xi, J.; Gu, Y.; Tang, Y.; et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat. Commun. 2018, 9, 3713. [Google Scholar] [CrossRef] [PubMed]
- Bataduwaarachchi, V.; Liyanage, D.; Hansanie, S.; Perera, H.; D’Cruz, L. Therapeutic potential of Garlic (Allium sativum L.) on new models of asthma immune pathobiology: A review. Phytomedicine Plus 2025, 5, 100749. [Google Scholar] [CrossRef]
- Emir, A.; Emir, C. A comparative study of phenolic profiles and biological activities of allium sphaerocephalon l. Subsp. sphaerocephalon l. and allium sphaerocephalon l. subsp. trachypus (boiss. et spruner) k. richter. J. Res. Pharm. 2020, 24, 893–900. [Google Scholar] [CrossRef]
- Emir, C.; Emir, A. Chemical Composition and Inhibitory Potentials of Key- Enzymes Linked to Neurodegenerative Diseases of Wild Garlic: Allium atrovioleceum Boiss. 2022. Available online: https://www.researchgate.net/publication/360261754 (accessed on 24 March 2025).
- Jeje, S.O.; Adegbite, L.O.; Akindele, O.O.; Kunle-Alabi, O.T.; Raji, Y. Allium cepa Linn juice protect against alterations in reproductive functions induced by maternal dexamethsone treatment during lactation in male offspring of Wistar rats. Heliyon 2020, 6, e03872. [Google Scholar] [CrossRef]
- Kathum, O.A.; AbdAl-kahdum, S.; Hadi, U.A.-A.-N.S.; Abood, S.K.; Abdulfattah, S.Y. Genetical and cellular induction of interferon genes via the treatment with (Allium sativum) garlic extract against recombinant influenza A/Puerto Rico/8/34 H1N PR8 infection. Gene Rep. 2024, 37, 102069. [Google Scholar] [CrossRef]
- Zhang, X.; Diao, Z.; Amraii, S.A.; Sillanpää, M.; Toushmalani, R. Formulation and evaluation of anti-rheumatoid arthritis effects of Ag nanoparticles containing Allium sativum L. Leaf extract. Inorg. Chem. Commun. 2025, 172, 113688. [Google Scholar] [CrossRef]
- Tarasova, N.; Zanin, A.; Krivoborodov, E.; Toropygin, I.; Pascal, E.; Mezhuev, Y. The New Approach to the Preparation of Polyacrylamide-Based Hydrogels: Initiation of Polymerization of Acrylamide with 1,3-Dimethylimidazolium (Phosphonooxy-) Oligosulphanide under Drying Aqueous Solutions. Polymers 2021, 13, 1806. [Google Scholar] [CrossRef]
- Dkhil, M.A.; Al-Shaebi, E.M.; Alazzouni, A.S.; Al-Quraishy, S.; Khalil, M. Murine liver response to Allium sativum treatment during infection induced-trypanosomiasis. Saudi J. Biol. Sci. 2021, 28, 3270–3274. [Google Scholar] [CrossRef]
Analysis | Amount |
---|---|
Water | 58.58 g |
Energy | 119–149 kcal |
Protein | 4.30–6.36 g |
Total lipids | 0.23–0.5 g |
Carbohydrates | 24.30–33.06 g |
Dietary fiber | 1.20–2.1 g |
Total sugars | 1–2.21 g |
Vitamin C | 14–31.2 mg |
Vitamin B1 | 0.02–0.2 mg |
Vitamin B2 | 0.11–1.02 mg |
Niacin | 0.60–0.7 mg |
Vitamin B6 | 0.32–1.235 mg |
Vitamin A | 0.16 mg |
Vitamin E | 0.01–0.08 mg |
Vitamin K | 1.4–1.7 µg |
Folate | 3 µg |
Calcium | 17.80–181 mg |
Iron | 1.2–1.7 mg |
Magnesium | 24.10–25 mg |
Phosphorus | 134–153 mg |
Potassium | 401–446 mg |
Sodium | 17–19 mg |
Zinc | 1.10–1.16 mg |
Iodine | 4.70 mg |
Solubility | Sulfur Compound | Stability | Content Reported in the Literature |
---|---|---|---|
In water | s-allyl-cysteine | Very stable | 19–1736.2 mg/g |
s-allyl-mercaptocysteine | Stable | ||
s-methylcysteine | Stable | ||
γ-glutamyl-cysteine | Stable | ||
In oil | Allicin | Very unstable | 2.5–4.5 g |
Aliin | Stable | ||
Diallyl sulfide | Unstable | ||
Diallyl disulfide | Unstable | ||
Diallyl trisulfide | Unstable | 0.3–10 mg/kg | |
Ajoene | Very stable | 0.5–0.10 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corona-España, A.M.; García-Ramírez, M.A.; Rodríguez-Buenfil, I.M.; Delgado-Saucedo, J.I.; González-Reynoso, O. Synthesis Mechanism and Therapeutic Effects of Thiosulfinates and Polysulfides of Different Species of Garlic from the Allium Genus. Pharmaceutics 2025, 17, 437. https://doi.org/10.3390/pharmaceutics17040437
Corona-España AM, García-Ramírez MA, Rodríguez-Buenfil IM, Delgado-Saucedo JI, González-Reynoso O. Synthesis Mechanism and Therapeutic Effects of Thiosulfinates and Polysulfides of Different Species of Garlic from the Allium Genus. Pharmaceutics. 2025; 17(4):437. https://doi.org/10.3390/pharmaceutics17040437
Chicago/Turabian StyleCorona-España, Ana Montserrat, Mario Alberto García-Ramírez, Ingrid Mayanin Rodríguez-Buenfil, Jorge Iván Delgado-Saucedo, and Orfil González-Reynoso. 2025. "Synthesis Mechanism and Therapeutic Effects of Thiosulfinates and Polysulfides of Different Species of Garlic from the Allium Genus" Pharmaceutics 17, no. 4: 437. https://doi.org/10.3390/pharmaceutics17040437
APA StyleCorona-España, A. M., García-Ramírez, M. A., Rodríguez-Buenfil, I. M., Delgado-Saucedo, J. I., & González-Reynoso, O. (2025). Synthesis Mechanism and Therapeutic Effects of Thiosulfinates and Polysulfides of Different Species of Garlic from the Allium Genus. Pharmaceutics, 17(4), 437. https://doi.org/10.3390/pharmaceutics17040437