Preclinical Toxicological Characterization of Porphyrin-Doped Conjugated Polymer Nanoparticles for Photodynamic Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticle Synthesis
2.3. Dynamic Light Scattering (DLS) Size Characterization of CPNs
2.4. Assessment of the Colloidal Stability of CPNs in Various Parenteral Administration Solutions by DLS
2.5. Animals Care
2.6. Hemolysis Assay
2.7. Animal Treatments and Sample Collection
2.7.1. Single-Dose Toxicity
2.7.2. Repeated-Dose Toxicity
2.8. Serum Collection, Hematology Analysis, and Biochemical Determination
2.9. Histopathological Examinations
2.10. Biodistribution and Blood Clearance Analysis of CPNs Using ICP-MS
2.11. Statistical Analysis
3. Results
3.1. Colloidal Stability Evaluation of CPNs in Parenteral Administration Solutions Using DLS
3.2. Hemolytic Activity of CPNs
3.3. Single-Dose Toxicity of CPNs
3.3.1. Blood Hematology Analysis
3.3.2. Serum Biochemistry After Single-Dose I.V. Administration
3.3.3. Histopathological Assessment of Major Organs
3.4. Biodistribution Analysis and Plasma Kinetics of CPNs by ICP-MS
3.5. Repeated-Dose Toxicity of CPNs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine Aminotransferase |
ANOVA | Analysis of Variance |
AST | Aspartate Aminotransferase |
BUN | Blood Urea Nitrogen |
CPNs | Conjugated Polymer Nanoparticles |
CPs | Conjugated Polymers |
Cr | Creatinine |
DLS | Dynamic Light Scattering |
EDTA | Ethylenediaminetetraacetic Acid |
F8BT | Poly(9,9-dioctylfluorene-alt-benzothiadiazole) |
Hb | Hemoglobin |
H&E | Hematoxylin and Eosin |
HTC | Hematocrit |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
i.p. | Intraperitoneal |
i.v. | Intravenous |
MCV | Mean Corpuscular Volume |
MCH | Mean Corpuscular Hemoglobin |
MCHC | Mean Corpuscular Hemoglobin Concentration |
MPS | Mononuclear Phagocyte System |
N3-PEG-NH2 | poly(ethylene glycol) derivative |
NIH | National Institutes of Health |
NPs | Nanoparticles |
PBS | Phosphate-Buffered Saline |
PDI | Polydispersity Index |
PDT | Photodynamic Therapy |
PEG | Polyethylene Glycol |
PEGylation | Polyethylene Glycol Modification |
PS | Photosensitizer |
PSMA | Poly(styrene-co-maleic anhydride) |
PFVBT | Poly[9,9-bis(N-but-3′-ynylN,N-dimethylaminohexyl)-fluorenyldivinylene-alt-4,7-(2′,1′,3′,-benzothiadiazole)dibromide] |
PtOEP | Platinum(II) Octaethylporphyrin |
RBC | Red Blood Cells |
ROS | Reactive Oxygen Species |
THF | Tetrahydrofuran |
References
- Ibarra, L.E.; Vilchez, M.L.; Caverzán, M.D.; Milla Sanabria, L.N. Understanding the glioblastoma tumor biology to optimize photodynamic therapy: From molecular to cellular events. J. Neurosci. Res. 2021, 99, 1024–1047. [Google Scholar] [CrossRef]
- Foresto, E.; Gilardi, P.; Ibarra, L.E.; Cogno, I.S. Light-activated green drugs: How we can use them in photodynamic therapy and mass-produce them with biotechnological tools. Phytomed. Plus 2021, 1, 100044. [Google Scholar] [CrossRef]
- Cesca, B.A.; Caverzan, M.D.; Lamberti, M.J.; Ibarra, L.E. Enhancing Therapeutic Approaches in Glioblastoma with Pro-Oxidant Treatments and Synergistic Combinations: In Vitro Experience of Doxorubicin and Photodynamic Therapy. Int. J. Mol. Sci. 2024, 25, 7525. [Google Scholar] [CrossRef] [PubMed]
- Cesca, B.A.; Pellicer, K.; Martin, S.; Caverzan, M.D.; Oliveda, P.M.; Ibarra, L.E. State-of-the-art photodynamic therapy for malignant gliomas: Innovations in photosensitizers and combined therapeutic approaches. Explor. Target. Anti-Tumor Ther. 2025, 6, 1002303. [Google Scholar] [CrossRef] [PubMed]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef]
- Salehpour, F.; Cassano, P.; Rouhi, N.; Hamblin, M.R.; De Taboada, L.; Farajdokht, F.; Mahmoudi, J. Penetration Profiles of Visible and Near-Infrared Lasers and Light-Emitting Diode Light Through the Head Tissues in Animal and Human Species: A Review of Literature. Photobiomodul. Photomed. Laser Surg. 2019, 37, 581–595. [Google Scholar] [CrossRef]
- Du, B.; Li, T.; He, H.; Xu, X.; Zhang, C.; Lu, X.; Wang, Y.; Cao, J.; Lu, Y.; Liu, Y.; et al. Analysis of Biodistribution and in vivo Toxicity of Varying Sized Polystyrene Micro and Nanoplastics in Mice. Int. J. Nanomed. 2024, 19, 7617–7630. [Google Scholar] [CrossRef]
- Skotland, T.; Iversen, T.G.; Llorente, A.; Sandvig, K. Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Adv. Drug Deliv. Rev. 2022, 186, 114326. [Google Scholar] [CrossRef]
- Algorri, J.F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Light technology for efficient and effective photodynamic therapy: A critical review. Cancers 2021, 13, 3484. [Google Scholar] [CrossRef]
- Kimura, S.; Kuroiwa, T.; Ikeda, N.; Nonoguchi, N.; Kawabata, S.; Kajimoto, Y.; Ishikawa, T. Assessment of safety of 5-aminolevulinic acid–mediated photodynamic therapy in rat brain. Photodiagn. Photodyn. Ther. 2018, 21, 367–374. [Google Scholar] [CrossRef]
- Carew, A.C.; Hoque, M.E.; Metcalfe, C.D.; Peyrot, C.; Wilkinson, K.J.; Helbing, C.C. Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis. Aquat. Toxicol. 2015, 159, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Ju, Z.; Skonieczna, M.; Zhou, P.K.; Huang, R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm 2023, 4, e327. [Google Scholar] [CrossRef]
- Sharma, N.; Kurmi, B.D.; Singh, D.; Mehan, S.; Khanna, K.; Karwasra, R.; Kumar, S.; Chaudhary, A.; Jakhmola, V.; Sharma, A.; et al. Nanoparticles toxicity: An overview of its mechanism and plausible mitigation strategies. J. Drug Target. 2024, 32, 457–469. [Google Scholar] [CrossRef]
- Jakic, K.; Selc, M.; Razga, F.; Nemethova, V.; Mazancova, P.; Havel, F.; Sramek, M.; Zarska, M.; Proska, J.; Masanova, V.; et al. Long-Term Accumulation, Biological Effects and Toxicity of BSA-Coated Gold Nanoparticles in the Mouse Liver, Spleen, and Kidneys. Int. J. Nanomed. 2024, 19, 4103–4120. [Google Scholar] [CrossRef]
- Fujihara, J.; Nishimoto, N. Review of Zinc Oxide Nanoparticles: Toxicokinetics, Tissue Distribution for Various Exposure Routes, Toxicological Effects, Toxicity Mechanism in Mammals, and an Approach for Toxicity Reduction. Biol. Trace Elem. Res. 2024, 202, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, L.E.; Porcal, G.; Macor, L.P.; Ponzio, R.A.; Spada, R.M.; Lorente, C.; Chesta, C.A.; Rivarola, V.A.; Palacios, R. Metallated porphyrin doped conjugated polymer nanoparticles for efficient PDT of brain and colorectal tumor cells. Nanomedicine 2018, 13, 605–624. [Google Scholar] [CrossRef] [PubMed]
- Abalos, R.N.; Aziz, I.A.; Caverzan, M.; Lochedino, A.S.; Ibarra, L.E.; Gallastegui, A.; Chesta, C.A.; Gómez, M.L.; Mecerreyes, D.; Palacios, R.E.; et al. Poly(3-hexylthiophene) nanoparticles as visible-light photoinitiators and photosensitizers in 3D printable acrylic hydrogels for photodynamic therapies. Mater. Horiz. 2025, 12, 2524–2534. [Google Scholar] [CrossRef]
- Ibarra, L.E.; Camorani, S.; Agnello, L.; Pedone, E.; Pirone, L.; Chesta, C.A.; Palacios, R.E.; Fedele, M.; Cerchia, L. Selective Photo-Assisted Eradication of Triple-Negative Breast Cancer Cells through Aptamer Decoration of Doped Conjugated Polymer Nanoparticles. Pharmaceutics 2022, 14, 626. [Google Scholar] [CrossRef]
- Chang, K.; Tang, Y.; Fang, X.; Yin, S.; Xu, H.; Wu, C. Incorporation of Porphyrin to π-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy. Biomacromolecules 2016, 17, 2128–2136. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Ren, Y.; Yuan, Q.; Wang, Y.; Bao, B.; Li, M.; Tang, Y. Chemiluminescent Conjugated Polymer Nanoparticles for Deep-Tissue Inflammation Imaging and Photodynamic Therapy of Cancer. J. Am. Chem. Soc. 2024, 146, 5927–5939. [Google Scholar] [CrossRef]
- Jiang, L.; Bai, H.; Liu, L.; Lv, F.; Ren, X.; Wang, S. Luminescent, Oxygen-Supplying, Hemoglobin-Linked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angew. Chem. Int. Ed. 2019, 58, 10660–10665. [Google Scholar] [CrossRef]
- Creamer, A.; Fiego, A.L.; Agliano, A.; Prados-Martin, L.; Høgset, H.; Najer, A.; Richards, D.A.; Wojciechowski, J.P.; Foote, J.E.J.; Kim, N.; et al. Modular Synthesis of Semiconducting Graft Copolymers to Achieve “Clickable” Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting. Adv. Mater. 2024, 36, 2300413. [Google Scholar] [CrossRef] [PubMed]
- Erkan, S. Theoretical and Experimental Spectroscopic Properties and Molecular Docking of F8BT p-Type Semiconducting Polymer. Russ. J. Phys. Chem. A 2020, 94, 445–452. [Google Scholar] [CrossRef]
- Lix, K.; Tran, M.V.; Massey, M.; Rees, K.; Sauvé, E.R.; Hudson, Z.M.; Russ Algar, W. Dextran Functionalization of Semiconducting Polymer Dots and Conjugation with Tetrameric Antibody Complexes for Bioanalysis and Imaging. ACS Appl. Bio Mater. 2020, 3, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Wang, Y.; Darwish, G.H.; Poisson, J.; Szwarczewski, A.; Kim, S.; Traaseth, C.; Hudson, Z.M.; Algar, W.R. Semiconducting Polymer Dots Directly Stabilized with Serum Albumin: Preparation, Characterization, and Cellular Immunolabeling. ACS Appl. Mater. Interfaces 2023, 15, 55456–55465. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, F.Y.; Lu, Y.; Li, Q.; Li, S.; Zheng, C.; Zheng, Y.; Dang, L.; Li, R.Y.; Liu, Y.; et al. Supramolecular Nano-Tracker for Real-Time Tracking of Drug Release and Efficient Combination Therapy. Adv. Sci. 2024, 11, 2404731. [Google Scholar] [CrossRef]
- Modicano, P.; Trutschel, M.L.; Phan-Xuan, T.; Matarèse, B.F.E.; Urbano, L.; Green, M.; Mäder, K.; Dailey, L.A. Does Encapsulation of π-Conjugated Polymer Nanoparticles within Biodegradable PEG–PLGA Matrices Mitigate Photoinduced Free Radical Production and Phototoxicity? Adv. Ther. 2025, 8, 2400190. [Google Scholar] [CrossRef]
- Zhou, D.; Yang, Y.D.; Jin, L.Y.; Yang, Y.; Wang, S.H.; Cai, Q.; Guan, W.B.; Ma, F.; Xiong, L. Near-Infrared Polymer Dots in the Portal-Hepatic Circulation Achieve Localization of Hepatic Carcinoma in Vivo. ACS Appl. Bio Mater. 2020, 3, 6177–6186. [Google Scholar] [CrossRef]
- Arias-Ramos, N.; Ibarra, L.E.; Serrano-Torres, M.; Yagüe, B.; Caverzán, M.D.; Chesta, C.A.; Palacios, R.E.; López-Larrubia, P. Iron Oxide Incorporated Conjugated Polymer Nanoparticles for Simultaneous Use in Magnetic Resonance and Fluorescent Imaging of Brain Tumors. Pharmaceutics 2021, 13, 1258. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Haggerty, A.E.; Yan, J.; Lan, M.; Seu, M.; Yang, M.; Marlow, M.M.; Maldonado-Lasunción, I.; Cho, B.; et al. The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials 2020, 245, 119978. [Google Scholar] [CrossRef]
- Martínez, S.R.; Odella, E.; Ibarra, L.E.; Sosa Lochedino, A.; Wendel, A.B.; Durantini, A.M.; Chesta, C.A.; Palacios, R.E. Conjugated polymer nanoparticles as sonosensitizers in sono-inactivation of a broad spectrum of pathogens. Ultrasonics 2024, 137, 107180. [Google Scholar] [CrossRef] [PubMed]
- Caverzán, M.D.; Beaugé, L.; Chesta, C.A.; Palacios, R.E.; Ibarra, L.E. Photodynamic therapy of Glioblastoma cells using doped conjugated polymer nanoparticles: An in vitro comparative study based on redox status. J. Photochem. Photobiol. B Biol. 2020, 212, 112045. [Google Scholar] [CrossRef] [PubMed]
- Caverzán, M.D.; Oliveda, P.M.; Beaugé, L.; Palacios, R.E.; Chesta, C.A.; Ibarra, L.E. Metronomic Photodynamic Therapy with Conjugated Polymer Nanoparticles in Glioblastoma Tumor Microenvironment. Cells 2023, 12, 1541. [Google Scholar] [CrossRef] [PubMed]
- Cagnetta, G.E.; Martínez, S.R.; Ibarra, L.E.; Wendel, A.; Palacios, R.E.; Chesta, C.A.; Gómez, M.L. Photoactive broad-spectrum dressings with antimicrobial and antitumoral properties. Biomater. Adv. 2025, 169, 214158. [Google Scholar] [CrossRef]
- Martínez, S.R.; Ibarra, L.E.; Ponzio, R.A.; Forcone, M.V.; Wendel, A.B.; Chesta, C.A.; Spesia, M.B.; Palacios, R.E. Photodynamic Inactivation of ESKAPE Group Bacterial Pathogens in Planktonic and Biofilm Cultures Using Metallated Porphyrin-Doped Conjugated Polymer Nanoparticles. ACS Infect. Dis. 2020, 6, 2202–2213. [Google Scholar] [CrossRef]
- Spada, R.M.; Macor, L.P.; Hernández, L.I.; Ponzio, R.A.; Ibarra, L.E.; Lorente, C.; Chesta, C.A.; Palacios, R.E. Amplified singlet oxygen generation in metallated-porphyrin doped conjugated polymer nanoparticles. Dyes Pigm. 2018, 149, 212–223. [Google Scholar] [CrossRef]
- Neun, B.W.; Cedrone, E.; Dobrovolskaia, M.A. NCL Method ITA-1: Analysis of Hemolytic Properties of Nanoparticles. In National Cancer Institute’s Nanotechnology Characterization Laboratory Assay Cascade Protocols; National Cancer Institute: Bethesda, MD, USA, 2009. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bollu, V.S.; Roy, A.; Nethi, S.K.; Madhusudana, K.; Kumar, J.M.; Sistla, R.; Patra, C.R. Acute Toxicity, Biodistribution, and Pharmacokinetics Studies of Pegylated Platinum Nanoparticles in Mouse Model. Adv. NanoBiomed Res. 2021, 1, 2000082. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Cheney, D.L.; Grunberger, J.W.; Yazdimamaghani, M.; Jedrzkiewicz, J.; Isaacson, K.J.; Dobrovolskaia, M.A.; Ghandehari, H. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. J. Control. Release 2020, 324, 471–481. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Liu, L.; Wang, Y.; Liu, R.; Li, M.; Gao, F. Acute and Subacute Toxicity Evaluation of Erythrocyte Membrane-Coated Boron Nitride Nanoparticles. J. Funct. Biomater. 2023, 14, 181. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Q.; Liu, M.; Gu, X.; He, X.; Xie, C.; Fan, Q. Biodegradable semiconducting polymer nanoparticles for phototheranostics. J. Mater. Chem. B 2025, 13, 2242–2253. [Google Scholar] [CrossRef]
- Guo, W.; Chen, M.; Yang, Y.; Ge, G.; Tang, L.; He, S.; Zeng, Z.; Li, X.; Li, G.; Xiong, W.; et al. Biocompatibility and Biological Effects of Surface-Modified Conjugated Polymer Nanoparticles. Molecules 2023, 28, 2034. [Google Scholar] [CrossRef]
- Zhao, M.; Uzunoff, A.; Green, M.; Rakovich, A. The Role of Stabilizing Copolymer in Determining the Physicochemical Properties of Conjugated Polymer Nanoparticles and Their Nanomedical Applications. Nanomaterials 2023, 13, 1543. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, J.; Liu, B. Conjugated-polyelectrolyte-based polyprodrug: Targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angew. Chem. Int. Ed. 2014, 53, 7163–7168. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wu, J.; Lu, H.; Lao, W.; Zhan, H.; Lin, L.; Liu, G.; Deng, Y. Cytotoxicity and hemolysis of rare earth ions and nanoscale/bulk oxides (La, Gd, and Yb): Interaction with lipid membranes and protein corona formation. Sci. Total Environ. 2023, 879, 163259. [Google Scholar] [CrossRef] [PubMed]
- Babu, E.P.; Subastri, A.; Suyavaran, A.; Premkumar, K.; Sujatha, V.; Aristatile, B.; Alshammari, G.M.; Dharuman, V.; Thirunavukkarasu, C. Size Dependent Uptake and Hemolytic Effect of Zinc Oxide Nanoparticles on Erythrocytes and Biomedical Potential of ZnO-Ferulic acid Conjugates. Sci. Rep. 2017, 7, 4203. [Google Scholar] [CrossRef]
- Shankar, D.; Jambagi, S.C.; Gowda, N.; Lakshmi, K.S.; Jayanthi, K.J.; Chaudhary, V.K. Effect of Surface Chemistry on Hemolysis, Thrombogenicity, and Toxicity of Carbon Nanotube Doped Thermally Sprayed Hydroxyapatite Implants. ACS Biomater. Sci. Eng. 2024, 10, 1403–1417. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Veroniaina, H.; Chimombe, T.; Han, L.; Zhenghong, W.; Xiaole, Q. Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: An overview. RSC Adv. 2019, 9, 35566–35578. [Google Scholar] [CrossRef]
- Khanbeigi, R.A.; Hashim, Z.; Abelha, T.F.; Pitchford, S.; Collins, H.; Green, M.; Dailey, L.A. Interactions of stealth conjugated polymer nanoparticles with human whole blood. J. Mater. Chem. B 2015, 3, 2463–2471. [Google Scholar] [CrossRef]
- Martens, U.; Janke, U.; Möller, S.; Talbot, D.; Abou-Hassan, A.; Delcea, M. Interaction of fibrinogen–magnetic nanoparticle bioconjugates with integrin reconstituted into artificial membranes. Nanoscale 2020, 12, 19918–19930. [Google Scholar] [CrossRef]
- Mina, N.; Guido, V.S.; Lima, A.F.; Oliva, M.L.V.; Sousa, A.A. Ultrasmall Nanoparticles Bind to Fibrinogen and Impair Normal Clot Formation. Part. Part. Syst. Charact. 2024, 41, 2300107. [Google Scholar] [CrossRef]
- Bartucci, R.; van der Meer, A.Z.; Boersma, Y.L.; Olinga, P.; Salvati, A. Nanoparticle-induced inflammation and fibrosis in ex vivo murine precision-cut liver slices and effects of nanoparticle exposure conditions. Arch. Toxicol. 2021, 95, 1267–1285. [Google Scholar] [CrossRef]
- Chen, T.Y.; Chen, M.R.; Liu, S.W.; Lin, J.Y.; Yang, Y.T.; Huang, H.Y.; Chen, J.K.; Yang, C.S.; Lin, K.M.C. Assessment of Polyethylene Glycol-Coated Gold Nanoparticle Toxicity and Inflammation In Vivo Using NF-?B Reporter Mice. Int. J. Mol. Sci. 2020, 21, 8158. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhang, Z.; Zhou, J.; Sun, Z.; Deng, Y.; Lin, G.; Ying, M.; Wang, X.; Yong, K.T.; Wu, C.; et al. The biocompatibility studies of polymer dots on pregnant mice and fetuses. Nanotheranostics 2017, 1, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Liu, Y.; Huang, J.; Chen, K.; Huang, J.; Xiao, K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 2018, 8, 2082. [Google Scholar] [CrossRef]
- Åslund, A.K.O.; Vandebriel, R.J.; Caputo, F.; de Jong, W.H.; Delmaar, C.; Hyldbakk, A.; Rustique, E.; Schmid, R.; Snipstad, S.; Texier, I.; et al. A comparative biodistribution study of polymeric and lipid-based nanoparticles. Drug Deliv. Transl. Res. 2022, 12, 2114–2131. [Google Scholar] [CrossRef] [PubMed]
- Jackman, M.J.; Li, W.; Smith, A.; Workman, D.; Treacher, K.E.; Corrigan, A.; Abdulrazzaq, F.; Sonzini, S.; Nazir, Z.; Lawrence, M.J.; et al. Impact of the physical-chemical properties of poly(lactic acid)–poly(ethylene glycol) polymeric nanoparticles on biodistribution. J. Control. Release 2024, 365, 491–506. [Google Scholar] [CrossRef]
- Kim, T.; Han, H.S.; Yang, K.; Kim, Y.M.; Nam, K.; Park, K.H.; Choi, S.Y.; Park, H.W.; Choi, K.Y.; Roh, Y.H. Nanoengineered Polymeric RNA Nanoparticles for Controlled Biodistribution and Efficient Targeted Cancer Therapy. ACS Nano 2024, 18, 7972–7988. [Google Scholar] [CrossRef]
Time (h) | Solution | dh (nm) | PDI |
---|---|---|---|
1 | water | 29.0 | 0.25 |
0 | 0.9% NaCl | 33.7 | 0.31 |
0.5 | 0.9% NaCl | 35.0 | 0.29 |
1 | 0.9% NaCl | 33.3 | 0.30 |
0 | 5% dextrose | 24.9 | 0.34 |
0.5 | 5% dextrose | 27.2 | 0.34 |
1 | 5% dextrose | 28.2 | 0.34 |
0 | PBS 1X | 31.7 | 0.33 |
0.5 | PBS 1X | 35.3 | 0.35 |
1 | PBS 1X | 37.2 | 0.35 |
Time (h) | Solution | Mean Diameter (nm) | PDI |
---|---|---|---|
1 | water | 18.0 | 0.24 |
0 | 0.9% NaCl | 23.4 | 0.32 |
0.5 | 0.9% NaCl | 23.5 | 0.33 |
1 | 0.9% NaCl | 29.1 | 0.38 |
0 | 5% dextrose | 18.0 | 0.30 |
0.5 | 5% dextrose | 14.9 | 0.40 |
1 | 5% dextrose | 16.0 | 0.45 |
0 | PBS 1X | 20.6 | 0.38 |
0.5 | PBS 1X | 26.2 | 0.39 |
1 | PBS 1X | 30.0 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caverzan, M.D.; Morales Vasconsuelo, A.B.; Cerchia, L.; Palacios, R.E.; Chesta, C.A.; Ibarra, L.E. Preclinical Toxicological Characterization of Porphyrin-Doped Conjugated Polymer Nanoparticles for Photodynamic Therapy. Pharmaceutics 2025, 17, 593. https://doi.org/10.3390/pharmaceutics17050593
Caverzan MD, Morales Vasconsuelo AB, Cerchia L, Palacios RE, Chesta CA, Ibarra LE. Preclinical Toxicological Characterization of Porphyrin-Doped Conjugated Polymer Nanoparticles for Photodynamic Therapy. Pharmaceutics. 2025; 17(5):593. https://doi.org/10.3390/pharmaceutics17050593
Chicago/Turabian StyleCaverzan, Matías Daniel, Ana Belén Morales Vasconsuelo, Laura Cerchia, Rodrigo Emiliano Palacios, Carlos Alberto Chesta, and Luis Exequiel Ibarra. 2025. "Preclinical Toxicological Characterization of Porphyrin-Doped Conjugated Polymer Nanoparticles for Photodynamic Therapy" Pharmaceutics 17, no. 5: 593. https://doi.org/10.3390/pharmaceutics17050593
APA StyleCaverzan, M. D., Morales Vasconsuelo, A. B., Cerchia, L., Palacios, R. E., Chesta, C. A., & Ibarra, L. E. (2025). Preclinical Toxicological Characterization of Porphyrin-Doped Conjugated Polymer Nanoparticles for Photodynamic Therapy. Pharmaceutics, 17(5), 593. https://doi.org/10.3390/pharmaceutics17050593