Simvastatin-Loaded Chitosan-Functionalized PLGA Nanoparticles: Characterization and Use in Intimal Hyperplasia Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticle Synthesis
2.3. Nanoparticle Characterization
2.3.1. Hydrodynamic Diameter, Polydispersity Index, and Zeta Potential
2.3.2. Transmission Electron Microscopy
2.3.3. Drug Loading
2.4. Cell Culture
2.5. Flow Cytometry
2.6. Cell Staining
2.7. In Vitro Evaluation of SL-cNP Function
2.8. Rat Carotid Artery Balloon Injury Model
2.9. Statistical Analysis
3. Results
3.1. Characteristics of E-cNPs, SL-cNPs and SL-NPs
3.2. SL-cNPs Readily Associate with ECs and VSMCs Compared to SL-NPs
3.3. SL-cNPs Increase RhoA and RhoB mRNA Content in ECs and VSMCs
3.4. Oral Simvastatin and SL-cNPs Reduce IH Following Carotid Artery Balloon Injury
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECs | Endothelial cells |
VSMCs | Vascular Smooth Muscle Cells |
IH | Intimal Hyperplasia |
PAD | Peripheral arterial disease |
PTA | Percutaneous transluminal balloon angioplasty |
PLGA | Poly-lactic-co-glycolic acid |
cNPs | Chitosan-functionalized PLGA nanoparticles |
SL-NPs | Simvastatin-loaded PLGA nanoparticles |
SL-cNPs | Simvastatin-loaded chitosan-functionalized PLGA nanoparticles |
E-cNPs | Empty chitosan-PLGA nanoparticles |
References
- Collins, T.C.; Beyth, R.J. Process of care and outcomes in peripheral arterial disease. Am. J. Med. Sci. 2003, 325, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.S.; DuBose, J.J.; Parham, C.S.; Charlton-Ouw, K.M.; Valdes, J.; Estrera, A.L.; Safi, H.J.; Azizzadeh, A. Outcomes after endovascular repair of arterial trauma. J. Vasc. Surg. 2014, 60, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Schillinger, M.; Minar, E. Restenosis after percutaneous angioplasty: The role of vascular inflammation. Vasc. Health Risk Manag. 2005, 1, 73–78. [Google Scholar] [CrossRef]
- Beckman, J.A.; Schneider, P.A.; Conte, M.S. Advances in Revascularization for Peripheral Artery Disease: Revascularization in PAD. Circ. Res. 2021, 128, 1885–1912. [Google Scholar] [CrossRef]
- Deglise, S.; Bechelli, C.; Allagnat, F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front. Physiol. 2022, 13, 1081881. [Google Scholar] [CrossRef]
- Serrano, C.V., Jr.; Ramires, J.A.F.; Venturinelli, M.; Arie, S.; D’amico, E.; Zweier, J.L.; Pileggi, F.; da Luz, P.L. Coronary angioplasty results in leukocyte and platelet activation with adhesion molecule expression. Evidence of inflammatory responses in coronary angioplasty. J. Am. Coll. Cardiol. 1997, 29, 1276–1283. [Google Scholar] [CrossRef]
- Lemson, M.; Tordoir, J.; Daemen, M.; Kitslaar, P. Intimal hyperplasia in vascular grafts. Eur. J. Vasc. Endovasc. Surg. 2000, 19, 336–350. [Google Scholar] [CrossRef]
- Wang, G.; Jacquet, L.; Karamariti, E.; Xu, Q. Origin and differentiation of vascular smooth muscle cells. J. Physiol. 2015, 593, 3013–3030. [Google Scholar] [CrossRef]
- Hata, Y.; Iida, O.; Katsuki, T.; Soga, Y.; Fukunaga, M.; Kawasaki, D.; Fujihara, M.; Takahara, M.; Inoue, K.; Mano, T. Similar one-year primary patency rates of common femoral artery angioplasty alone when performed utilizing drug-coated versus noncoated balloons for the treatment of peripheral artery disease. Vasc. Med. 2022, 27, 380–381. [Google Scholar] [CrossRef]
- Ipema, J.; Huizing, E.; Schreve, M.A.; de Vries, J.-P.P.; Ünlü, Ç. Editor’s Choice—Drug Coated Balloon Angioplasty vs. Standard Percutaneous Transluminal Angioplasty in Below the Knee Peripheral Arterial Disease: A Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 265–275. [Google Scholar] [CrossRef]
- Liao, C.-J.; Song, S.-H.; Li, T.; Zhang, Y.Z.A.W.-D.; Zhang, W.-D. Orchid drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of femoropopliteal artery disease: 12-month result of the randomized controlled trial. Vascular 2022, 30, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Zeller, T.; Brodmann, M.; Ansel, G.M.; Scheinert, D.; Choi, D.; Tepe, G.; Menk, J.; Micari, A. Paclitaxel-coated balloons for femoropopliteal peripheral arterial disease: Final five-year results of the IN.PACT Global Study. EuroIntervention 2022, 18, e940–e948. [Google Scholar] [PubMed]
- Gonzalez, L.; Helkin, A.; Gahtan, V. Dyslipidemia Part 2: Review of Dyslipidemia Treatment in Patients with Noncoronary Vascular Disease. Vasc. Endovasc. Surg. 2016, 50, 119–135. [Google Scholar]
- Alnaeb, M.E.; Alobaid, N.; Seifalian, A.M.; Mikhailidis, D.P.; Hamilton, G. Statins and peripheral arterial disease: Potential mechanisms and clinical benefits. Ann. Vasc. Surg. 2006, 20, 696–705. [Google Scholar]
- Coppola, G.; Novo, S. Statins and peripheral arterial disease: Effects on claudication, disease progression, and prevention of cardiovascular events. Arch. Med. Res. 2007, 38, 479–488. [Google Scholar]
- Daskalopoulou, S.S.; Daskalopoulos, M.E.; Liapis, C.D.; Mikhailidis, D.P. Peripheral arterial disease: A missed opportunity to administer statins so as to reduce cardiac morbidity and mortality. Curr. Med. Chem. 2005, 12, 443–452. [Google Scholar]
- Penton, A.; Langert, K.A.; Maier, K.; Gahtan, V. Beyond Cholesterol Reduction-Statin Pleiotropy and Peripheral Arterial Disease. In Statins-From Lipid-Lowering Benefits to Pleiotropic Effects; IntechOpen: London, UK, 2023. [Google Scholar]
- Diomede, L.; Albani, D.; Sottocorno, M.; Donati, M.B.; Bianchi, M.; Fruscella, P.; Salmona, M. In vivo anti-inflammatory effect of statins is mediated by nonsterol mevalonate products. Arter. Thromb. Vasc. Biol. 2001, 21, 1327–1332. [Google Scholar]
- Schlaepfer, D.D.; Hanks, S.K.; Hunter, T.; van der Geer, P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 1994, 372, 786–791. [Google Scholar]
- Dimmeler, S.; Aicher, A.; Vasa, M.; Mildner-Rihm, C.; Adler, K.; Tiemann, M.; Rütten, H.; Fichtlscherer, S.; Martin, H.; Zeiher, A.M. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Investig. 2001, 108, 391–397. [Google Scholar] [CrossRef]
- Honjo, M.; Tanihara, H.; Nishijima, K.; Kiryu, J.; Honda, Y.; Yue, B.Y.J.T.; Sawamura, T. Statin inhibits leukocyte-endothelial interaction and prevents neuronal death induced by ischemia-reperfusion injury in the rat retina. Arch. Ophthalmol. 2002, 120, 1707–1713. [Google Scholar] [CrossRef]
- Wojciak-Stothard, B.; Williams, L.; Ridley, A.J. Monocyte adhesion and spreading on human endothelial cells is dependent on Rho-regulated receptor clustering. J. Cell Biol. 1999, 145, 1293–1307. [Google Scholar] [PubMed]
- Walter, D.H.; Rittig, K.; Bahlmann, F.H.; Kirchmair, R.; Silver, M.; Murayama, T.; Nishimura, H.; Losordo, D.W.; Asahara, T.; Isner, J.M. Statin therapy accelerates reendothelialization: A novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002, 105, 3017–3024. [Google Scholar]
- Helkin, A.; Bruch, D.; Wilson, D.R.; Gruessner, A.C.; Bader, R.R.; Maier, K.G.; Gahtan, V. Intraluminal Delivery of Simvastatin Attenuates Intimal Hyperplasia After Arterial Injury. Vasc. Endovasc. Surg. 2019, 53, 379–386. [Google Scholar]
- Montelione, N.; Loreni, F.; Nenna, A.; Catanese, V.; Scurto, L.; Ferrisi, C.; Jawabra, M.; Gabellini, T.; Codispoti, F.A.; Spinelli, F.; et al. Tissue Engineering and Targeted Drug Delivery in Cardiovascular Disease: The Role of Polymer Nanocarrier for Statin Therapy. Biomedicines 2023, 11, 798. [Google Scholar] [CrossRef] [PubMed]
- Nenna, A.; Nappi, F.; Larobina, D.; Verghi, E.; Chello, M.; Ambrosio, L. Polymers and Nanoparticles for Statin Delivery: Current Use and Future Perspectives in Cardiovascular Disease. Polymers 2021, 13, 711. [Google Scholar] [CrossRef]
- Steven, M.; Narum, T.L.; Le, D.P.; Lee, J.C.; Donahue, N.D.; Yang, W.; Wilhelm, S. Passive targeting in nanomedicine: Fundamental concepts, body interactions, and clinical potential. In Mico and Nano Technologies: Nanoparticles for Biomedical Applications; Eun, L.L., Chung, J., Rinaldi, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 37–53. [Google Scholar]
- Chu, J.; Chen, L.; Mo, Z.; Bowlin, G.L.; Minden-Birkenmaier, B.A.; Morsi, Y.; Aldalbahi, A.; El-Newehy, M.; Wang, W.; Mo, X. An atorvastatin calcium and poly(L-lactide-co-caprolactone) core-shell nanofiber-covered stent to treat aneurysms and promote reendothelialization. Acta Biomater. 2020, 111, 102–117. [Google Scholar]
- Tsukie, N.; Nakano, K.; Matoba, T.; Masuda, S.; Iwata, E.; Miyagawa, M.; Zhao, G.; Meng, W.; Kishimoto, J.; Sunagawa, K.; et al. Pitavastatin-incorporated nanoparticle-eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model. J. Atheroscler. Thromb. 2013, 20, 32–45. [Google Scholar]
- Jafernik, K.; Ładniak, A.; Blicharska, E.; Czarnek, K.; Ekiert, H.; Wiącek, A.E.; Szopa, A. Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A review. Molecules 2023, 28, 1963. [Google Scholar] [CrossRef]
- Yang, F.; Cabe, M.; Nowak, H.A.; Langert, K.A. Chitosan/poly(lactic-co-glycolic)acid Nanoparticle Formulations with Finely-Tuned Size Distributions for Enhanced Mucoadhesion. Pharmaceutics 2022, 14, 95. [Google Scholar] [CrossRef]
- Langert, K.A.; Goshu, B.; Stubbs, E.B., Jr. Attenuation of experimental autoimmune neuritis with locally administered lovastatin-encapsulating poly(lactic-co-glycolic) acid nanoparticles. J. Neurochem. 2017, 140, 334–346. [Google Scholar]
- Zhang, W.; Trebak, M. Vascular balloon injury and intraluminal administration in rat carotid artery. J. Vis. Exp. 2014, 94, 52045. [Google Scholar]
- Greenwood, J.; Mason, J.C. Statins and the vascular endothelial inflammatory response. Trends Immunol. 2007, 28, 88–98. [Google Scholar] [PubMed]
- Zhao, C.; Zuckerman, S.T.; Cai, C.; Kilari, S.; Singh, A.; Simeon, M.; von Recum, H.A.; Korley, J.N.; Misra, S. Periadventitial Delivery of Simvastatin-Loaded Microparticles Attenuate Venous Neointimal Hyperplasia Associated with Arteriovenous Fistula. J. Am. Heart Assoc. 2020, 9, e018418. [Google Scholar] [PubMed]
- Yu, J.; Qiu, H.; Yin, S.; Wang, H.; Li, Y. Polymeric Drug Delivery System Based on Pluronics for Cancer Treatment. Molecules 2021, 26, 3610. [Google Scholar] [CrossRef]
- Friedman, A.J.; Phan, J.; Schairer, D.O.; Champer, J.; Qin, M.; Pirouz, A.; Blecher-Paz, K.; Oren, A.; Liu, P.T.; Modlin, R.L.; et al. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: A targeted therapy for cutaneous pathogens. J. Investig. Dermatol. 2013, 133, 1231–1239. [Google Scholar]
- Wang, L.; Li, C.; Chen, Y.; Dong, S.; Chen, X.; Zhou, Y. Poly(lactic-co-glycolic) acid/nanohydroxyapatite scaffold containing chitosan microspheres with adrenomedullin delivery for modulation activity of osteoblasts and vascular endothelial cells. Biomed Res. Int. 2013, 2013, 530712. [Google Scholar]
- Ward, N.C.; Watts, G.F.; Eckel, R.H. Statin Toxicity. Circ. Res. 2019, 124, 328–350. [Google Scholar]
- Von Zee, C.L.; Richards, M.P.; Bu, P.; Perlman, J.I.; Stubbs, E.B. Increased RhoA and RhoB protein accumulation in cultured human trabecular meshwork cells by lovastatin. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2816–2823. [Google Scholar]
- Sugimoto, M.; Yamanouchi, D.; Komori, K. Therapeutic approach against intimal hyperplasia of vein grafts through endothelial nitric oxide synthase/nitric oxide (eNOS/NO) and the Rho/Rho-kinase pathway. Surg. Today 2009, 39, 459–465. [Google Scholar]
- Ming, X.-F.; Viswambharan, H.; Barandier, C.; Ruffieux, J.; Kaibuchi, K.; Rusconi, S.; Yang, Z. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol. Cell. Biol. 2002, 22, 8467–8477. [Google Scholar]
- Maier, K.; Helkin, A.; Stein, J.J.; Yuan, H.L.; Seymour, K.; Ryabtsev, B.; Iwuchukwu, C.; Gahtan, V. Short-Term and Long-Term Fluvastatin Inhibit Effects of Thrombospondin-1 on Human Vascular Smooth Muscle Cells. Vasc. Endovasc. Surg. 2025, 59, 39–46. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, A.A.; Kaur, C.; Cabe, M.; Langert, K.A.; Maier, K.; Gahtan, V. Simvastatin-Loaded Chitosan-Functionalized PLGA Nanoparticles: Characterization and Use in Intimal Hyperplasia Therapy. Pharmaceutics 2025, 17, 391. https://doi.org/10.3390/pharmaceutics17030391
Peters AA, Kaur C, Cabe M, Langert KA, Maier K, Gahtan V. Simvastatin-Loaded Chitosan-Functionalized PLGA Nanoparticles: Characterization and Use in Intimal Hyperplasia Therapy. Pharmaceutics. 2025; 17(3):391. https://doi.org/10.3390/pharmaceutics17030391
Chicago/Turabian StylePeters, Ashley A., Chanpreet Kaur, Maleen Cabe, Kelly A. Langert, Kristopher Maier, and Vivian Gahtan. 2025. "Simvastatin-Loaded Chitosan-Functionalized PLGA Nanoparticles: Characterization and Use in Intimal Hyperplasia Therapy" Pharmaceutics 17, no. 3: 391. https://doi.org/10.3390/pharmaceutics17030391
APA StylePeters, A. A., Kaur, C., Cabe, M., Langert, K. A., Maier, K., & Gahtan, V. (2025). Simvastatin-Loaded Chitosan-Functionalized PLGA Nanoparticles: Characterization and Use in Intimal Hyperplasia Therapy. Pharmaceutics, 17(3), 391. https://doi.org/10.3390/pharmaceutics17030391