Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese
Abstract
:1. Introduction
1.1. Definition of Probiotics
1.2. Beneficial Effects of Probiotics on Human Health
1.3. Combining Probiotics with Prebiotics: The Beneficial Effects of Synbiotics
1.4. Challenges for Probiotic Employment in the Food Chain
1.4.1. Probiotic Processing: Thermal, Oxidative, and Osmotic Stressor Agents
1.4.2. Storage and Transport
1.4.3. Harsh Conditions in the Gastrointestinal Tract
2. Probiotics in Functional Foods and Dairy Functional Foods
Probiotic Fortified Pasta Filata
3. Microencapsulation of Probiotics: A Strategy to Increase Probiotic Vitality and Overcome Challenges
4. Techniques for Microencapsulation of Probiotics
4.1. Nozzle Extrusion Techniques (Prilling/Vibration Technique)
4.2. Emulsion Technique
Type of Cheese | Microencapsulation Technique | Probiotic Strain | Encapsulating Material | Main Results | Reference |
---|---|---|---|---|---|
Kariesh cheese | Prilling/vibration technique | Bifidobacterium lactis BB-12, Lacticaseibacillus rhamnosus NRRL B-442 and Lactobacillus gasseri NRRL B-14168 | Sodium alginate and rice flour | The survival rate of probiotics exposed to in vitro simulated GI solutions was recorded at 72.9 | [117] |
White soft cheese | Prilling/vibration technique | Bifidobacterium lactis BB12 | Sodium alginate, fish oil, and pomegranate peel extract (PPE) | The probiotic + fish oil + PPE emulsion protected the probiotic bacteria during storage for 30 days | [118] |
Goat Ricotta | Prilling/vibration technique | Lactobacillus acidophilus (La-05) | Alginate and chitosan | Microencapsulation of probiotic cultures resulted in increased probiotic survival | [119] |
Oaxaca cheese | Emulsion | Lactobacillus plantarum | Aguamiel/Canola oil/Sweet whey | The inclusion of bacteria in double emulsions provides a physical barrier against deleterious environmental factors | [120] |
Chami Cheese | Emulsion | Lactobacillus plantarum 564 | Camel milk protein and wheat starch | The emulsion technique improves the stability, preservation, and survival of the GI passage of probiotic cells | [67] |
4.3. Fluid Bed Coating
4.4. Freeze-Drying
4.5. Spray Drying
4.6. Spray Congealing
4.7. Electrospinning and Electrospraying
4.8. Other Emerging Techniques
4.8.1. Three-Dimensional Printing
4.8.2. Microfluidic
5. Characterisation of Probiotic-Loaded Microparticles
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guarner, F.; Perdigon, G.; Corthier, G.; Salminen, S.; Koletzko, B.; Morelli, L. Should Yoghurt Cultures Be Considered Probiotic? Br. J. Nutr. 2005, 93, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Lilly, D.M.; Stillwell, R.H. Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science 1965, 147, 747–748. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in Man and Animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Fijan, S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef] [PubMed]
- Ministero Della Salute Direzione Generale per l’igiene e La Sicurezza Degli Alimenti e La Nutrizione- Ufficio 4 GUIDELINES ON PROBIOTICS AND PREBIOTICS Revised in March 2018. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_1016_ulterioriallegati_ulterioreallegato_0_alleg.pdf (accessed on 16 November 2024).
- Celano, G.; Calabrese, F.M.; Riezzo, G.; D’Attoma, B.; Ignazzi, A.; Di Chito, M.; Sila, A.; De Nucci, S.; Rinaldi, R.; Linsalata, M.; et al. A Multi-Omics Approach to Disclose Metabolic Pathways Impacting Intestinal Permeability in Obese Patients Undergoing Very Low Calorie Ketogenic Diet. Nutrients 2024, 16, 2079. [Google Scholar] [CrossRef] [PubMed]
- Quigley, E.M.M. Prebiotics and Probiotics in Digestive Health. Clin. Gastroenterol. Hepatol. 2019, 17, 333–344. [Google Scholar] [CrossRef]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Perna, S.; Giacosa, A.; Peroni, G.; Castellazzi, A.M. Using Probiotics in Clinical Practice: Where Are We Now? A Review of Existing Meta-Analyses. Gut Microbes 2017, 8, 521–543. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V.; Karakan, T.; Karatas, A. Strain-Specific and Outcome-Specific Efficacy of Probiotics for the Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. EClinicalMedicine 2021, 41, 101154. [Google Scholar] [CrossRef]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef]
- Merenstein, D.J.; Tancredi, D.J.; Karl, J.P.; Krist, A.H.; Lenoir-Wijnkoop, I.; Reid, G.; Roos, S.; Szajewska, H.; Sanders, M.E. Is There Evidence to Support Probiotic Use for Healthy People? Adv. Nutr. 2024, 15, 100265. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.A.; Roy, T.; D’Adamo, C.R.; Wieland, L.S. Probiotics and Gastrointestinal Conditions: An Overview of Evidence from the Cochrane Collaboration. Nutrition 2018, 45, 125–134.e11. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Radziwill-Bienkowska, J.M.; Marć, M.A.; Jastrząb, R.; Mytych, J.; Siedlecki, P.; Szczepankowska, A.K. Screening for Probiotic Properties and Potential Immunogenic Effects of Lactobacilli Strains Isolated from Various Food Products. Front. Microbiol. 2024, 15, 1430582. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Yang, D.; Liu, C.; Xue, W. The Role of Probiotics in Prevention and Treatment of Food Allergy. Food Sci. Human Wellness 2023, 12, 681–690. [Google Scholar] [CrossRef]
- Aghamohammad, S.; Sepehr, A.; Miri, S.T.; Najafi, S.; Pourshafie, M.R.; Rohani, M. Investigation of the Anti-Inflammatory Effects of Native Potential Probiotics as Supplementary Therapeutic Agents in an in-Vitro Model of Inflammation. BMC Complement. Med. Ther. 2023, 23, 335. [Google Scholar] [CrossRef] [PubMed]
- Wolvers, D.; Antoine, J.-M.; Myllyluoma, E.; Schrezenmeir, J.; Szajewska, H.; Rijkers, G.T. Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Prevention and Management of Infections by Probiotics. J. Nutr. 2010, 140, 698S–712S. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Younes, J.A.; Van der Mei, H.C.; Gloor, G.B.; Knight, R.; Busscher, H.J. Microbiota Restoration: Natural and Supplemented Recovery of Human Microbial Communities. Nat. Rev. Microbiol. 2011, 9, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Nagpal, R.; Verma, V.; Kumar, A.; Kaur, N.; Hemalatha, R.; Gautam, S.K.; Singh, B. Probiotic Metabolites as Epigenetic Targets in the Prevention of Colon Cancer. Nutr. Rev. 2013, 71, 23–34. [Google Scholar] [CrossRef]
- van Baarlen, P.; Troost, F.; van der Meer, C.; Hooiveld, G.; Boekschoten, M.; Brummer, R.J.M.; Kleerebezem, M. Human Mucosal in Vivo Transcriptome Responses to Three Lactobacilli Indicate How Probiotics May Modulate Human Cellular Pathways. Proc. Natl. Acad. Sci. USA 2011, 108, 4562–4569. [Google Scholar] [CrossRef]
- De Angelis, M.; Siragusa, S.; Vacca, M.; Di Cagno, R.; Cristofori, F.; Schwarm, M.; Pelzer, S.; Flügel, M.; Speckmann, B.; Francavilla, R.; et al. Selection of Gut-Resistant Bacteria and Construction of Microbial Consortia for Improving Gluten Digestion under Simulated Gastrointestinal Conditions. Nutrients 2021, 13, 992. [Google Scholar] [CrossRef]
- Ritchie, M.L.; Romanuk, T.N. A Meta-Analysis of Probiotic Efficacy for Gastrointestinal Diseases. PLoS ONE 2012, 7, e34938. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of Health Claims Related to Live Yoghurt Cultures and Improved Lactose Digestion (ID 1143, 2976) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1763. [Google Scholar] [CrossRef]
- Gibson, G.R.; Probert, H.M.; Van Loo, J.; Rastall, R.A.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Updating the Concept of Prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Lyon, J.; Connell, M.; Chandrasekaran, K.; Srivastava, S. Effect of Synbiotics on Weight Loss and Metabolic Health in Adults with Overweight and Obesity: A Randomized Controlled Trial. Obesity 2023, 31, 2009–2020. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Arraño, V.; Martín-Peláez, S. Effects of Probiotics and Synbiotics on Weight Loss in Subjects with Overweight or Obesity: A Systematic Review. Nutrients 2021, 13, 3627. [Google Scholar] [CrossRef]
- Naseri, K.; Saadati, S.; Ashtary-Larky, D.; Asbaghi, O.; Ghaemi, F.; Pashayee-Khamene, F.; Yari, Z.; de Courten, B. Probiotics and Synbiotics Supplementation Improve Glycemic Control Parameters in Subjects with Prediabetes and Type 2 Diabetes Mellitus: A GRADE-Assessed Systematic Review, Meta-Analysis, and Meta-Regression of Randomized Clinical Trials. Pharmacol. Res. 2022, 184, 106399. [Google Scholar] [CrossRef]
- Rong, L.; Ch’ng, D.; Jia, P.; Tsoi, K.K.F.; Wong, S.H.; Sung, J.J.Y. Use of Probiotics, Prebiotics, and Synbiotics in Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. J. Gastroenterol. Hepatol. 2023, 38, 1682–1694. [Google Scholar] [CrossRef]
- Zhang, W.X.; Shi, L.B.; Zhou, M.S.; Wu, J.; Shi, H.Y. Efficacy of Probiotics, Prebiotics and Synbiotics in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled Trials. J. Med. Microbiol. 2023, 72, 001758. [Google Scholar] [CrossRef]
- Veziant, J.; Bonnet, M.; Occean, B.V.; Dziri, C.; Pereira, B.; Slim, K. Probiotics/Synbiotics to Reduce Infectious Complications after Colorectal Surgery: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2022, 14, 3066. [Google Scholar] [CrossRef]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Rocchetti, M.T.; Iacobellis, I.; Serale, N.; Calasso, M.; Gesualdo, L.; De Angelis, M. In Vivo Evaluation of an Innovative Synbiotics on Stage IIIb-IV Chronic Kidney Disease Patients. Front. Nutr. 2023, 10, 1215836. [Google Scholar] [CrossRef] [PubMed]
- Choy, C.T.; Siu, P.L.K.; Zhou, J.; Wong, C.H.; Lee, Y.W.; Chan, H.W.; Tsui, J.C.C.; Lo, C.J.Y.; Loo, S.K.F.; Tsui, S.K.W. Improvements in Gut Microbiome Composition Predict the Clinical Efficacy of a Novel Synbiotics Formula in Children with Mild to Moderate Atopic Dermatitis. Microorganisms 2023, 11, 2175. [Google Scholar] [CrossRef]
- Wendel, U. Assessing Viability and Stress Tolerance of Probiotics—A Review. Front. Microbiol. 2022, 12, 818468. [Google Scholar] [CrossRef]
- Bezkorovainy, A. Probiotics: Determinants of Survival and Growth in the Gut. Am. J. Clin. Nutr. 2001, 73, 399s–405s. [Google Scholar] [CrossRef]
- Champagne, C.P.; Gardner, N.J.; Roy, D. Challenges in the Addition of Probiotic Cultures to Foods. Crit. Rev. Food Sci. Nutr. 2005, 45, 61–84. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, J.T.; Balthazar, C.F.; Silva, R.; Rocha, R.S.; Graça, J.S.; Esmerino, E.A.; Silva, M.C.; Sant’Ana, A.S.; Duarte, M.C.K.H.; Freitas, M.Q.; et al. Impact of Probiotics and Prebiotics on Food Texture. Curr. Opin. Food Sci. 2020, 33, 38–44. [Google Scholar] [CrossRef]
- Calasso, M.; Marzano, M.; Caponio, G.R.; Celano, G.; Fosso, B.; Calabrese, F.M.; De Palma, D.; Vacca, M.; Notario, E.; Pesole, G.; et al. Shelf-Life Extension of Leavened Bakery Products by Using Bio-Protective Cultures and Type-III Sourdough. LWT 2023, 177, 114587. [Google Scholar] [CrossRef]
- do Espírito Santo, A.P.; Perego, P.; Converti, A.; Oliveira, M.N. Influence of Food Matrices on Probiotic Viability—A Review Focusing on the Fruity Bases. Trends Food Sci. Technol. 2011, 22, 377–385. [Google Scholar] [CrossRef]
- Kathiriya, M.R.; Vekariya, Y.V.; Hati, S. Understanding the Probiotic Bacterial Responses Against Various Stresses in Food Matrix and Gastrointestinal Tract: A Review. Probiotics Antimicrob. Proteins 2023, 15, 1032–1048. [Google Scholar] [CrossRef] [PubMed]
- Fiocco, D.; Longo, A.; Arena, M.P.; Russo, P.; Spano, G.; Capozzi, V. How Probiotics Face Food Stress: They Get by with a Little Help. Crit. Rev. Food Sci. Nutr. 2020, 60, 1552–1580. [Google Scholar] [CrossRef]
- Gagnaire, V.; Jardin, J.; Rabah, H.; Briard-Bion, V.; Jan, G. Emmental Cheese Environment Enhances Propionibacterium Freudenreichii Stress Tolerance. PLoS ONE 2015, 10, e0135780. [Google Scholar] [CrossRef]
- Mangiagalli, M.; Sarusi, G.; Kaleda, A.; Bar Dolev, M.; Nardone, V.; Vena, V.F.; Braslavsky, I.; Lotti, M.; Nardini, M. Structure of a Bacterial Ice Binding Protein with Two Faces of Interaction with Ice. FEBS J. 2018, 285, 1653–1666. [Google Scholar] [CrossRef]
- Song, S.; Bae, D.-W.; Lim, K.; Griffiths, M.W.; Oh, S. Cold Stress Improves the Ability of Lactobacillus Plantarum L67 to Survive Freezing. Int. J. Food Microbiol. 2014, 191, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Polo, L.; Mañes-Lázaro, R.; Olmeda, I.; Cruz-Pio, L.E.; Medina, Á.; Ferrer, S.; Pardo, I. Influence of Freezing Temperatures Prior to Freeze-Drying on Viability of Yeasts and Lactic Acid Bacteria Isolated from Wine. J. Appl. Microbiol. 2017, 122, 1603–1614. [Google Scholar] [CrossRef]
- Ferrando, V.; Quiberoni, A.; Reinheimer, J.; Suárez, V. Functional Properties of Lactobacillus Plantarum Strains: A Study in Vitro of Heat Stress Influence. Food Microbiol. 2016, 54, 154–161. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Alegría, Á.; Bron, P.A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C.; et al. Stress Physiology of Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Stockwell, B.R. The Role of Iron and Reactive Oxygen Species in Cell Death. Nat. Chem. Biol. 2014, 10, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Wang, J. Oxidative Stress Tolerance and Antioxidant Capacity of Lactic Acid Bacteria as Probiotic: A Systematic Review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
- Bisson, G.; Maifreni, M.; Innocente, N.; Marino, M. Application of Pre-Adaptation Strategies to Improve the Growth of Probiotic Lactobacilli under Food-Relevant Stressful Conditions. Food Funct. 2023, 14, 2128–2137. [Google Scholar] [CrossRef]
- Castro-López, C.; Romero-Luna, H.E.; García, H.S.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Key Stress Response Mechanisms of Probiotics During Their Journey Through the Digestive System: A Review. Probiotics Antimicrob. Proteins 2023, 15, 1250–1270. [Google Scholar] [CrossRef]
- Onwe, R.O.; Onwosi, C.O.; Ezugworie, F.N.; Ekwealor, C.C.; Okonkwo, C.C. Microbial Trehalose Boosts the Ecological Fitness of Biocontrol Agents, the Viability of Probiotics during Long-Term Storage and Plants Tolerance to Environmental-Driven Abiotic Stress. Sci. Total Environ. 2022, 806, 150432. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Soares, M.B.; Martinez, R.C.R.; Pereira, E.P.R.; Balthazar, C.F.; Cruz, A.G.; Ranadheera, C.S.; Sant’Ana, A.S. The Resistance of Bacillus, Bifidobacterium, and Lactobacillus Strains with Claimed Probiotic Properties in Different Food Matrices Exposed to Simulated Gastrointestinal Tract Conditions. Food Res. Int. 2019, 125, 108542. [Google Scholar] [CrossRef]
- Naissinger da Silva, M.; Tagliapietra, B.L.; Flores, V.d.A.; Pereira dos Santos Richards, N.S. In Vitro Test to Evaluate Survival in the Gastrointestinal Tract of Commercial Probiotics. Curr. Res. Food Sci. 2021, 4, 320–325. [Google Scholar] [CrossRef]
- Ruiz, L.; Margolles, A.; Sánchez, B. Bile Resistance Mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 2013, 4, 396. [Google Scholar] [CrossRef]
- FAO. Probiotics in Food Health and Nutritional Properties and Guidelines for Evaluation; FAO: Rome, Italy, 2006. [Google Scholar]
- Kaur, H.; Kaur, G.; Ali, S.A. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. Fermentation 2022, 8, 425. [Google Scholar] [CrossRef]
- Temple, N.J. A Rational Definition for Functional Foods: A Perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef] [PubMed]
- De Prisco, A.; Mauriello, G. Probiotication of Foods: A Focus on Microencapsulation Tool. Trends Food Sci. Technol. 2016, 48, 27–39. [Google Scholar] [CrossRef]
- Yoha, K.S.; Nida, S.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob. Proteins 2022, 14, 15–48. [Google Scholar] [CrossRef]
- Araujo, H.C.S.; de Jesus, M.S.; Sandes, R.D.D.; Leite Neta, M.T.S.; Narain, N. Functional Cheeses: Updates on Probiotic Preservation Methods. Fermentation 2024, 10, 8. [Google Scholar] [CrossRef]
- Anees Ur Rehman, M.; Ashfaq, K.; Ashfaq, T.; Abuzar Ghaffari, M.; Ali, N.; Kazmi, F.; Sohail, N. The Antithrombotic Potential of Bioactive Peptides Induced by Buffalo Milk Probiotic Cheddar Cheese. Pak. BioMed. J. 2022, 324–328. [Google Scholar] [CrossRef]
- Mudgil, P.; Aldhaheri, F.; Hamdi, M.; Punia, S.; Maqsood, S. Fortification of Chami (Traditional Soft Cheese) with Probiotic-Loaded Protein and Starch Microparticles: Characterization, Bioactive Properties, and Storage Stability. LWT 2022, 158, 113036. [Google Scholar] [CrossRef]
- Vasconcelos, F.M.; Silva, H.L.A.; Poso, S.M.V.; Barroso, M.V.; Lanzetti, M.; Rocha, R.S.; Graça, J.S.; Esmerino, E.A.; Freitas, M.Q.; Silva, M.C.; et al. Probiotic Prato Cheese Attenuates Cigarette Smoke-Induced Injuries in Mice. Food Res. Int. 2019, 123, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Yang, W.; Zhu, Q.; Zhang, G.; Zhang, X.; Liu, L.; Li, X.; Hussain, M.; Ni, C.; Jiang, X. Proteolysis and ACE-Inhibitory Peptide Profile of Cheddar Cheese: Effect of Digestion Treatment and Different Probiotics. LWT 2021, 145, 111295. [Google Scholar] [CrossRef]
- Mushtaq, M.; Gani, A.; Masoodi, F.A. Himalayan Cheese (Kalari/Kradi) Fermented with Different Probiotic Strains: In Vitro Investigation of Nutraceutical Properties. LWT 2019, 104, 53–60. [Google Scholar] [CrossRef]
- Machado, M.; Sousa, S.C.; Rodríguez-Alcalá, L.M.; Pintado, M.; Gomes, A.M. Functional Lipid Enriched Probiotic Cheese: Gastrointestinal Stability and Potential Health Benefits. Int. Dairy J. 2023, 144, 105700. [Google Scholar] [CrossRef]
- Kim, J.-H.; Woo, D.; Nam, Y.; Baek, J.; Lee, J.-Y.; Kim, W. Probiotic Cheese Improves Alcohol Metabolism and Alleviates Alcohol-Induced Liver Injury via the SIRT1/AMPK Signaling Pathway. J. Funct. Foods 2023, 108, 105736. [Google Scholar] [CrossRef]
- Cordeiro, B.F.; Alves, J.L.; Belo, G.A.; Oliveira, E.R.; Braga, M.P.; da Silva, S.H.; Lemos, L.; Guimarães, J.T.; Silva, R.; Rocha, R.S.; et al. Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Front. Microbiol. 2021, 12, 623920. [Google Scholar] [CrossRef]
- Grom, L.C.; Rocha, R.S.; Balthazar, C.F.; Guimarães, J.T.; Coutinho, N.M.; Barros, C.P.; Pimentel, T.C.; Venâncio, E.L.; Collopy Junior, I.; Maciel, P.M.C.; et al. Postprandial Glycemia in Healthy Subjects: Which Probiotic Dairy Food Is More Adequate? J. Dairy Sci. 2020, 103, 1110–1119. [Google Scholar] [CrossRef]
- Adhikari, K.; Mustapha, A.; Grün, I.U.; Fernando, L. Viability of Microencapsulated Bifidobacteria in Set Yogurt During Refrigerated Storage. J. Dairy Sci. 2000, 83, 1946–1951. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Gao, F.; Guo, M. Effects of Polymerised Whey Protein-Based Microencapsulation on Survivability of Lactobacillus Acidophilus LA-5 and Physiochemical Properties of Yoghurt. J. Microencapsul. 2018, 35, 504–512. [Google Scholar] [CrossRef]
- Patrignani, F.; Siroli, L.; Serrazanetti, D.I.; Braschi, G.; Betoret, E.; Reinheimer, J.A.; Lanciotti, R. Microencapsulation of Functional Strains by High Pressure Homogenization for a Potential Use in Fermented Milk. Food Res. Int. 2017, 97, 250–257. [Google Scholar] [CrossRef]
- Kavas, N.; Kavas, G.; Kinik, Ö.; Ateş, M.; Kaplan, M.; Şatir, G. Symbiotic Microencapsulation to Enhance Bifidobacterium Longum and Lactobacillus Paracasei Survival in Goat Cheese. Food Sci. Technol. 2022, 42, e55620. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Coppola, R. Factors Affecting Viability of Selected Probiotics during Cheese-Making of Pasta Filata Dairy Products Obtained by Direct-to-Vat Inoculation System. LWT 2019, 116, 108476. [Google Scholar] [CrossRef]
- Angiolillo, L.; Conte, A.; Faccia, M.; Zambrini, A.V.; Del Nobile, M.A. A New Method to Produce Synbiotic Fiordilatte Cheese. Innov. Food Sci. Emerg. Technol. 2014, 22, 180–187. [Google Scholar] [CrossRef]
- Vacca, M.; Celano, G.; Serale, N.; Costantino, G.; Calabrese, F.M.; Calasso, M.; De Angelis, M. Dynamic Microbial and Metabolic Changes during Apulian Caciocavallo Cheesemaking and Ripening Produced According to a Standardized Protocol. J. Dairy Sci. 2024, 107, 6541–6557. [Google Scholar] [CrossRef] [PubMed]
- Bihola, A.; Sharma, H.; Chaudhary, M.B.; Bumbadiya, M.R.; Kumar, D.; Adil, S. Recent Developments in Cheese Technologies. Food Rev. Int. 2024, 1–35. [Google Scholar] [CrossRef]
- Minervini, F.; Siragusa, S.; Faccia, M.; Dal Bello, F.; Gobbetti, M.; De Angelis, M. Manufacture of Fior Di Latte Cheese by Incorporation of Probiotic Lactobacilli. J. Dairy Sci. 2012, 95, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Cuffia, F.; George, G.; Godoy, L.; Vinderola, G.; Reinheimer, J.; Burns, P. In Vivo Study of the Immunomodulatory Capacity and the Impact of Probiotic Strains on Physicochemical and Sensory Characteristics: Case of Pasta Filata Soft Cheeses. Food Res. Int. 2019, 125, 108606. [Google Scholar] [CrossRef]
- Akarca, G.; Yildirim, G. Effects of the Probiotic Bacteria on the Quality Properties of Mozzarella Cheese Produced from Different Milk. J. Food Sci. Technol. 2022, 59, 3408–3418. [Google Scholar] [CrossRef]
- Albenzio, M.; Santillo, A.; Caroprese, M.; Braghieri, A.; Sevi, A.; Napolitano, F. Composition and Sensory Profiling of Probiotic Scamorza Ewe Milk Cheese. J. Dairy Sci. 2013, 96, 2792–2800. [Google Scholar] [CrossRef]
- Alsaleem, K.; Hamouda, M.; Alayouni, R.; Elfaruk, M.; Hammam, A. Effect of Skim Milk Powder and Whey Protein Concentrate Addition on the Manufacture of Probiotic Mozzarella Cheese. Fermentation 2023, 9, 948. [Google Scholar] [CrossRef]
- Ortakci, F.; Broadbent, J.R.; McManus, W.R.; McMahon, D.J. Survival of Microencapsulated Probiotic Lactobacillus Paracasei LBC-1e during Manufacture of Mozzarella Cheese and Simulated Gastric Digestion. J. Dairy Sci. 2012, 95, 6274–6281. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, H.; Yaqub, S.; Haq, I. ul Production of Probiotic Mozzarella Cheese by Incorporating Locally Isolated Lactobacillus Acidophilus. Ann. Microbiol. 2020, 70, 56. [Google Scholar] [CrossRef]
- Minervini, F.; Conte, A.; Del Nobile, M.A.; Gobbetti, M.; De Angelis, M. Dietary Fibers and Protective Lactobacilli Drive Burrata Cheese Microbiome. Appl. Environ. Microbiol. 2017, 83, e01494-17. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V.V. Microencapsulation of Probiotics for Gastrointestinal Delivery. J. Control. Release 2012, 162, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Dodoo, C.C.; Wang, J.; Basit, A.W.; Stapleton, P.; Gaisford, S. Targeted Delivery of Probiotics to Enhance Gastrointestinal Stability and Intestinal Colonisation. Int. J. Pharm. 2017, 530, 224–229. [Google Scholar] [CrossRef]
- Sbehat, M.; Mauriello, G.; Altamimi, M. Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms 2022, 10, 1948. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoparticle- and Microparticle-Based Delivery Systems; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781482233162. [Google Scholar]
- Misra, S.; Pandey, P.; Dalbhagat, C.G.; Mishra, H.N. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: A Review. Food Bioprocess Technol. 2022, 15, 998–1039. [Google Scholar] [CrossRef]
- Vivek, K.; Mishra, S.; Pradhan, R.C.; Nagarajan, M.; Kumar, P.K.; Singh, S.S.; Manvi, D.; Gowda, N.N. A Comprehensive Review on Microencapsulation of Probiotics: Technology, Carriers and Current Trends. Appl. Food Res. 2023, 3, 100248. [Google Scholar] [CrossRef]
- Arepally, D.; Reddy, R.S.; Goswami, T.K.; Coorey, R. A Review on Probiotic Microencapsulation and Recent Advances of Their Application in Bakery Products. Food Bioprocess Technol. 2022, 15, 1677–1699. [Google Scholar] [CrossRef]
- Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Microencapsulating Polymers for Probiotics Delivery Systems: Preparation, Characterization, and Applications. Food Hydrocoll. 2021, 120, 106882. [Google Scholar] [CrossRef]
- Kowalska, E.; Ziarno, M.; Ekielski, A.; Żelaziński, T. Materials Used for the Microencapsulation of Probiotic Bacteria in the Food Industry. Molecules 2022, 27, 3321. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Papadaki, A.; Lappa, I.; Kachrimanidou, V.; Bosnea, L.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef]
- Mahmoud, M.; Abdallah, N.A.; El-Shafei, K.; Tawfik, N.F.; El-Sayed, H.S. Survivability of Alginate-Microencapsulated Lactobacillus Plantarum during Storage, Simulated Food Processing and Gastrointestinal Conditions. Heliyon 2020, 6, e03541. [Google Scholar] [CrossRef]
- Whelehan, M.; Marison, I.W. Microencapsulation Using Vibrating Technology. J. Microencapsul. 2011, 28, 669–688. [Google Scholar] [CrossRef]
- Ivone, M.; Denora, N.; D’Amico, V.; Mareczek, L.; Mueller, L.K.; Arduino, I.; Ambruosi, A.; Lopedota, A.A. Microbeads Produced by Prilling/Vibration Technique: A New Way to Use Polyvinyl Alcohol in Pediatric and Veterinary Formulations. J. Drug Deliv. Sci. Technol. 2024, 99, 105974. [Google Scholar] [CrossRef]
- D’Amico, V.; Denora, N.; Ivone, M.; Iacobazzi, R.M.; Laquintana, V.; Cutrignelli, A.; Franco, M.; Barone, M.; Lopalco, A.; Lopedota, A.A. Investigating the Prilling/Vibration Technique to Produce Gastric-Directed Drug Delivery Systems for Misoprostol. Int. J. Pharm. 2024, 651, 123762. [Google Scholar] [CrossRef]
- Bennacef, C.; Desobry, S.; Probst, L.; Desobry-Banon, S. Alginate Based Core–Shell Capsules Production through Coextrusion Methods: Recent Applications. Foods 2023, 12, 1788. [Google Scholar] [CrossRef] [PubMed]
- Lopalco, A.; Denora, N.; Laquintana, V.; Cutrignelli, A.; Franco, M.; Robota, M.; Hauschildt, N.; Mondelli, F.; Arduino, I.; Lopedota, A. Taste Masking of Propranolol Hydrochloride by Microbeads of EUDRAGIT® E PO Obtained with Prilling Technique for Paediatric Oral Administration. Int. J. Pharm. 2020, 574, 118922. [Google Scholar] [CrossRef]
- Lopedota, A.A.; Arduino, I.; Lopalco, A.; Iacobazzi, R.M.; Cutrignelli, A.; Laquintana, V.; Racaniello, G.F.; Franco, M.; la Forgia, F.; Fontana, S.; et al. From Oil to Microparticulate by Prilling Technique: Production of Polynucleate Alginate Beads Loading Serenoa Repens Oil as Intestinal Delivery Systems. Int. J. Pharm. 2021, 599, 120412. [Google Scholar] [CrossRef]
- Santillo, A.; Albenzio, M.; Bevilacqua, A.; Corbo, M.R.; Sevi, A. Encapsulation of Probiotic Bacteria in Lamb Rennet Paste: Effects on the Quality of Pecorino Cheese. J. Dairy Sci. 2012, 95, 3489–3500. [Google Scholar] [CrossRef]
- Eckert, C.; Agnol, W.D.; Dallé, D.; Serpa, V.G.; Maciel, M.J.; Lehn, D.N.; Volken de Souza, C.F. Development of Alginate-Pectin Microparticles with Dairy Whey Using Vibration Technology: Effects of Matrix Composition on the Protection of Lactobacillus Spp. from Adverse Conditions. Food Res. Int. 2018, 113, 65–73. [Google Scholar] [CrossRef]
- D’Amico, V.; Lopalco, A.; Iacobazzi, R.M.; Vacca, M.; Siragusa, S.; De Angelis, M.; Lopedota, A.A.; Denora, N. Multistimuli Responsive Microcapsules Produced by the Prilling/Vibration Technique for Targeted Colonic Delivery of Probiotics. Int. J. Pharm. 2024, 658, 124223. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Yin, Y.; Yan, X.; Liu, X.; Liu, F.; McClements, D.J. Encapsulation of Multiple Probiotics, Synbiotics, or Nutrabiotics for Improved Health Effects: A Review. Adv. Colloid Interface Sci. 2022, 309, 102781. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Bhandari, B.; Deeth, H. Evaluation of Encapsulation Techniques of Probiotics for Yoghurt. Int. Dairy J. 2003, 13, 3–13. [Google Scholar] [CrossRef]
- Silva, C.M.; Ribeiro, A.J.; Figueiredo, I.V.; Gonçalves, A.R.; Veiga, F. Alginate Microspheres Prepared by Internal Gelation: Development and Effect on Insulin Stability. Int. J. Pharm. 2006, 311, 1–10. [Google Scholar] [CrossRef]
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of Probiotic Living Cells: From Laboratory Scale to Industrial Applications. J. Food Eng. 2011, 104, 467–483. [Google Scholar] [CrossRef]
- Camelo-Silva, C.; Verruck, S.; Ambrosi, A.; Di Luccio, M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. Food Eng. Rev. 2022, 14, 462–490. [Google Scholar] [CrossRef]
- Das, A.; Ray, S.; Raychaudhuri, U.; Chakraborty, R. Microencapsulation of Probiotic Bacteria and Its Potential Application in Food Technology. Int. J. Agric. Environ. Biotechnol. 2014, 7, 47. [Google Scholar] [CrossRef]
- El Sayed, H.S.; Mabrouk, A.M. Encapsulation of Probiotics Using Mixed Sodium Alginate and Rice Flour to Enhance Their Survivability in Simulated Gastric Conditions and in UF-Kariesh Cheese. Biocatal. Agric. Biotechnol. 2023, 50, 102738. [Google Scholar] [CrossRef]
- Al-Moghazy, M.; El-Sayed, H.S.; Abo-Elwafa, G.A. Co-Encapsulation of Probiotic Bacteria, Fish Oil and Pomegranate Peel Extract for Enhanced White Soft Cheese. Food Biosci. 2022, 50, 102083. [Google Scholar] [CrossRef]
- Lopes, L.A.A.; Pimentel, T.C.; Carvalho, R.d.S.F.; Madruga, M.S.; de Sousa Galvão, M.; Bezerra, T.K.A.; Barão, C.E.; Magnani, M.; Stamford, T.C.M. Spreadable Goat Ricotta Cheese Added with Lactobacillus Acidophilus La-05: Can Microencapsulation Improve the Probiotic Survival and the Quality Parameters? Food Chem. 2021, 346, 128769. [Google Scholar] [CrossRef]
- Rodríguez-Huezo, M.E.; Estrada-Fernández, A.G.; García-Almendárez, B.E.; Ludeña-Urquizo, F.; Campos-Montiel, R.G.; Pimentel-González, D.J. Viability of Lactobacillus Plantarum Entrapped in Double Emulsion during Oaxaca Cheese Manufacture, Melting and Simulated Intestinal Conditions. LWT-Food Sci. Technol. 2014, 59, 768–773. [Google Scholar] [CrossRef]
- Koh, W.Y.; Lim, X.X.; Tan, T.-C.; Kobun, R.; Rasti, B. Encapsulated Probiotics: Potential Techniques and Coating Materials for Non-Dairy Food Applications. Appl. Sci. 2022, 12, 10005. [Google Scholar] [CrossRef]
- Zhang, R.; Hoffmann, T.; Tsotsas, E. Novel Technique for Coating of Fine Particles Using Fluidized Bed and Aerosol Atomizer. Processes 2020, 8, 1525. [Google Scholar] [CrossRef]
- Sánchez-Portilla, Z.; Melgoza-Contreras, L.M.; Reynoso-Camacho, R.; Pérez-Carreón, J.I.; Gutiérrez-Nava, A. Incorporation of Bifidobacterium Sp. into Powder Products through a Fluidized Bed Process for Enteric Targeted Release. J. Dairy Sci. 2020, 103, 11129–11137. [Google Scholar] [CrossRef] [PubMed]
- Mirzamani, S.S.; Bassiri, A.R.; Tavakolipour, H.; Azizi, M.H.; Kargozari, M. Survival of Fluidized Bed Encapsulated Lactobacillus Acidophilus under Simulated Gastro-Intestinal Conditions and Heat Treatment during Bread Baking. J. Food Meas. Charact. 2021, 15, 5477–5484. [Google Scholar] [CrossRef]
- Azim, H.; Kalavathy, R.; Julianto, T.; Sieo, C.C.; Ho, Y.W. Effect of Heat, PH and Coating Process with Stearic Acid Using a Fluidized Bed Granulator on Viability of Probiotic Lactobacillus Reuteri C 10. Afr. J. Biotechnol. 2012, 11, 6857–6865. [Google Scholar] [CrossRef]
- Mohylyuk, V.; Patel, K.; Scott, N.; Richardson, C.; Murnane, D.; Liu, F. Wurster Fluidised Bed Coating of Microparticles: Towards Scalable Production of Oral Sustained-Release Liquid Medicines for Patients with Swallowing Difficulties. AAPS PharmSciTech 2020, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Hathi, Z.; Mettu, S.; Priya, A.; Athukoralalage, S.; Lam, T.N.; Choudhury, N.R.; Dutta, N.K.; El-Omar, E.M.; Gong, L.; Mohan, G.; et al. Methodological Advances and Challenges in Probiotic Bacteria Production: Ongoing Strategies and Future Perspectives. Biochem. Eng. J. 2021, 176, 108199. [Google Scholar] [CrossRef]
- Galvão, A.M.M.T.; Rodrigues, S.; Fernandes, F.A.N. Probiotic Dried Apple Snacks: Development of Probiotic Coating and Shelf-life Studies. J. Food Process Preserv. 2020, 44, e14974. [Google Scholar] [CrossRef]
- Mirzamani, S.S.; Bassiri, A.; Tavakolipour, H.; Azizi, M.H.; Kargozari, M. Fluidized Bed Microencapsulation of Lactobacillus Sporogenes with Some Selected Hydrocolloids for Probiotic Bread Production. J. Food Biosci. Technol. 2021, 11, 23–34. [Google Scholar]
- Lapsiri, W.; Bhandari, B.; Wanchaitanawong, P. Viability of Lactobacillus Plantarum TISTR 2075 in Different Protectants during Spray Drying and Storage. Dry. Technol. 2012, 30, 1407–1412. [Google Scholar] [CrossRef]
- Kumar, S.K.; Jayaprakasha, H.M.; Paik, H.-D.; Kim, S.-K.; Han, S.-E.; Jeong, A.-R.; Yoon, Y.-C. Production of Ready-to-Reconstitute Functional Beverages by Utilizing Whey Protein Hydrolysates and Probiotics. Korean J. Food Sci. Anim. Resour. 2010, 30, 575–581. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, C.; Song, X.; Zeng, J.; Zhang, L.; Gong, P. Spray Drying Co-Encapsulation of Lactic Acid Bacteria and Lipids: A Review. Trends Food Sci. Technol. 2022, 129, 134–143. [Google Scholar] [CrossRef]
- Assegehegn, G.; Brito-de la Fuente, E.; Franco, J.M.; Gallegos, C. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance. J. Pharm. Sci. 2019, 108, 1378–1395. [Google Scholar] [CrossRef]
- Rokka, S.; Rantamäki, P. Protecting Probiotic Bacteria by Microencapsulation: Challenges for Industrial Applications. Eur. Food Res. Technol. 2010, 231, 1–12. [Google Scholar] [CrossRef]
- Coghetto, C.C.; Brinques, G.B.; Ayub, M.A.Z. Probiotics Production and Alternative Encapsulation Methodologies to Improve Their Viabilities under Adverse Environmental Conditions. Int. J. Food Sci. Nutr. 2016, 67, 929–943. [Google Scholar] [CrossRef]
- Azam, M.; Saeed, M.; Pasha, I.; Shahid, M. A Prebiotic-Based Biopolymeric Encapsulation System for Improved Survival of Lactobacillus Rhamnosus. Food Biosci. 2020, 37, 100679. [Google Scholar] [CrossRef]
- O’Riordan, K.; Andrews, D.; Buckle, K.; Conway, P. Evaluation of Microencapsulation of a Bifidobacterium Strain with Starch as an Approach to Prolonging Viability during Storage. J. Appl. Microbiol. 2001, 91, 1059–1066. [Google Scholar] [CrossRef]
- Morgan, C.A.; Herman, N.; White, P.A.; Vesey, G. Preservation of Micro-Organisms by Drying: A Review. J. Microbiol. Methods 2006, 66, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakash, P.; Gaiani, C.; Edorh, J.-M.; Borges, F.; Beaupeux, E.; Maudhuit, A.; Desobry, S. Comparison of Electrostatic Spray Drying, Spray Drying, and Freeze Drying for Lacticaseibacillus Rhamnosus GG Dehydration. Foods 2023, 12, 3117. [Google Scholar] [CrossRef]
- Mattila-Sandholm, T.; Myllärinen, P.; Crittenden, R.; Mogensen, G.; Fondén, R.; Saarela, M. Technological Challenges for Future Probiotic Foods. Int. Dairy J. 2002, 12, 173–182. [Google Scholar] [CrossRef]
- Huang, S.; Vignolles, M.L.; Chen, X.D.; Le Loir, Y.; Jan, G.; Schuck, P.; Jeantet, R. Spray Drying of Probiotics and Other Food-Grade Bacteria: A Review. Trends Food Sci. Technol. 2017, 63, 1–17. [Google Scholar] [CrossRef]
- Huang, S. Spray Drying of Probiotic Bacteria: From Molecular Mechanism to Pilot-Scale Productio. Available online: https://hal.science/tel-02791240/ (accessed on 16 November 2024).
- Anal, A.K.; Singh, H. Recent Advances in Microencapsulation of Probiotics for Industrial Applications and Targeted Delivery. Trends Food Sci. Technol. 2007, 18, 240–251. [Google Scholar] [CrossRef]
- Wang, X.; Xie, W.; Zhang, S.; Shao, Y.; Cai, J.; Cai, L.; Wang, X.; Shan, Z.; Zhou, H.; Li, J.; et al. Effect of Microencapsulation Techniques on the Stress Resistance and Biological Activity of Bovine Lactoferricin-Lactoferrampin-Encoding Lactobacillus Reuteri. Foods 2022, 11, 3169. [Google Scholar] [CrossRef]
- Kiprono, S.; Wambani, J.; Langat, V.; Rono, J.; Yang, G. Microencapsulation of Probiotics and Its Application as Co-Delivery Systems: Review of Literature. ES Food Agrofor. 2024. [Google Scholar] [CrossRef]
- Kailasapathy, K. Microencapsulation of Probiotic Bacteria: Technology and Potential Applications. Curr. Issues Intest. Microbiol. 2002, 3, 39–48. [Google Scholar]
- Rajam, R.; Subramanian, P. Encapsulation of Probiotics: Past, Present and Future. Beni Suef Univ. J. Basic. Appl. Sci. 2022, 11, 46. [Google Scholar] [CrossRef]
- Barajas-Álvarez, P.; González-Ávila, M.; Espinosa-Andrews, H. Recent Advances in Probiotic Encapsulation to Improve Viability under Storage and Gastrointestinal Conditions and Their Impact on Functional Food Formulation. Food Rev. Int. 2023, 39, 992–1013. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M.; Gorgulu, A. The Use of Probiotic-Loaded Single- and Double-Layered Microcapsules in Cake Production. Probiotics Antimicrob. Proteins 2019, 11, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Malmo, C.; La Storia, A.; Mauriello, G. Microencapsulation of Lactobacillus Reuteri DSM 17938 Cells Coated in Alginate Beads with Chitosan by Spray Drying to Use as a Probiotic Cell in a Chocolate Soufflé. Food Bioprocess Technol. 2013, 6, 795–805. [Google Scholar] [CrossRef]
- Gul, O. Microencapsulation of Lactobacillus Casei Shirota by Spray Drying Using Different Combinations of Wall Materials and Application for Probiotic Dairy Dessert. J. Food Process Preserv. 2017, 41, e13198. [Google Scholar] [CrossRef]
- Rutz, J.K.; Borges, C.D.; Zambiazi, R.C.; da Rosa, C.G.; da Silva, M.M. Elaboration of Microparticles of Carotenoids from Natural and Synthetic Sources for Applications in Food. Food Chem. 2016, 202, 324–333. [Google Scholar] [CrossRef]
- Papillo, V.A.; Locatelli, M.; Travaglia, F.; Bordiga, M.; Garino, C.; Arlorio, M.; Coïsson, J.D. Spray-Dried Polyphenolic Extract from Italian Black Rice (Oryza Sativa L., Var. Artemide) as New Ingredient for Bakery Products. Food Chem. 2018, 269, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Adinepour, F.; Pouramin, S.; Rashidinejad, A.; Jafari, S.M. Fortification/Enrichment of Milk and Dairy Products by Encapsulated Bioactive Ingredients. Food Res. Int. 2022, 157, 111212. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Bahrami, A.; Rehman, A.; Rezaei, A.; Babazadeh, A.; Singh, H.; Jafari, S.M. Co-Encapsulation of Probiotics with Prebiotics and Their Application in Functional/Synbiotic Dairy Products. Crit. Rev. Food Sci. Nutr. 2022, 62, 2470–2494. [Google Scholar] [CrossRef] [PubMed]
- Amadoro, C.; Rossi, F.; Pallotta, M.L.; Gasperi, M.; Colavita, G. Traditional Dairy Products Can Supply Beneficial Microorganisms Able to Survive in the Gastrointestinal Tract. LWT 2018, 93, 376–383. [Google Scholar] [CrossRef]
- Maciel, G.M.; Chaves, K.S.; Grosso, C.R.F.; Gigante, M.L. Microencapsulation of Lactobacillus Acidophilus La-5 by Spray-Drying Using Sweet Whey and Skim Milk as Encapsulating Materials. J. Dairy Sci. 2014, 97, 1991–1998. [Google Scholar] [CrossRef]
- Leylak, C.; Özdemir, K.S.; Gurakan, G.C.; Ogel, Z.B. Optimisation of Spray Drying Parameters for Lactobacillus Acidophilus Encapsulation in Whey and Gum Arabic: Its Application in Yoghurt. Int. Dairy J. 2021, 112, 104865. [Google Scholar] [CrossRef]
- Fazilah, N.F.; Hamidon, N.H.; Ariff, A.B.; Khayat, M.E.; Wasoh, H.; Halim, M. Microencapsulation of Lactococcus Lactis Gh1 with Gum Arabic and Synsepalum Dulcificum via Spray Drying for Potential Inclusion in Functional Yogurt. Molecules 2019, 24, 1422. [Google Scholar] [CrossRef]
- Picot, A.; Lacroix, C. Encapsulation of Bifidobacteria in Whey Protein-Based Microcapsules and Survival in Simulated Gastrointestinal Conditions and in Yoghurt. Int. Dairy J. 2004, 14, 505–515. [Google Scholar] [CrossRef]
- de Andrade, D.P.; Bastos, S.C.; Ramos, C.L.; Simões, L.A.; de Andrade Teixeira Fernandes, N.; Botrel, D.A.; Magnani, M.; Schwan, R.F.; Dias, D.R. Microencapsulation of Presumptive Probiotic Bacteria Lactiplantibacillus Plantarum CCMA 0359: Technology and Potential Application in Cream Cheese. Int. Dairy J. 2023, 143, 105669. [Google Scholar] [CrossRef]
- Borrás-Enríquez, A.J.; Delgado-Portales, R.E.; de-La Cruz-Martínez, A.; Delgado-Portales, R.E.; González-Chávez, M.M.; Abud-Archila, M.; Moscosa-Santillán, M. Microbiological-Physicochemical Assessment and Gastrointestinal Simulation of Functional (Probiotic and Symbiotic) Gouda-Type Cheeses during Ripening. Rev. Mex. Ing. Quim. 2018, 17, 791–803. [Google Scholar] [CrossRef]
- Sharifi, S.; Rezazad-Bari, M.; Alizadeh, M.; Almasi, H.; Amiri, S. Use of Whey Protein Isolate and Gum Arabic for the Co-Encapsulation of Probiotic Lactobacillus Plantarum and Phytosterols by Complex Coacervation: Enhanced Viability of Probiotic in Iranian White Cheese. Food Hydrocoll. 2021, 113, 106496. [Google Scholar] [CrossRef]
- Radulović, Z.; Miočinović, J.; Mirković, N.; Mirković, M.; Paunović, D.; Ivanović, M.; Seratlić, S. Survival of Spray-Dried and Free-Cells of Potential Probiotic Lactobacillus Plantarum 564 in Soft Goat Cheese. Anim. Sci. J. 2017, 88, 1849–1854. [Google Scholar] [CrossRef]
- Favaro-Trindade, C.; Okuro, P.K.; Eustáquio De Matos Junior, F.; Sílvia Favaro-Trindade, C. Technological Challenges for Spray Chilling Encapsulation of Functional Food Ingredients. Food Technol. Biotechnol. 2013, 51, 171. [Google Scholar]
- Consoli, L.; Grimaldi, R.; Sartori, T.; Menegalli, F.C.; Hubinger, M.D. Gallic Acid Microparticles Produced by Spray Chilling Technique: Production and Characterization. LWT 2016, 65, 79–87. [Google Scholar] [CrossRef]
- Figueiredo, J.d.A.; Silva, C.R.d.P.; Souza Oliveira, M.F.; Norcino, L.B.; Campelo, P.H.; Botrel, D.A.; Borges, S.V. Microencapsulation by Spray Chilling in the Food Industry: Opportunities, Challenges, and Innovations. Trends Food Sci. Technol. 2022, 120, 274–287. [Google Scholar] [CrossRef]
- Oxley, J.D. Spray Cooling and Spray Chilling for Food Ingredient and Nutraceutical Encapsulation. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2012; pp. 110–130. [Google Scholar]
- Chalella Mazzocato, M.; Thomazini, M.; Favaro-Trindade, C.S. Improving Stability of Vitamin B12 (Cyanocobalamin) Using Microencapsulation by Spray Chilling Technique. Food Res. Int. 2019, 126, 108663. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Single and Double Layered Microencapsulation of Probiotics by Spray Drying and Spray Chilling. LWT-Food Sci. Technol. 2017, 81, 160–169. [Google Scholar] [CrossRef]
- Pedroso, D.d.L.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S. Protection of Bifidobacterium Lactis and Lactobacillus Acidophilus by Microencapsulation Using Spray-Chilling. Int. Dairy J. 2012, 26, 127–132. [Google Scholar] [CrossRef]
- Rodrigues, F.J.; Cedran, M.F.; Bicas, J.L.; Sato, H.H. Encapsulated Probiotic Cells: Relevant Techniques, Natural Sources as Encapsulating Materials and Food Applications—A Narrative Review. Food Res. Int. 2020, 137, 109682. [Google Scholar] [CrossRef]
- Bertoni, S.; Albertini, B.; Dolci, L.S.; Passerini, N. Spray Congealed Lipid Microparticles for the Local Delivery of β-Galactosidase to the Small Intestine. Eur. J. Pharm. Biopharm. 2018, 132, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gouin, S. Microencapsulation: Industrial Appraisal of Existing Technologies and Trends. Trends Food Sci. Technol. 2004, 15, 330–347. [Google Scholar] [CrossRef]
- Bampi, G.B.; Backes, G.T.; Cansian, R.L.; de Matos, F.E.; Ansolin, I.M.A.; Poleto, B.C.; Corezzolla, L.R.; Favaro-Trindade, C.S. Spray Chilling Microencapsulation of Lactobacillus Acidophilus and Bifidobacterium Animalis Subsp. Lactis and Its Use in the Preparation of Savory Probiotic Cereal Bars. Food Bioprocess Technol. 2016, 9, 1422–1428. [Google Scholar] [CrossRef]
- Silva, M.P.; Tulini, F.L.; Matos-Jr, F.E.; Oliveira, M.G.; Thomazini, M.; Fávaro-Trindade, C.S. Application of Spray Chilling and Electrostatic Interaction to Produce Lipid Microparticles Loaded with Probiotics as an Alternative to Improve Resistance under Stress Conditions. Food Hydrocoll. 2018, 83, 109–117. [Google Scholar] [CrossRef]
- Silva, R.; Pimentel, T.C.; Eustáquio de Matos Junior, F.; Esmerino, E.A.; Freitas, M.Q.; Fávaro-Trindade, C.S.; Silva, M.C.; Cruz, A.G. Microencapsulation with Spray-Chilling as an Innovative Strategy for Probiotic Low Sodium Requeijão Cremoso Processed Cheese Processing. Food Biosci. 2022, 46, 101517. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Al Khatib, A.O.; Al-Obaidi, H. Spray-Dried Nanolipid Powders for Pulmonary Drug Delivery: A Comprehensive Mini Review. Pharmaceutics 2024, 16, 680. [Google Scholar] [CrossRef]
- Favaro-Trindade, C.S.; de Matos Junior, F.E.; Okuro, P.K.; Dias-Ferreira, J.; Cano, A.; Severino, P.; Zielińska, A.; Souto, E.B. Encapsulation of Active Pharmaceutical Ingredients in Lipid Micro/Nanoparticles for Oral Administration by Spray-Cooling. Pharmaceutics 2021, 13, 1186. [Google Scholar] [CrossRef]
- Jacobsen, C.; García-Moreno, P.J.; Mendes, A.C.; Mateiu, R.V.; Chronakis, I.S. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annu. Rev. Food Sci. Technol. 2018, 9, 525–549. [Google Scholar] [CrossRef]
- Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and Electrospraying Techniques: Potential Food Based Applications. Trends Food Sci. Technol. 2014, 38, 21–33. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Assadpour, E.; Tabarestani, H.S.; Falsafi, S.R.; Jafari, S.M. Electrospinning Approach for Nanoencapsulation of Bioactive Compounds; Recent Advances and Innovations. Trends Food Sci. Technol. 2020, 100, 190–209. [Google Scholar] [CrossRef]
- Charles, A.P.R.; Jin, T.Z.; Mu, R.; Wu, Y. Electrohydrodynamic Processing of Natural Polymers for Active Food Packaging: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 6027–6056. [Google Scholar] [CrossRef]
- Roy, S.; Kumar, R.; Acooli, A.; Roy, S.; Chatterjee, A.; Chattaraj, S.; Nayak, J.; Jeon, B.-H.; Basu, A.; Banerjee, S.; et al. Transforming Nanomaterial Synthesis through Advanced Microfluidic Approaches: A Review on Accessing Unrestricted Possibilities. J. Compos. Sci. 2024, 8, 386. [Google Scholar] [CrossRef]
- Niamah, A.K.; Gddoa Al-Sahlany, S.T.; Ibrahim, S.A.; Verma, D.K.; Thakur, M.; Singh, S.; Patel, A.R.; Aguilar, C.N.; Utama, G.L. Electro-Hydrodynamic Processing for Encapsulation of Probiotics: A Review on Recent Trends, Technological Development, Challenges and Future Prospect. Food Biosci. 2021, 44, 101458. [Google Scholar] [CrossRef]
- Martín, M.J.; Lara-Villoslada, F.; Ruiz, M.A.; Morales, M.E. Microencapsulation of Bacteria: A Review of Different Technologies and Their Impact on the Probiotic Effects. Innov. Food Sci. Emerg. Technol. 2015, 27, 15–25. [Google Scholar] [CrossRef]
- Zare, M.; Dziemidowicz, K.; Williams, G.R.; Ramakrishna, S. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. Nanomaterials 2021, 11, 1968. [Google Scholar] [CrossRef]
- Mendes, A.C.; Chronakis, I.S. Electrohydrodynamic Encapsulation of Probiotics: A Review. Food Hydrocoll. 2021, 117, 106688. [Google Scholar] [CrossRef]
- Moayyedi, M.; Eskandari, M.H.; Rad, A.H.E.; Ziaee, E.; Khodaparast, M.H.H.; Golmakani, M.-T. Effect of Drying Methods (Electrospraying, Freeze Drying and Spray Drying) on Survival and Viability of Microencapsulated Lactobacillus Rhamnosus ATCC 7469. J. Funct. Foods 2018, 40, 391–399. [Google Scholar] [CrossRef]
- Gomez-Mascaraque, L.G.; Morfin, R.C.; Pérez-Masiá, R.; Sanchez, G.; Lopez-Rubio, A. Optimization of Electrospraying Conditions for the Microencapsulation of Probiotics and Evaluation of Their Resistance during Storage and In-Vitro Digestion. LWT-Food Sci. Technol. 2016, 69, 438–446. [Google Scholar] [CrossRef]
- Škrlec, K.; Zupančič, Š.; Prpar Mihevc, S.; Kocbek, P.; Kristl, J.; Berlec, A. Development of Electrospun Nanofibers That Enable High Loading and Long-Term Viability of Probiotics. Eur. J. Pharm. Biopharm. 2019, 136, 108–119. [Google Scholar] [CrossRef]
- Feng, K.; Huang, R.; Wu, R.; Wei, Y.; Zong, M.; Linhardt, R.J.; Wu, H. A Novel Route for Double-Layered Encapsulation of Probiotics with Improved Viability under Adverse Conditions. Food Chem. 2020, 310, 125977. [Google Scholar] [CrossRef]
- Zaeim, D.; Sarabi-Jamab, M.; Ghorani, B.; Kadkhodaee, R. Double Layer Co-Encapsulation of Probiotics and Prebiotics by Electro-Hydrodynamic Atomization. LWT 2019, 110, 102–109. [Google Scholar] [CrossRef]
- López-Rubio, A.; Sanchez, E.; Wilkanowicz, S.; Sanz, Y.; Lagaron, J.M. Electrospinning as a Useful Technique for the Encapsulation of Living Bifidobacteria in Food Hydrocolloids. Food Hydrocoll. 2012, 28, 159–167. [Google Scholar] [CrossRef]
- Coghetto, C.C.; Brinques, G.B.; Siqueira, N.M.; Pletsch, J.; Soares, R.M.D.; Ayub, M.A.Z. Electrospraying Microencapsulation of Lactobacillus Plantarum Enhances Cell Viability under Refrigeration Storage and Simulated Gastric and Intestinal Fluids. J. Funct. Foods 2016, 24, 316–326. [Google Scholar] [CrossRef]
- Moreno, J.S.; Dima, P.; Chronakis, I.S.; Mendes, A.C. Electrosprayed Ethyl Cellulose Core-Shell Microcapsules for the Encapsulation of Probiotics. Pharmaceutics 2021, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Huangfu, L.; Liu, C.; Bonfili, L.; Xiang, Q.; Wu, H.; Bai, Y. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers 2023, 15, 2402. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Ambrosio-Martín, J.; Perez-Masiá, R.; Lopez-Rubio, A. Impact of Acetic Acid on the Survival of L. Plantarum upon Microencapsulation by Coaxial Electrospraying. J. Healthc. Eng. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.T.; Taylan, O.; Karakas, C.Y.; Dertli, E. An Alternative Way to Encapsulate Probiotics within Electrospun Alginate Nanofibers as Monitored under Simulated Gastrointestinal Conditions and in Kefir. Carbohydr. Polym. 2020, 244, 116447. [Google Scholar] [CrossRef] [PubMed]
- Coghetto, C.C.; Flores, S.H.; Brinques, G.B.; Záchia Ayub, M.A. Viability and Alternative Uses of a Dried Powder, Microencapsulated Lactobacillus Plantarum without the Use of Cold Chain or Dairy Products. LWT-Food Sci. Technol. 2016, 71, 54–59. [Google Scholar] [CrossRef]
- Nachal, N.; Moses, J.A.; Karthik, P.; Anandharamakrishnan, C. Applications of 3D Printing in Food Processing. Food Eng. Rev. 2019, 11, 123–141. [Google Scholar] [CrossRef]
- Yoha, K.S.; Anukiruthika, T.; Anila, W.; Moses, J.A.; Anandharamakrishnan, C. 3D Printing of Encapsulated Probiotics: Effect of Different Post-Processing Methods on the Stability of Lactiplantibacillus Plantarum (NCIM 2083) under Static in Vitro Digestion Conditions and during Storage. LWT 2021, 146, 111461. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Clark, S.; Qin, H.; Shi, X. Development of a Shelf-Stable, Gel-Based Delivery System for Probiotics by Encapsulation, 3D Printing, and Freeze-Drying. LWT 2022, 157, 113075. [Google Scholar] [CrossRef]
- Zhang, L.; Lou, Y.; Schutyser, M.A.I. 3D Printing of Cereal-Based Food Structures Containing Probiotics. Food Struct. 2018, 18, 14–22. [Google Scholar] [CrossRef]
- Tomašević, I.; Putnik, P.; Valjak, F.; Pavlić, B.; Šojić, B.; Bebek Markovinović, A.; Bursać Kovačević, D. 3D Printing as Novel Tool for Fruit-Based Functional Food Production. Curr. Opin. Food Sci. 2021, 41, 138–145. [Google Scholar] [CrossRef]
- Racaniello, G.F.; Silvestri, T.; Pistone, M.; D’Amico, V.; Arduino, I.; Denora, N.; Lopedota, A.A. Innovative Pharmaceutical Techniques for Paediatric Dosage Forms: A Systematic Review on 3D Printing, Prilling/Vibration and Microfluidic Platform. J. Pharm. Sci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Huang, K.; Wang, L.; Lin, X.; Tan, M.; Su, W. Microfluidic Strategies for Encapsulation, Protection, and Controlled Delivery of Probiotics. J. Agric. Food Chem. 2024, 72, 15092–15105. [Google Scholar] [CrossRef]
- Qi, P.; Lv, J.; Yan, X.; Bai, L.; Zhang, L. Microfluidics: Insights into Intestinal Microorganisms. Microorganisms 2023, 11, 1134. [Google Scholar] [CrossRef]
- Liu, H.; Singh, R.P.; Zhang, Z.; Han, X.; Liu, Y.; Hu, L. Microfluidic Assembly: An Innovative Tool for the Encapsulation, Protection, and Controlled Release of Nutraceuticals. J. Agric. Food Chem. 2021, 69, 2936–2949. [Google Scholar] [CrossRef]
- Yang, X.; Nie, W.; Wang, C.; Fang, Z.; Shang, L. Microfluidic-Based Multifunctional Microspheres for Enhanced Oral Co-Delivery of Probiotics and Postbiotics. Biomaterials 2024, 308, 122564. [Google Scholar] [CrossRef]
- Logesh, D.; Vallikkadan, M.S.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Advances in Microfluidic Systems for the Delivery of Nutraceutical Ingredients. Trends Food Sci. Technol. 2021, 116, 501–524. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, Y.; Kong, B.; Huang, Y.; Yan, D.; Tan, H.; Shang, L. Dual-Core Prebiotic Microcapsule Encapsulating Probiotics for Metabolic Syndrome. ACS Appl. Mater. Interfaces 2020, 12, 42586–42594. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ma, Z.; De Souza, C.; Wang, S.; Qiao, F.; Yi, H.; Gong, P.; Zhang, Z.; Liu, T.; Zhang, L.; et al. Microfluidic Fabrication of Encapsulated Probiotic Microspheres Using Cysteine-Modified Chitosan with Dual Functions of Bacterial Adhesion and Intestinal Mucosal Adhesion. Food Hydrocoll. 2024, 149, 109602. [Google Scholar] [CrossRef]
- Quintana, G.; Gerbino, E.; Alves, P.; Simões, P.N.; Rúa, M.L.; Fuciños, C.; Gomez-Zavaglia, A. Microencapsulation of Lactobacillus Plantarum in W/O Emulsions of Okara Oil and Block-Copolymers of Poly(Acrylic Acid) and Pluronic Using Microfluidic Devices. Food Res. Int. 2021, 140, 110053. [Google Scholar] [CrossRef]
- Singh, P.; Medronho, B.; Miguel, M.G.; Esquena, J. On the Encapsulation and Viability of Probiotic Bacteria in Edible Carboxymethyl Cellulose-Gelatin Water-in-Water Emulsions. Food Hydrocoll. 2018, 75, 41–50. [Google Scholar] [CrossRef]
- Tosi, M.M.; Ramos, A.P.; Esposto, B.S.; Jafari, S.M. Dynamic Light Scattering (DLS) of Nanoencapsulated Food Ingredients. In Characterization of Nanoencapsulated Food Ingredients; Elsevier: Amsterdam, The Netherlands, 2020; pp. 191–211. [Google Scholar]
- Sandoval-Castilla, O.; Lobato-Calleros, C.; García-Galindo, H.S.; Alvarez-Ramírez, J.; Vernon-Carter, E.J. Textural Properties of Alginate–Pectin Beads and Survivability of Entrapped Lb. Casei in Simulated Gastrointestinal Conditions and in Yoghurt. Food Res. Int. 2010, 43, 111–117. [Google Scholar] [CrossRef]
Product/Company | Product Information |
---|---|
Agropur Cooperative (Granby, QC, Canada) | Probiotics encapsulated by sodium alginate bead and incorporated into the dairy products |
Ayanda Group As, (Oslo, Norway) | Soft gel capsules contain probiotic bacteria with omega-3 oil (fish oil with DHA/EPA and vitamins) |
Bifa-15™ (Eden Foods, Inc., Clinton, MI, USA) | B. longum with Lactobacillus and oligosaccharide—triple-layer encapsulation—seamless microcapsule delivery system. Contains 3 billion live cells per capsule |
Cardioviva™ (Micropharma Inc., Montréal, QC, Canada and Danone Research) | Microencapsulated L. reuteri culture in fermented milk |
Culturelle® (Cromwell, CT, USA) | Digestive health probiotic capsules contain a minimum of 10 billion live cultures of Lacticaseibacillus rhamnosus GG (LGG®) |
EnCaptimus™ (AnaBio™ Technologies Ltd., Cork, Ireland) | Beverages, gummies, bars, baby foods, sports powder, fruit snacks, and trail mixes |
Flying Embers (Fermented Sciences, Inc. and zümXR®) (Ventura, CA, USA) | Shelf-stable probiotic hard kombucha—contains a probiotic strain of Bacillus coagulans SNZ 1969 and the native kombucha bacteria (Acetobacter) |
Mars® Inc. (Hackettstown, NJ, USA) | Low-calorie probiotic milk drink |
Micropharma Ltd. (Montréal, QC, Canada) | Sodium alginate beads with multiple surface coatings of poly-LLysine and alginate in some dairy products |
PERKii enhanced probiotics (University of Queensland and Sunshine State®, Queensland, Australia) | Microencapsulated probiotics using Progel™ technology—bottled with billions of L. casei in different fruit flavour drinks |
PRO15 Probiotics (Cognoa International Inc., Manila, Philippines) | Probiotic food supplement—contains 11 Lactobacillus and 4 Bifidobacterium Strains, Double microencapsulation technology for protective coating of probiotic strains |
Probio’stick® (Montreal, QC, Canada) | Lipid-coated particles (powder form) allow cell release only in the intestine |
Probiocap™ Technology (Montréal, QC, Canada) | A typical freeze-dried powder granule is coated with lipids using a fluidised bed spray-coating process |
ProbioFerm (Des Moines, IA, USA) | Durabac™ encapsulation technology. Encapsulated powders of individual probiotics with 100 billion CFU/g (L. acidophilus, E. faecium, P. acidilactici, P. pentosaceus, B. bifidum, B. longum, etc.) |
ProBiotic bites (Barry Callebaut AG, Zurich, Switzerland) | Chocolate bars containing encapsulated probiotics |
UltruBiostix (LosAngeles, CA, USA) and Vitacel®Prolac (J. Rettenmaier and Söne, Rosenberg, Germany) | Probiotics encapsulated by soluble and insoluble dietary fibre |
YogActive Plus (Yogactive®, QC, Canada) | YogActive Probiotic Cereal—probiotics fortified ready-to-eat cereal. Matrix-coated probiotics contain rice, wheat, yoghurt, fruit fibre, and skim milk powder with strawberry/chocolate flavours. Contains 1 billion CFU of L. acidophilus LA-5 per serving (33 g) |
Type of Cheese | Probiotic Microorganism Used | Quantity | Health Benefits | Reference |
---|---|---|---|---|
Cheddar prepared from buffalo milk | Lactobacillus acidophilus and Bifidobacterium bifidum | 8–9 log CFU/g | Compared to the control cheese, the water-soluble extract from probiotic cheddar cheese showed substantially more antithrombotic action. | [66] |
Chami | Pediococcus pentosaceus | 11–12 log CFU/g | During storage, chami enhanced with encapsulated probiotic bacteria showed increased inhibition of α-glucosidase and Dipeptidyl peptidase IV (DPP-IV). | [67] |
Prato | Lacticaseibacillus casei-01 | 7–8 log CFU/g | Frequent consumption of probiotic cheese decreased inflammation in the lungs and decreased oxidative stress in the liver, gut, and lungs. | [68] |
Cheddar | Lactobacillus helveticus 1.0612, Lacticaseibacillus rhamnosus 1.0911, Lacticaseibacillus casei 1.0319 | 8–10 log CFU/g | The release of angiotensin-converting (ACE) peptides was facilitated by cheddar cheese containing various microorganisms. | [69] |
Kalari | Lactobacillus plantarum (NCDC 012), Lacticaseibacillus casei (NCDC 297), Levilactobacillus brevis (NCDC 021) | 6–7 log CFU/g | Kalari cheese is anti-proliferative (against human breast and colon cancer cells, neuroblastoma), antidiabetic, antimicrobial, and immunomodulatory properties were all improved by the addition of probiotics. | [70] |
Fresh cheese | Lactiplantibacillus plantarum 299v, Bifidobacterium animalis Bo | 7.5–8.5 log CFU/g | The survival of bacteria in the GIT improved when the strains were paired with the fatty acids in cheese, indicating a possible synergistic effect. Furthermore, the digested fractions enhanced fat breakdown, reduced lipid accumulation in hepatocytes, stimulated adipokine secretion and exhibited anti-inflammatory effects. | [71] |
Fresh cheese | Lactococcus lactis LB1022, Lactiplantibacillus plantarum LB1418 | 8 log CFU/g | Consuming probiotic cheese reduced liver inflammation, controlled fatty acid oxidation, and enhanced alcohol metabolism. | [72] |
Minas Frescal Cheese | Lactococcus lactis NCDO 2118 | 7–8 log CFU/g | Mice that ate the probiotic cheese had less severe colitis, a lower disease activity index, and attenuated weight loss. | [73] |
Minas Frescal and Prato (Brazil) | Lacticaseibacillus casei-01 | 8 log CFU/g | It maintained certain glycaemic indices in healthy people and showed stronger antihyperglycemic action in vitro. | [74] |
Type of Cheese | Probiotic Strain | Encapsulating Material | Main Results | Reference |
---|---|---|---|---|
Cream cheese | Lactiplantibacillus plantarum CCMA 0359 | Whey powder | High viability at the GIT. It did not alter the organoleptic properties of the cheese. | [161] |
Cheddar cheese | Lb. paracasei ssp. paracasei NFBC 338 | Skim milk powder | The probiotic properties are preserved after drying | [154] |
Gouda cheese | Bifidobacterium lactis | Reconstituted skim milk and a mixture of β-cyclodextrin and gum arabic | The result is a high survival of probiotics in Gouda cheese during ripening and simulated GIconditions | [162] |
Iranian white cheese | Lactiplantibacillus plantarum ATCC 8014 | Whey protein isolate (WPI) and Gum Arabic (GA) | Higher survivability of L. plantarum ATCC 8014 in freeze-dried microcapsules than in spray-dried microcapsules during storage time (60 days). | [163] |
Soft goat cheese | Lactobacillus plantarum 564 | Skim milk | After 8 weeks of cheese storage, a high level of 8.82 log CFU/g was found for the encapsulated bacteria, while the free-cell number decreased to 6.9 log CFU/g. The addition of spray-dried bacteria did not change the properties of the cheese (pH value, chemical composition, sensory quality). | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amico, V.; Cavaliere, M.; Ivone, M.; Lacassia, C.; Celano, G.; Vacca, M.; la Forgia, F.M.; Fontana, S.; De Angelis, M.; Denora, N.; et al. Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese. Pharmaceutics 2025, 17, 185. https://doi.org/10.3390/pharmaceutics17020185
D’Amico V, Cavaliere M, Ivone M, Lacassia C, Celano G, Vacca M, la Forgia FM, Fontana S, De Angelis M, Denora N, et al. Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese. Pharmaceutics. 2025; 17(2):185. https://doi.org/10.3390/pharmaceutics17020185
Chicago/Turabian StyleD’Amico, Vita, Mariasimona Cavaliere, Marianna Ivone, Chiara Lacassia, Giuseppe Celano, Mirco Vacca, Flavia Maria la Forgia, Sergio Fontana, Maria De Angelis, Nunzio Denora, and et al. 2025. "Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese" Pharmaceutics 17, no. 2: 185. https://doi.org/10.3390/pharmaceutics17020185
APA StyleD’Amico, V., Cavaliere, M., Ivone, M., Lacassia, C., Celano, G., Vacca, M., la Forgia, F. M., Fontana, S., De Angelis, M., Denora, N., & Lopedota, A. A. (2025). Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese. Pharmaceutics, 17(2), 185. https://doi.org/10.3390/pharmaceutics17020185