Drug Delivery Systems Based on Metal–Organic Frameworks for Tumor Immunotherapy
Abstract
:1. Introduction
2. Classification and Drug Loading of MOFs
3. MOFs as Drug Delivery Carriers for Tumor Immunotherapy
3.1. Tumor Immunity Activation Effect of MOFs
3.2. MOFs as Carriers of Chemotherapeutic Drugs for Cancer Immunotherapy
3.3. MOFs as Carriers of Immunomodulator for Tumor Immunity Activation
3.3.1. MOFs as Carriers of Innate Immune Molecular Receptor Agonists
3.3.2. MOFs as Vectors for Kinase Inhibitors
3.3.3. MOFs as Carriers for Immune Checkpoint Inhibitors
3.3.4. MOFs as Carriers of Programmed Cell Death Inducers
3.4. MOFs as Carriers of Enzyme for TIME Reversal
3.5. MOFs as Carriers of Oligonucleotide Drugs to Overcome Immunotherapy Tolerance
3.6. MOFs as Carriers of Tumor Vaccines for Immune Stimulation
4. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.F.; Sun, X. Nanomedicines based on nanoscale metal-organic frameworks for cancer immunotherapy. Acta Pharmacol. Sin. 2020, 4, 1928–1935. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, Y.; Tiruthani, K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. Nanomedicine 2019, 21, 102034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef]
- Yaremenko, A.; Khan, M.M.; Zhen, X.Y.; Tang, Y.; Tao, W. Clinical advances of mRNA vaccines for cancer immunotherapy. Med 2025, 6, 2666–6340. [Google Scholar] [CrossRef] [PubMed]
- de Visser, K.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Arner, E.N.; Rathmell, J.C. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell 2023, 41, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Bear, A.S.; Vonderheide, R.H.; Hara, M.H. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell 2020, 38, 788–802. [Google Scholar] [CrossRef]
- Haynes, N.M.; Chadwick, T.B.; Parker, B.S. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat. Immunol. 2024, 25, 1793–1808. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wen, H.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Emerging multifunctional metal–organic framework materials. Adv. Mater. 2016, 28, 8819–8860. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.F.; Pinto, A.M. Metal-organic frameworks applications in synergistic cancer photo-immunotherapy. Polymers 2023, 15, 1490. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.D.; Wu, J.Y.; Fang, H.P.; Feng, Y.J.; Hu, Y.Y.; Chen, J.; Chen, F.F.; Tian, H.Y. Photothermal-Chemotherapy Enhancing Tumor Immunotherapy by Multifunctional Metal–Organic Framework Based Drug Delivery System. Nano Lett. 2021, 21, 7796–7805. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.R.; Chen, G.S.; Qin, L.Y.; Qu, C.H.; Dong, X.X.; Ni, J.; Yin, X.B. Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancer. Pharmaceutics 2020, 12, 232. [Google Scholar] [CrossRef]
- Rieter, J.W.; Taylor, M.L.K.; An, H.; Lin, W.; Lin, W. Nanoscale metal organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 2006, 128, 9024–9025. [Google Scholar] [CrossRef]
- Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W. Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 123044. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Long, J.R.; Yaghi, O.M. Introduction to metal–organic frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Patricia, H.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 2006, 45, 5974–5978. [Google Scholar] [CrossRef]
- Giménez-Marqués, M.; Bellido, E.; Berthelot, T.; Simón-Yarza, T.; Hidalgo, T.; Simón-Vázquez, R.; González-Fernández, Á.; Avila, J.; Asensio, M.C.; Gref, R.; et al. Graftfast surface engineering to improve mof nanoparticles furtiveness. Small 2018, 14, 1801900. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Chen, Q.; Gong, T.; Liu, J.; Li, C. Recent advancement of imidazolate framework (ZIF-8) based nanoformulations for synergistic tumor therapy. Nnanoscale 2019, 11, 21030–21045. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Bi, H.; Wang, Z.; Li, C.; Wang, X.; Xu, J.; Zhu, H.; Zhao, R.; He, F.; Gai, S.; et al. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor Therapy. Biomaterials 2019, 223, 119473. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, C.; Li, A.; Jing, W.; Sun, P.; Huang, X.; Liu, Y.; Zhang, S.; Du, W.; Zhang, R.; et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat. Nanotechnol. 2021, 16, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiang, W.; Liu, R.; Zhang, J.; Zhang, D.; Li, Z.; Luan, Y. Rational design of metal organic framework nanocarrier-based codelivery system of doxorubicin hydrochloride/verapamil hydrochloride for overcoming multidrug resistance with efficient targeted cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 19687–19697. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zeng, W.; Ouyang, Y.; Liang, S.; Yi, Y.; Hao, H.; Yu, J.; Liu, Y.; Nie, Y.; Wang, T.; et al. ATP-exhausted nanocomplexes for intratumoral metabolic intervention and photoimmunotherapy. Biomaterials 2022, 284, 121503. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Sun, F.; Jia, J.; He, H.; Wang, A.; Zhu, G. A highly porous medical metal–organic framework constructed from bioactive curcumin. Chem. Commun. 2015, 51, 5774–5777. [Google Scholar] [CrossRef] [PubMed]
- Grall, R.; Hidalgo, T.; Delic, J.; Garcia-Marquez, A.; Chevillard, S.; Horcajada, P. In vitro biocompatibility of mesoporous metal (III.; Fe, Al, Cr) trimesate MOF nanocarriers. J. Mater. Chem. B 2015, 3, 8279–8292. [Google Scholar] [CrossRef]
- Tabar, C.T.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Prieto, M.J.; Horcajada, P. Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B 2014, 2, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yao, X.; Li, F.Q.; Lu, X.; Zhang, W.; Duan, W.Y.; Tian, Y.P.; Li, D.D. A tumor microenvironment-activated metal-organic framework–based nanoplatform for amplified oxidative stress–induced enhanced chemotherapy. J. Biol. Chem. 2023, 299, 102742. [Google Scholar] [CrossRef]
- Hua, Y.; Qin, M.T.; Lu, S.Y.; Zhang, Y.X.; Tan, S.T.; Ding, D.; Wang, L. Hyaluronic acid-functionalized MOFs for combined sunitinib and siRNA therapy in renal cell carcinoma. Int. J. Biol. Macromol. 2024, 283, 137317. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.; Yahia, M.B.; Hall, S.; Miller, S.R.; Chevreau, H.; Elkaim, E.; Maurin, G.; Horcajada, P.; Serre, C. Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chem. Mater. 2013, 25, 2767–2776. [Google Scholar] [CrossRef]
- Sun, Y.J.; Zheng, L.W.; Yang, Y.; Qian, X.; Fu, T.; Li, X.W.; Yang, Z.Y.; Yan, H.; Cui, C.; Tan, W.H. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhou, M.; Chen, Q.; Tao, Y.; Ren, J.; Zhang, Y.; Qin, H. Disrupting intracellular iron homeostasis by engineered metal-organic framework for nanocatalytic tumor therapy in synergy with autophagy amplification-promoted ferroptosis. Adv. Funct. Mater. 2023, 33, 2215244. [Google Scholar] [CrossRef]
- Ploetz, E.; Zimpel, A.; Cauda, V.; Bauer, D.; Lamb, D.C.; Haisch, C.; Zahler, S.; Vollmar, A.M.; Wuttke, S.; Engelke, H. Metal–organic framework nanoparticles induce pyroptosis in cells controlled by the extracellular pH. Adv. Mater. 2020, 32, 1907267. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Cao, X.; Chen, M.; Li, J.; Wang, X.; Wu, S.; Zhang, Z. PEGylated Mn containing MOF nanoparticles for potential immunotherapy of pancreatic cancer via manganese induced activation of anti-tumor immunity. Colloid Interface Sci. Commun. 2021, 42, 100409. [Google Scholar] [CrossRef]
- Ding, B.; Chen, H.; Tan, J.; Meng, Q.; Zheng, P.; Ma, P.; Lin, J. ZIF-8 nanoparticles evoke pyroptosis for high-efficiency cancer immunotherapy. Angew. Chem. Int. Ed. 2023, 62, e202215307. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wang, Q.; Tang, J.; Wu, M.; Li, H.; Yang, Y.; Zhen, X.; Yu, C. Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy. Biomaterials 2022, 280, 121261. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Chen, C.; Ren, Y.; Su, T.; Chen, H.; Yu, D.; Huang, Y.; Chao, M.; Wu, G.; Jiang, G.; et al. A dual-pathway pyroptosis inducer based on Au–Cu2-xse@ZIF-8 enhances tumor immunotherapy by disrupting the zinc ion homeostasis. Acta Biomater. 2024, 188, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Shim, M.K.; Kim, W.J.; Choi, J.; Nam, G.-H.; Kim, J.; Kim, J.; Moon, Y.; Kim, H.Y.; Park, J.; et al. Cancer-activated doxorubicin prodrug nanoparticles induce preferential immune response with minimal doxorubicin-related toxicity. Biomaterials 2021, 272, 120791. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Bian, M.; Liu, L.; Yang, J.; Yang, Z.; Wang, Z.; Lu, Y.; Liu, W. Induction of immunogenic cell death by novel platinum-based anticancer agents. Pharmacol. Res. 2023, 187, 106556. [Google Scholar] [CrossRef]
- Lau, T.S.; Chan, L.K.Y.; Man, G.C.W.; Wong, C.H.; Lee, J.H.S.; Yim, S.F.; Cheung, T.H.; McNeish, I.A.; Kwong, J. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol. Res. 2020, 8, 1099–1111. [Google Scholar] [CrossRef]
- Kong, X.; He, Z.; Zhang, Y.; Fang, Y.; Liu, D.; Wu, H.; Ji, J.; Xi, Y.; Ye, L.; Yang, X.; et al. Intelligent self-amplifying ferroptosis-inducible nanoplatform for enhanced tumor microenvironment reconstruction and combination therapy. Chem. Eng. J. 2023, 468, 143729. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Cao, Y.; Bai, S.; Li, W.; Song, P.; Wang, B.; Wang, Z.; Wang, D.; Zhang, H.; et al. Triple-pathway cGAS-STING activation collaborated with ferroptosis-induced immunogenic cell death for boosting systemic colorectal cancer immunotherapy. Nano Today 2024, 59, 102484. [Google Scholar] [CrossRef]
- Yang, C.; Ming, H.; Li, B.; Liu, S.; Chen, L.; Zhang, T.; Gao, Y.; He, T.; Huang, C.; Du, Z. A pH and glutathione-responsive carbon monoxide-driven nano-herb delivery system for enhanced immunotherapy in colorectal cancer. J. Control. Release 2024, 376, 659–677. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Qi, L.; Li, L.; Li, Y. The Caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov. 2020, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Shang, Q.; Ji, J.; Luan, Y. A nanoplatform to amplify apoptosis-to-pyroptosis immunotherapy via immunomodulation of myeloid-derived suppressor cells. ACS Appl. Mater. Interfaces 2021, 13, 47407–47417. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Jin, M.; Liu, Y.; Wang, S.; Liu, C.; Quan, X.; Jin, M.; Gao, Z.; Jin, Y. A self-targeting MOFs nanoplatform for treating metastatic triple-negative breast cancer through tumor microenvironment remodeling and chemotherapy potentiation. Int. J. Pharm. 2024, 664, 124625. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Yang, X.; Zhu, B.; Deng, W.; Ye, Q.; Bai, B.; Liang, D.; Shao, B.; Huang, Y.; et al. Engineering metal-organic framework nanoparticles trigger pyroptosis to boost colon cancer immunotherapy. Mater. Des. 2024, 238, 112731. [Google Scholar] [CrossRef]
- Xing, G.; Yu, X.; Zhang, Y.; Sheng, S.; Jin, L.; Zhu, D.; Mei, L.; Dong, X.; Lv, F. Macrophages-based biohybrid microrobots for breast cancer photothermal immunotherapy by inducing pyroptosis. Small 2023, 20, 2305526. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, N.; Wang, Z.; Han, M.; Yan, F.; Shi, Z.; Feng, S. Ultrasound-triggered O2 bombs: Perfluorobromooctane-loaded defect-rich metal-organic framework for enhanced sono-immunotherapy. Chem. Eng. J. 2023, 474, 145764. [Google Scholar] [CrossRef]
- Hu, A.; Sun, L.; Lin, H.; Liao, Y.; Yang, H.; Mao, Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct. Target. Ther. 2024, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Demaria, O.; Cornen, S.; Daëron, M.; Morel, Y.; Medzhitov, R.; Vivier, E. Harnessing innate immunity in cancer therapy. Nature 2019, 574, 45–56. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, G.; Zhong, M.; Lin, L.; Mai, Z.; Tang, Y.; Chen, G.; Ma, W.; Li, G.; Yang, Y.; et al. An acid-responsive mof nanomedicine for augmented anti-tumor immunotherapy via a metal ion interference-mediated pyroptotic pathway. Biomaterials 2023, 302, 122333. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hao, Q.; Zhu, H.; Zhao, R.; Feng, L.; He, S.; Wang, W.; He, G.; Liu, B.; Yang, P. Thermoelectric nanoheterojunction-mediated multiple energy conversion for enhanced cancer therapy. ACS Nano 2024, 18, 34257–34271. [Google Scholar] [CrossRef]
- Chen, C.; Xu, P. Cellular functions of cGAS-STING signaling. Trends Cell Biol. 2023, 33, 630–648. [Google Scholar] [CrossRef]
- Luo, T.; Jiang, X.; Fan, Y.; Yuan, E.; Li, J.; Tillman, L.; Lin, W. STING agonist-conjugated metal-organic framework induces artificial leukocytoid structures and immune hotspots for systemic antitumor responses. Natl. Sci. Rev. 2024, 11, nwae167. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chen, H.; Zhu, G.; Zhu, X.; Gao, R.; Xu, B.; Song, X.; Han, X.; Shao, T.; Sun, Q.; et al. Spiky metal-organic framework nanosystem for enhanced cuproptosis-mediated cancer immunotherapy. Nano Today 2024, 56, 102231. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Q.; Wang, J.; Zhou, Y.; Li, F.; Xie, Y.; Wang, X.; Du, L.; Li, J.; Pu, J.; et al. A DNA/DMXAA/metal–organic framework activator of innate immunity for boosting anticancer immunity. Adv. Mater. 2023, 35, 2210440. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Soccio, L.; Kim, H.; Gadina, M.; Schwartzberg, P.L.; Laurence, A.; O’Shea, J.J. Protein kinases: Drug targets for immunological disorders. Nat. Rev. Immunol. 2023, 23, 787–806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhong, D.; Yu, Y.; Wang, L.; Li, Y.; Liang, Y.; Shi, Y.; Duan, M.; Li, B.; Niu, H.; et al. Integration of STING activation and COX-2 inhibition via steric-hindrance effect tuned nanoreactors for cancer chemoimmunotherapy. Biomaterials 2024, 311, 122695. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhu, X.; Meng, X.; Zhong, H. Lenvatinib delivery using a Gd/Fe bimetallic MOF enhancing antitumor immunity following microwave-based thermal therapy. Acta Biomater. 2023, 172, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Morad, G.; Helmink, B.A.; Sharma, P.; Wargo, J.A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021, 184, 5309–5337. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Goswami, S.; Raychaudhuri, D.; Siddiqui, B.A.; Singh, P.; Nagarajan, A.; Liu, J.; Subudhi, S.K.; Poon, C.; Gant, K.L.; et al. Immune checkpoint therapy—Current perspectives and future directions. Cell 2023, 186, 1652–1669. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhao, Y.-Y.; Wu, Q.; You, Y.; Lan, Z.; Zou, K.-L.; Cheng, G.-W.; Chen, H.; Han, Y.-H.; Chen, Y.; et al. Microwave-responsive gadolinium metal-organic frameworks nanosystem for MRI-guided cancer thermotherapy and synergistic immunotherapy. Bioact. Mater. 2024, 33, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, P. Aptamers targeting the PD-1/PD-L1 axis: A perspective. J. Med. Chem. 2023, 66, 10878–10888. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, C.; Zhang, X.; Li, H.; Fan, Q.; Chen, S.; Zhang, X.; Wang, S. Core-shell nanomedicine based on multifunctional tetrahedral DNA nanostructures for synergistic enhancement of tumor chemodynamic/chemo-immunotherapy. Chem. Eng. J. 2024, 490, 151728. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, J.; Wu, Q.; Luo, G.; Zhao, M.; Zhong, G.; Zheng, Y.; Meng, X.; Cheng, S.; Zhang, Y. Multifunctional 3D-printed scaffolds eradiate orthotopic osteosarcoma and promote osteogenesis via microwave thermo-chemotherapy combined with immunotherapy. Biomaterials 2023, 301, 122236. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Gu, L.; Zhu, L.; Miao, Y.; Cui, X. A novel anti-CD47 protein antibody and toll-like receptor agonist complex detects tumor surface CD-47 changes in early stage lung cancer by in vivo imaging. Int. J. Biol. Macromol. 2024, 274, 133322. [Google Scholar] [CrossRef] [PubMed]
- Loveless, R.; Bloomquist, R.; Teng, Y. Pyroptosis at the forefront of anticancer immunity. J. Exp. Clin. Cancer Res. 2021, 40, 264. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022, 7, 378. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Deng, W.; Wang, S.; Zhao, S.; Zhu, B.; Bai, B.; Mao, Y.; Lin, J.; Yi, Y.; Xie, Z.; et al. PEGylated elesclomol@Cu(II)-based metal–organic framework with effective nanozyme performance and cuproptosis induction efficacy for enhanced PD-L1-based immunotherapy. Mater. Today Bio 2024, 29, 101317. [Google Scholar] [CrossRef]
- Thews, O.; Riemann, A. Tumor pH and metastasis: A malignant process beyond hypoxia. Cancer Metastasis Rev. 2019, 38, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z.; Xie, F.; Wang, S.; Wu, X.; Zhang, Z.; Yang, B.; Zhou, F. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates P53 and contributes to tumorigenesis. Cell 2024, 187, 2375–2392. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Zhai, L.; Zhang, T.; Yin, H.; Gao, H.; Zhao, F.; Wang, Z.; Yang, X.; Jin, M.; et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 2024, 187, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hu, Y.; Cao, Y.; Ding, S.; Zeng, L.; Zhang, Y.; Cao, M.; Duan, G.; Zhang, X.; Bian, X.-W.; et al. A lactate-depleting metal organic framework-based nanocatalyst reinforces intratumoral T cell response to boost anti-PD1 immunotherapy. J. Colloid Interface Sci. 2024, 660, 869–884. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Dai, Z.; Zhang, F.; Xin, C.; An, Q.; Meng, X.; Hu, Z.; Wang, W.; Tian, L.; Zheng, X. Metal organic frameworks based intelligent nanoadjuvants for boosting tumor immunotherapy through enhanced ICD and lactic acid regulation. Chem. Eng. J. 2024, 479, 147464. [Google Scholar] [CrossRef]
- Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021, 277, 121110. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xiao, C.; Li, Z.; Yang, X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev. 2021, 50, 6013–6041. [Google Scholar] [CrossRef] [PubMed]
- Lequeux, A.; Noman, M.Z.; Xiao, M.; Van Moer, K.; Hasmim, M.; Benoit, A.; Bosseler, M.; Viry, E.; Arakelian, T.; Berchem, G.; et al. Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene 2021, 40, 4725–4735. [Google Scholar] [CrossRef]
- Najafi, A.; Keykhaee, M.; Khorramdelazad, H.; Karimi, M.Y.; Nejatbakhsh Samimi, L.; Aghamohamadi, N.; Karimi, M.; Falak, R.; Khoobi, M. Catalase application in cancer therapy: Simultaneous focusing on hypoxia attenuation and macrophage reprogramming. Biomed. Pharmacother. 2022, 153, 113483. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.-X.; Liang, J.-L.; Chen, Q.-W.; Jin, X.-K.; Niu, M.-T.; Dong, C.-Y.; Zhang, X.-Z. Metal-organic framework nanoagent induces cuproptosis for effective immunotherapy of malignant glioblastoma. Nano Today 2023, 51, 101911. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, Z.; Lin, M.; Zhong, H.; Shuai, X. Metal-organic framework nanoparticles hitchhiking on T cells for protein delivery to boost anticancer immunotherapy. Nano Today 2024, 54, 102102. [Google Scholar] [CrossRef]
- Yang, J.; Ma, S.; Xu, R.; Wei, Y.; Zhang, J.; Zuo, T.; Wang, Z.; Deng, H.; Yang, N.; Shen, Q. Smart biomimetic metal organic rrameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release 2021, 334, 21–33. [Google Scholar] [CrossRef]
- Roberts, T.C.; Langer, R.; Wood, M.J.A. Wood. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, J.; Zhang, L.; Lei, J. Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chem. Soc. Rev. 2021, 50, 1188–1218. [Google Scholar] [CrossRef]
- Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol. 2021, 905, 174178. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Lei, Q.; Wu, M.; Gao, S.; Yang, Z.; Lv, X.; Wei, R.; Yan, F.; Cai, L. Metal-organic framework-mediated siRNA delivery and sonodynamic therapy for precisely triggering ferroptosis and augmenting ICD in osteosarcoma. Mater. Today Bio 2024, 26, 101053. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Wang, Y.; Shen, Y.; Wu, K.; Shi, Y.; Cao, T.; Yuan, S.; Zhu, Y.; Bai, Y.; et al. Nano-enabled regulation of DNA damage in tumor cells to enhance neoantigen-based pancreatic cancer immunotherapy. Biomaterials 2024, 311, 122710. [Google Scholar] [CrossRef] [PubMed]
- Alsharafi, W.A.; Xiao, B.; Abuhamed, M.M.; Luo, Z. miRNAs: Biological and clinical determinants in epilepsy. Front. Mol. Neurosci. 2015, 8, 59. [Google Scholar] [CrossRef]
- Cui, C.; He, Q.; Wang, J.; Kang, J.; Ma, W.; Nian, Y.; Sun, Z.; Weng, H. Targeted miR-34a delivery with PD1 displayed bacterial outer membrane vesicles-coated zeolitic imidazolate framework nanoparticles for enhanced tumor therapy. Int. J. Biol. Macromol. 2023, 247, 125692. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, D.; Moya, S.; Yan, H.; Qiu, M.; Chen, J.; Wang, X.; Li, Y.; Pan, H.; Chen, G.; et al. Bispecific T-cell engager (BiTE) immunotherapy of ovarian cancer based on MIL-88A MOF/MC gene delivery system. Appl. Mater. Today 2020, 20, 100701. [Google Scholar] [CrossRef]
- Drew, L. Cancer-vaccine trials give reasons for optimism. Nature 2024, 627, S33. [Google Scholar] [CrossRef] [PubMed]
- Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 2021, 21, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.; Xu, Q.; Zhang, Z.; Wei, Z.; Yong, T.; Bie, N.; Zhang, X.; Li, X.; Li, J.; Gan, L.; et al. Biomimetic sonodynamic therapy-nanovaccine integration platform potentiates anti-PD-1 therapy in hypoxic tumors. Nano Today 2021, 38, 101195. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, Y.; Tan, L.; Zheng, T.; Hou, Y.; Hong, X.; Du, G.; Chen, X.; Zhang, Y.; Sun, X. An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses. J. Control. Release 2019, 300, 81–92. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y. Harnessing whole tumor cells for tumor immunotherapy. Innov. Mater. 2023, 1, 100018. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Zeng, L.; Yin, W.; Xu, Y.; Chen, J.; Liu, S.; Zou, X.; He, Z.; Dai, Z. Cell-Selective encapsulation within metal–organic framework shells via precursor-functionalized aptamer identification for whole-cell cancer vaccine. Small Methods 2022, 6, 2101391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cao, Y.; Li, W.; Zhang, S.; Song, S.; Wang, Y.; Zhang, H. Ferroptosis-induced immunomodulation with biometabolic MOF@COF nanovaccine for self-boosting anti-tumor immunotherapy. Chem. Eng. J. 2024, 493, 152675. [Google Scholar] [CrossRef]
- Liu, F.; Tan, L.; Dai, Z.; Wang, Y.; Huang, L.; Zhang, Y.; Cheng, Q.; Li, X.; Liu, M.-D.; Wang, L.; et al. Manganese-based microcrystals equipped with Ythdf1-targeted biomimetic nanovaccines for reinforced dendritic cell spatiotemporal orchestration. Nano Today 2024, 54, 102112. [Google Scholar] [CrossRef]
MOF Type | Metal Type | MOF Name | Linker | Cargo | Coating | Immune Activation | Reference |
---|---|---|---|---|---|---|---|
Mono-metal MOFs | Fe | COS@MOF | 2-aminoterephthalic acid | - | Chitosan oligosaccharide | Ferroptosis | [34] |
Lip-MOF | Tri-mellitic-anhydride | - | 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) | Pyroptosis | [35] | ||
p-LDM | 1,4-benzenedicarboxylicacid (H2BDC) | Doxorubicin (DOX) | DOPC DSPE-PEG2000 Pep-DSPE-PEG2000 | Ferroptosis | [43] | ||
IPI549@MOF/CpG NPs | Tannic acid (TA) | IPI549 CpG | - | TLR9 pathway activation | [55] | ||
MLSLF | Dithiodiglycolic acid | Lactate oxidase, siMCT4) | Folate-liposomes | GSH depletion,·OH generation | [77] | ||
Fe(SS)DG MOF | Dithiodiglycolic acid | DOX glucose oxidase (Gox) | Cell membrane | ROS-ferroptosis-glycolysis regulation | [84] | ||
MOF/MC.BiTE | Trimesic acid | Minicircle DNA | - | T cell activation, BiTE expression | [94] | ||
NMCAH | NH2-BDC | Arachidonic acid | Benzaldehyde Phenylenediamine hyaluronic acid | Ferroptosis | [99] | ||
Zn | F127ZIF-8CCCP NPs | 2-methylimidazole (2-MIM) | Carbonyl cyano-m-chlorophenone (CCCP) | F127 | Pyroptosis | [37] | |
PMDC NPs | Terephthalic acid | Dihydroartemisinin (DHA), CORM-401 | pHCT74 | Apoptosis, ferroptosis | [45] | ||
(M + H)@ZIF/HA | 2-MIM | Hydralazine (HYD), mitoxantrone (MIT) | Hyaluronic acid (HA) | Pyroptosis, MGO reduction | [47] | ||
MTX-PEG@TPL@ZIF-8 | 2-MIM | Triptolide (TPL) | COOH-PEG2000-MTX | Cleaved Caspase-9/3 pathway activation | [48] | ||
IDN@MC | 2-MIM | Decitabine | IR-MC | Pyroptosis | [50] | ||
CZFNP | 2-MIM | - | NH2-PEG-FA | STING and PEG-2 pathway activation | [61] | ||
TZDI | 2-MIM | DOX IDO inhibitors | 3D-printed scaffolds | ICD, ICB | [68] | ||
LOX@ZIF-8@MPN | 2-MIM | Lactate oxidase | Fe-Metallic polyphenol network | Apoptosis, ICD, Vascular normalization | [76] | ||
C&H@MOF/PL | 2-MIM | Catalase, hemoglobin | Apd-1, DSPC, NDPPA-PEG-CDM, cholesterol | Hypoxia relief | [83] | ||
MOFDOX@siATR | 2-MIM | DOX siATR | - | siRNA silence ICD | [89] | ||
OMV@ZIF-8@pre-miRNA | 2-MIM | Pre-miRNA | Bacterial outer membrane vesicles expressing PD-1 (OMV-PD-1) | mRNA degradation | [92] | ||
Apt-Cell@ZIF-8 | 2-MIM | Cancer cell | - | CRT explosion, tumor antigen presentation | [98] | ||
Cu | S@Cu-MOF/PPI | Bis(trichloromethyl) carbonate (BTC) | Polyphyllin I (PPI) | - | Cuproptosis, STING pathway, apoptosis | [58] | |
Cu(II)-MOF | BTC | Elesclomol (ES) | Polyethylene glycol, (PEG) | Cuproptosis ICD | [72] | ||
BCMD | 1,3,5-Benzenetricarboxylic acid (H3BTC) | Catalase, buthionine-sul foximine | Dodecyl-beta-D-maltoside | ICD, cuproptosis | [82] | ||
Mn | Mn-MOF@PEG | 2,5-dihydroxyterephthalic acid (H4DOBDC) | - | Dicyclohexyl carbodiimide (DCC), PEG | DCs muturation | [36] | |
DOX@Zr-MOF | 5,10,15,20-tetrakis(4-carbonxyphenyl) porphyrin (TCPP) | DOX | DSPE-PEG2000-NH2 | ICD, Caspase-dependent pathway activation | [49] | ||
BT-isMOFs | Terephthalic acid (H2BDC) | CpG | Zoledronic acid (ZOL) | TLR9 pathway activation | [55] | ||
MOF-CpG-DMXAA | Fumaric acid | 5, 6-dimethylflavono-4-acetic acid (DMXAA), CpG | - | Starvation therapy, TLR9 and STING pathway activation | [59] | ||
cMn-MOF@CM | Benzoic acid | CpG, bovine serum albumin (BSA) | B16-OVA membrane | Antigen presentation | [95] | ||
Ti | PMPPO | NH2-H2BDC, BA | Pt O2 | - | ICD, apoptosis | [51] | |
Hf | DBP-Hf MOFs | H2DBP | 2,3 cyclic guanosine monophosphate—adenosine monophosphate (GA) | - | cGAS-STING pathway activation | [57] | |
Gd | Gd/MPC | Fumaric acid | aPD-1 | 1-Tetradecanol SCC7-cell membrance | ICB, apoptosis | [65] | |
Al | ICG-R848@Al-MOFs | NH2-BDC | α-CD47, ICG, R848 | - | ICB, TLR pathway activation | [69] | |
Binary-metal MOFs | Gd Zn | Gd-MOF-5 | H2BDC | TMEM 16F Deactivation ICD | ICD, TMEM 16F deactivation | [38] | |
Mn Fe | MMCH | Oleic acid | Cisplatin | HA | Ferroptosis, ICD | [44] | |
Fe Mn | FeMn@R@H | 2-aminoterephthalic acid, citric acid | R848 | HA | Pyroptosis | [54] | |
Fe Gd | LEN@Gd/FeMOF-PEG | Trimesic acid Fumaric acid | Levatinib | Mpeg-SH | ICD | [62] | |
Cu Zn | CPD@M-TDN | 2-MIM | DA, DOX | M-TDN | ICD, GSH depletion | [67] | |
Fe Zr | mFeP@si | H2TCPP | siGPX4 | OS cell membrane | Ferroptosis, GPX4 silence | [88] | |
Zn Al | ZANPs | 2-MIM | Ovalbumin (OVA) | - | Antigen presentation | [96] | |
Mn Zr | Mn/Zr-MOF-shY1-CM | TCPP | shY1-plasmid | Cell membrane | STING pathway activation, Ythdf 1 silence | [100] | |
Tri-metal MOFs | Cu Au Zn | ACS-Z-P NPs | 2-MIM | Purpurin 18 | Purpurin 18 | Pyroptosis, ICD | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; He, Z.; Lang, T. Drug Delivery Systems Based on Metal–Organic Frameworks for Tumor Immunotherapy. Pharmaceutics 2025, 17, 225. https://doi.org/10.3390/pharmaceutics17020225
Yang N, He Z, Lang T. Drug Delivery Systems Based on Metal–Organic Frameworks for Tumor Immunotherapy. Pharmaceutics. 2025; 17(2):225. https://doi.org/10.3390/pharmaceutics17020225
Chicago/Turabian StyleYang, Ning, Zongyan He, and Tianqun Lang. 2025. "Drug Delivery Systems Based on Metal–Organic Frameworks for Tumor Immunotherapy" Pharmaceutics 17, no. 2: 225. https://doi.org/10.3390/pharmaceutics17020225
APA StyleYang, N., He, Z., & Lang, T. (2025). Drug Delivery Systems Based on Metal–Organic Frameworks for Tumor Immunotherapy. Pharmaceutics, 17(2), 225. https://doi.org/10.3390/pharmaceutics17020225