Matrix Metalloproteinase-9 (MMP-9) as a Therapeutic Target: Insights into Molecular Pathways and Clinical Applications
Abstract
1. Introduction
1.1. Dual Functions of MMP-9 in Tissue Homeostasis and Disease Progression
Structural and Functional Overview of MMP-9 in the ECM
1.2. The Role of MMP-9 Angiogenesis and Vascular Remodeling
1.3. MMP-9 in Leukocyte Trafficking and Immune Regulation
1.4. Cytokine and Chemokine Processing by MMP-9
1.5. Growth Factor Activation and Fibrotic Remodeling Mediated by MMP-9
1.6. MMP-9 as a Biomarker and Therapeutic Target in Neurological Disease
1.7. MMP-9 in Tumor Progression and Metastasis
1.8. MMP-9 in Fibrosis and Chronic Inflammation
1.9. Additional Mechanistic Links to MMP-9 Function: PON1, Endothelial Function, and Hyperhomocysteinemia
2. Druggability and Translational Potential of MMP-9
2.1. Lessons from Broad-Spectrum Metalloproteinase Inhibition
2.2. Toward Selectivity and Temporal Precision
3. Indirect and Signal-Aware Modulation of MMP-9
MMP-9 as a Target for Precision Modulation
4. Cardiometabolic Modulators of MMP-9 Activity
4.1. Statins: Indirect Modulators of MMP-9 via Mevalonate Pathway Interference
4.2. ACE Inhibition: Indirect Recalibration of MMP-9 via RAS Blockade
4.3. ARBs: Receptor-Level Modulation and Tissue Protection
4.4. Metabolic Modulators as Indirect Regulators of MMP-9: Linking AMPK and PPARγ Signaling to Extracellular Proteolysis
5. Anti-Inflammatory and Respiratory Modulators at the Immune-Epithelial Interface
5.1. Glucocorticoids: GR-Mediated Repression of NF-κB/AP-1
5.2. Paradoxical Effects of Chronic Glucocorticoid Exposure
5.3. PDE4 Inhibitors: cAMP-Mediated Neutrophil Control
5.4. Macrolides: Transcriptional Suppression at the Epithelial Barrier
5.5. Leukotriene Antagonists: CysLT1 Blockade and Protease Regulation
5.6. NSAIDs: COX-2–PGE2–MMP-9 Axis Interference
5.7. Direct Catalytic Modulation by Tetracyclines
6. Hormone-Related Modulation of MMP-9
6.1. mTOR Inhibition (Rapamycin/Sirolimus)
6.2. MMP-9 and Estrogen and Selective Modulators (Estradiol, Tamoxifen)
6.3. MMP-9 at the Crosslink with Progesterone and Androgen Pathways
7. Nutritional and Microbiome-Linked Modulation
7.1. Omega-3 Fatty Acids and Antioxidant Vitamins
7.2. Micronutrient and Dietary Pattern Effects
7.3. Microbiome and Gut-Systemic MMP-9 Axis
8. Future Directions and Clinical Translation
9. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACE | Angiotensin-Converting Enzyme |
| ADT | Androgen Deprivation Therapy |
| ALI | Acute Lung Injury |
| Ang II | Angiotensin II |
| AP-1 | Activator Protein-1 |
| ARB | Angiotensin II Receptor Blocker |
| AR | Androgen Receptor |
| BBB | Blood–Brain Barrier |
| BMI | Body Mass Index |
| cAMP | Cyclic Adenosine Monophosphate |
| COX-2 | Cyclooxygenase-2 |
| DCIS | Ductal Carcinoma In Situ |
| DNA | Deoxyribonucleic Acid |
| DHA | Docosahexaenoic Acid |
| ECM | Extracellular Matrix |
| EPA | Eicosapentaenoic Acid |
| ER | Estrogen Receptor |
| ERα/ERβ | Estrogen Receptor Alpha/Beta |
| FDA | Food and Drug Administration |
| GPER1 | G Protein-Coupled Estrogen Receptor 1 |
| HFD | High-Fat Diet |
| ICU | Intensive Care Unit |
| IL-6 | Interleukin-6 |
| MMP-9 | Matrix Metalloproteinase-9 |
| MMPs | Matrix Metalloproteinases |
| mRNA | Messenger Ribonucleic Acid |
| mTOR | Mechanistic Target of Rapamycin |
| mTORC1 | Mechanistic Target of Rapamycin Complex 1 |
| NF-κB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells |
| NO | Nitric Oxide |
| PG | Prostaglandin |
| PI3K/Akt | Phosphoinositide 3-Kinase/Protein Kinase B Signaling Pathway |
| PK | Pharmacokinetics |
| PPAR-γ | Peroxisome Proliferator-Activated Receptor Gamma |
| PUFA | Polyunsaturated Fatty Acid |
| RAAS | Renin–Angiotensin–Aldosterone System |
| ROS | Reactive Oxygen Species |
| SDD | Sub-Antimicrobial Dose Doxycycline |
| TGF-β1 | Transforming Growth Factor Beta-1 |
| TIMP-1 | Tissue Inhibitor of Metalloproteinases-1 |
| TLR | Toll-Like Receptor |
| TNF-α | Tumor Necrosis Factor-Alpha |
| VDR | Vitamin D Receptor |
| VEGF | Vascular Endothelial Growth Factor |
References
- Didwischus, N.; Guduru, A.; Badylak, S.F.; Modo, M. In vitro dose-dependent effects of matrix metalloproteinases on ECM hydrogel biodegradation. Acta Biomater. 2024, 174, 104–115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, D.; Lin, L.; Su, Y.; Xu, J.; Jiang, W.; Zhang, Z.; Fang, Y.; Ding, X.; Xu, X. Inhibition of matrix metalloproteinase-9 attenuates kidney fibrosis and cellular senescence in the transition from acute kidney injury to chronic kidney disease. Ren. Fail. 2025, 47, 2499897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Almeida, L.G.N.; Thode, H.; Eslambolchi, Y.; Chopra, S.; Young, D.; Gill, S.; Devel, L.; Dufour, A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol. Rev. 2022, 74, 712–768. [Google Scholar] [CrossRef] [PubMed]
- Luchian, I.; Goriuc, A.; Sandu, D.; Covasa, M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. Int. J. Mol. Sci. 2022, 23, 1806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caley, M.P.; Martins, V.L.; O’Toole, E.A. Metalloproteinases and Wound Healing. Adv. Wound Care 2015, 4, 225–234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khalili-Tanha, G.; Radisky, E.S.; Radisky, D.C.; Shoari, A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: Implications in health and disease. J. Transl. Med. 2025, 23, 436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Hinsbergh, V.W.; Koolwijk, P. Endothelial sprouting and angiogenesis: Matrix metalloproteinases in the lead. Cardiovasc. Res. 2008, 78, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, M.; O’Sullivan, C.; Brockett, R.; Mikels-Vigdal, A.; Mikaelian, I.; Smith, V.; Greenstein, A.E. Characterization of Active MMP9 in Chronic Inflammatory Diseases Using a Novel Anti-MMP9 Antibody. Antibodies 2023, 12, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, L.; Guo, H.; Zhang, C.; Jin, H.; Guo, X.; Li, T. Elevated matrix metalloproteinase 9 expression is associated with COVID 19 severity: A meta analysis. Exp. Ther. Med. 2023, 26, 545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dimic-Janjic, S.; Hoda, M.A.; Milenkovic, B.; Kotur-Stevuljevic, J.; Stjepanovic, M.; Gompelmann, D.; Jankovic, J.; Miljkovic, M.; Milin-Lazovic, J.; Djurdjevic, N.; et al. The usefulness of MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio for diagnosis and assessment of COPD severity. Eur. J. Med. Res. 2023, 28, 127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, T.; Zhong, J.; Li, P.; Liang, J.; Li, M.; Zhang, G. Matrix Metalloproteinase and Aortic Aneurysm: A Two-sample Mendelian Randomization Study. Ann. Vasc. Surg. 2024, 105, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Giannandrea, M.; Parks, W.C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech. 2014, 7, 193–203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deryugina, E.I.; Quigley, J.P. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol. 2015, 44–46, 94–112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vikman, S.; Larsson, A.; Thulin, M.; Karlsson, T. Increased levels of a subset of angiogenesis-related plasma proteins in essential thrombocythemia. Ups. J. Med. Sci. 2023, 128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wright, S.A.; Lennon, R.; Greenhalgh, A.D. Basement membranes’ role in immune cell recruitment to the central nervous system. J. Inflamm. 2024, 21, 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology 2013, 28, 391–403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bradley, L.M.; Douglass, M.F.; Chatterjee, D.; Akira, S.; Baaten, B.J. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog. 2012, 8, e1002641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Augoff, K.; Hryniewicz-Jankowska, A.; Tabola, R.; Stach, K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers 2022, 14, 1847. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, L.; Kang, Q.; Chan, K.I.; Zhang, Y.; Zhong, Z.; Tan, W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front. Immunol. 2023, 13, 1093990. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zariffard, M.R.; Anastos, K.; French, A.L.; Munyazesa, E.; Cohen, M.; Landay, A.L.; Spear, G.T. Cleavage/alteration of interleukin-8 by matrix metalloproteinase-9 in the female lower genital tract. PLoS ONE 2015, 10, e0116911. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiu, Z.; Chen, J.; Xu, H.; Van den Steen, P.E.; Opdenakker, G.; Wang, M.; Hu, J. Inhibition of neutrophil collagenase/MMP-8 and gelatinase B/MMP-9 and protection against endotoxin shock. J. Immunol. Res. 2014, 2014, 747426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Q.; Wang, K.; Tan, X.; Li, Z.; Wang, H. Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front. Immunol. 2022, 13, 1064033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jabłońska-Trypuć, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzym. Inhib. Med. Chem. 2016, 31 (Suppl. 1), 177–183. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Espindola, M.S.; Habiel, D.M.; Coelho, A.L.; Stripp, B.; Parks, W.C.; Oldham, J.; Martinez, F.J.; Noth, I.; Lopez, D.; Mikels-Vigdal, A.; et al. Differential Responses to Targeting Matrix Metalloproteinase 9 in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2021, 203, 458–470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Khalil, R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv. Pharmacol. 2018, 81, 241–330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raffetto, J.D.; Khalil, R.A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol. 2008, 75, 346–359. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolosowicz, M.; Prokopiuk, S.; Kaminski, T.W. The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease. Int. J. Mol. Sci. 2024, 25, 13691. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Y.; Rosenberg, G.A. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015, 1623, 30–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rempe, R.G.; Hartz, A.M.S.; Bauer, B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J. Cereb. Blood Flow. Metab. 2016, 36, 1481–1507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Montaner, J.; Molina, C.A.; Monasterio, J.; Abilleira, S.; Arenillas, J.F.; Ribó, M.; Quintana, M.; Alvarez-Sabín, J. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003, 107, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Brkic, M.; Balusu, S.; Libert, C.; Vandenbroucke, R.E. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases. Mediat. Inflamm. 2015, 2015, 620581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fan, S.; Du, H.; Yao, Y.; Wang, H.; Zhang, M.; Shi, X.; Yan, J.; Peng, L.; Xiao, G.; He, S.; et al. Protection against stroke-induced blood-brain barrier disruption by Guanxinning injection and its active-component combination via TLR4/NF-κB/MMP9-mediated neuroinflammation. Phytomedicine 2025, 147, 157162. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Guan, T.; Wang, G.; Xiang, Y.; Li, M.; Zhao, Y.; Zhao, P. Monotropein alleviates sepsis-associated encephalopathy by targeting matrix metalloproteinase-9. Neuropharmacology 2025, 279, 110636. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020, 194, 112260, Erratum in Eur. J. Med. Chem. 2020, 205, 112642. https://doi.org/10.1016/j.ejmech.2020.112642. [Google Scholar] [CrossRef] [PubMed]
- Peltonen, R.; Hagström, J.; Tervahartiala, T.; Sorsa, T.; Haglund, C.; Isoniemi, H. High Expression of MMP-9 in Primary Tumors and High Preoperative MPO in Serum Predict Improved Prognosis in Colorectal Cancer with Operable Liver Metastases. Oncology 2021, 99, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.M.; de Melo Escorcio Dourado, C.S.; Campos-Verdes, L.M.; Sampaio, F.A.; Revoredo, C.M.S.; Costa-Silva, D.R.; da Conceição Barros-Oliveira, M.; de Jesus Nery Junior, E.; do Rego-Medeiros, L.M.; Gebrim, L.H.; et al. Expression of matrix metalloproteinase 2 and 9 in breast cancer and breast fibroadenoma: A randomized, double-blind study. Oncotarget 2019, 10, 6879–6884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Jiao, L.; Qiang, C.; Chen, C.; Shen, Z.; Ding, F.; Lv, L.; Zhu, T.; Lu, Y.; Cui, X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed. Pharmacother. 2024, 171, 116116. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Yang, W.S.; Kim, C.H. Physiological Properties, Functions, and Trends in the Matrix Metalloproteinase Inhibitors in Inflammation-Mediated Human Diseases. Curr. Med. Chem. 2023, 30, 2075–2112. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; McKelvey, K.; Shen, K.; Minhas, N.; March, L.; Park, S.Y.; Jackson, C.J. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology 2014, 53, 2270–2279. [Google Scholar] [CrossRef] [PubMed]
- DeLeon-Pennell, K.Y.; Meschiari, C.A.; Jung, M.; Lindsey, M.L. Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Prog. Mol. Biol. Transl. Sci. 2017, 147, 75–100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baran, A.; Stepaniuk, A.; Kiluk, P.; Kaminski, T.W.; Maciaszek, M.; Flisiak, I. Potential Predictive Value of Serum Pentraxin 3 and Paraoxonase 1 for Cardiometabolic Disorders Development in Patients with Psoriasis-Preliminary Data. Metabolites 2022, 12, 580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Winans, T.; Oaks, Z.; Choudhary, G.; Patel, A.; Huang, N.; Faludi, T.; Krakko, D.; Nolan, J.; Lewis, J.; Blair, S.; et al. mTOR-dependent loss of PON1 secretion and antiphospholipid autoantibody production underlie autoimmunity-mediated cirrhosis in transaldolase deficiency. J. Autoimmun. 2023, 140, 103112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chatterjee, A.; Roy, T.; Swarnakar, S. Transcriptional upregulation of MMP-9 gene under hyperglycemic conditions in AGS cells: Role of AP-1 transcription factor. Cell Signal. 2024, 124, 111435. [Google Scholar] [CrossRef] [PubMed]
- Bahman, F.; Kochumon, S.; Malik, M.Z.; Akther, N.; Jacob, S.; Drobiova, H.; Al-Mulla, F.; Ahmad, R. H3K9 acetylation-NF-κB-AP-1 nexus targeted by ITE limits TNF-α-induced MMP-9 expression in monocytic cells. J. Immunol. 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Park, M.; Kim, D.W.; Shin, M.J.; Son, O.; Jo, H.S.; Yeo, H.J.; Cho, S.B.; Park, J.H.; Lee, C.H.; et al. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson’s disease model. Biomaterials 2015, 64, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Das, T.K. Enzyme-Immobilized Oxoammonium Nanogels: A Biocompatible and Injectable Platform for Enhanced Enzyme Stability and Reusability. Biomacromolecules 2025. [Google Scholar] [CrossRef]
- Jacquet, C.; Gustafsson, R.; Patel, A.K.; Hansson, M.; Rankin, G.; Bano, F.; Byström, J.W.; Blomberg, A.; Rasmuson, J.; Satchell, S.; et al. Matrix metalloproteinase-9 mediates endothelial glycocalyx degradation and correlates with severity of hemorrhagic fever with renal syndrome. iScience 2025, 28, 113262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, M.; Gong, Y.; Jiang, L.; Zhang, M.; Gu, H.; Shen, H.; Dang, B. VEGF regulates the blood brain barrier through MMP 9 in a rat model of traumatic brain injury. Exp. Ther. Med. 2022, 24, 728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; He, B. Endothelial dysfunction: Molecular mechanisms and clinical implications. MedComm 2024, 5, e651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, H.; Zhang, W.; Jiang, L.; Tong, X.; Zheng, Y.; Xia, Z. Endothelial Cell Dysfunction Due to Molecules Secreted by Macrophages in Sepsis. Biomolecules 2024, 14, 980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, H.; Men, Y.; An, Y.; Yu, J.; Zhang, G.; Li, J.; Wang, X.; Sun, G.; Wu, Y. Overexpression of endothelial S1pr2 promotes blood-brain barrier disruption via JNK/c-Jun/MMP-9 pathway after traumatic brain injury in both in vivo and in vitro models. Front. Pharmacol. 2024, 15, 1448570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kamiński, T.W.; Pawlak, K.; Karbowska, M.; Myśliwiec, M.; Pawlak, D. Indoxyl sulfate—The uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrol. 2017, 18, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaminski, T.W.; Pawlak, K.; Karbowska, M.; Znorko, B.; Mor, A.L.; Mysliwiec, M.; Pawlak, D. The impact of antihypertensive pharmacotherapy on interplay between protein-bound uremic toxin (indoxyl sulfate) and markers of inflammation in patients with chronic kidney disease. Int. Urol. Nephrol. 2019, 51, 491–502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moshal, K.S.; Sen, U.; Tyagi, N.; Henderson, B.; Steed, M.; Ovechkin, A.V.; Tyagi, S.C. Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway. Am. J. Physiol. Cell Physiol. 2006, 290, C883–C891. [Google Scholar] [CrossRef] [PubMed]
- Munjal, C.; Tyagi, N.; Lominadze, D.; Tyagi, S.C. Matrix metalloproteinase-9 in homocysteine-induced intestinal microvascular endothelial paracellular and transcellular permeability. J. Cell Biochem. 2012, 113, 1159–1169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohammad, G.; Kowluru, R.A. Homocysteine Disrupts Balance between MMP-9 and Its Tissue Inhibitor in Diabetic Retinopathy: The Role of DNA Methylation. Int. J. Mol. Sci. 2020, 21, 1771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tao, H.; Gong, Y.; Yu, Q.; Zhou, H.; Liu, Y. Elevated Serum Matrix Metalloproteinase-9, Interleukin-6, Hypersensitive C-Reactive Protein, and Homocysteine Levels in Patients with Epilepsy. J. Interferon Cytokine Res. 2020, 40, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Heissig, B.; Nishida, C.; Tashiro, Y.; Sato, Y.; Ishihara, M.; Ohki, M.; Gritli, I.; Rosenkvist, J.; Hattori, K. Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. Histol. Histopathol. 2010, 25, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, T.; Ma, Y. Mechanisms and therapeutic strategies of macrophages and neutrophils inducing ulcerative colitis progression. Front. Immunol. 2025, 16, 1615340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radisky, E.S. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J. Biol. Chem. 2024, 300, 107347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rashid, Z.A.; Bardaweel, S.K. Novel Matrix Metalloproteinase-9 (MMP-9) Inhibitors in Cancer Treatment. Int. J. Mol. Sci. 2023, 24, 12133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaczmarek, K.T.; Protokowicz, K.; Kaczmarek, L. Matrix metalloproteinase-9: A magic drug target in neuropsychiatry? J. Neurochem. 2024, 168, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.L.; Da, X.; Zhang, Y.G.; Li, Z.A.; Liu, B.J.; Yan, R.F.; Zhong, H.; Yuan, B. NINJ1 and MMP9: Potential biomarkers for intracranial atherosclerosis plaque vulnerability. Front. Neurol. 2025, 16, 1552948. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Avila-Mesquita, C.; Couto, A.E.S.; Campos, L.C.B.; Vasconcelos, T.F.; Michelon-Barbosa, J.; Corsi, C.A.C.; Mestriner, F.; Petroski-Moraes, B.C.; Garbellini-Diab, M.J.; Couto, D.M.S.; et al. MMP-2 and MMP-9 levels in plasma are altered and associated with mortality in COVID-19 patients. Biomed. Pharmacother. 2021, 142, 112067. [Google Scholar] [CrossRef] [PubMed]
- Bramhall, S.R.; Schulz, J.; Nemunaitis, J.; Brown, P.D.; Baillet, M.; Buckels, J.A. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br. J. Cancer 2002, 87, 161–167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vandenbroucke, R.E.; Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov. 2014, 13, 904–927. [Google Scholar] [CrossRef] [PubMed]
- Fields, G.B. Mechanisms of Action of Novel Drugs Targeting Angiogenesis-Promoting Matrix Metalloproteinases. Front. Immunol. 2019, 10, 1278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kandhwal, M.; Behl, T.; Singh, S.; Sharma, N.; Arora, S.; Bhatia, S.; Al-Harrasi, A.; Sachdeva, M.; Bungau, S. Role of matrix metalloproteinase in wound healing. Am. J. Transl. Res. 2022, 14, 4391–4405. [Google Scholar] [PubMed] [PubMed Central]
- Mubarak, M.M.; Baba, I.A.; Wani, Z.A.; Kantroo, H.A.; Ahmad, Z. Matrix metalloproteinase-9 (MMP-9): A macromolecular mediator in CNS infections: A review. Int. J. Biol. Macromol. 2025, 311 Pt 2, 143902. [Google Scholar] [CrossRef] [PubMed]
- Rosemurgy, A.; Harris, J.; Langleben, A.; Casper, E.; Goode, S.; Rasmussen, H. Marimastat in patients with advanced pancreatic cancer: A dose-finding study. Am. J. Clin. Oncol. 1999, 22, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.L.; Sung, K.R.; Kwon, J.; Shin, J.A. Statins Suppress TGF-β2-Mediated MMP-2 and MMP-9 Expression and Activation Through RhoA/ROCK Inhibition in Astrocytes of the Human Optic Nerve Head. Investig. Ophthalmol. Vis. Sci. 2020, 61, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shin, J.M.; Park, J.H.; Park, I.H.; Lee, H.M. Doxycycline inhibits TGF-β1-induced extracellular matrix production in nasal polyp-derived fibroblasts. Int. Forum Allergy Rhinol. 2016, 6, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Khayati, S.; Dehnavi, S.; Almahmeed, W.; Sukhorukovi, V.N.; Sahebkar, A. Regulatory impact of statins on macrophage polarization: Mechanistic and therapeutic implications. J. Pharm. Pharmacol. 2024, 76, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, A.; Wheeler-Jones, C.P.D.; Gage, M.C. The Immunomodulatory Effects of Statins on Macrophages. Immuno 2022, 2, 317–343. [Google Scholar] [CrossRef]
- Sapienza, P.; Borrelli, V.; Sterpetti, A.V.; Dinicola, S.; Tartaglia, E.; di Marzo, L. Dose-dependent effect of rosuvastatin in the regulation of metalloproteinase expression. Ann. Vasc. Surg. 2011, 25, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Massaro, M.; Zampolli, A.; Scoditti, E.; Carluccio, M.A.; Storelli, C.; Distante, A.; De Caterina, R. Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: Anti-angiogenic actions possibly contributing to plaque stability. Cardiovasc. Res. 2010, 86, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Han, H.C.; Lindsey, M.L. ACE inhibitors to block MMP-9 activity: New functions for old inhibitors. J. Mol. Cell Cardiol. 2007, 43, 664–666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alsac, J.M.; Journe, C.; Louedec, L.; Dai, J.; Julia, P.; Fabiani, J.N.; Michel, J.B. Downregulation of remodelling enzymatic activity induced by an angiotensin-converting enzyme inhibitor (perindopril) reduces the degeneration of experimental abdominal aortic aneurysms in a rat model. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Carrasco, J.L.; Zambrano, S.; Blanca, A.J.; Mate, A.; Vázquez, C.M. Captopril reduces cardiac inflammatory markers in spontaneously hypertensive rats by inactivation of NF-kB. J. Inflamm. 2010, 7, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, R.W.; Yang, L.X.; Wang, H.; Liu, B.; Wang, L. Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-kappaB-dependent pathway in vascular smooth muscle cells. Regul. Pept. 2008, 147, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ramella, M.; Boccafoschi, F.; Bellofatto, K.; Follenzi, A.; Fusaro, L.; Boldorini, R.; Casella, F.; Porta, C.; Settembrini, P.; Cannas, M. Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm (AAA). Am. J. Transl. Res. 2017, 9, 5485–5495. [Google Scholar] [PubMed] [PubMed Central]
- Guo, Y.S.; Wu, Z.G.; Yang, J.K.; Chen, X.J. Impact of losartan and angiotensin II on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat vascular smooth muscle cells. Mol. Med. Rep. 2015, 11, 1587–1594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central][Green Version]
- Wang, X.M.; Shi, K.; Li, J.J.; Chen, T.T.; Guo, Y.H.; Liu, Y.L.; Yang, Y.F.; Yang, S. Effects of angiotensin II intervention on MMP-2, MMP-9, TIMP-1, and collagen expression in rats with pulmonary hypertension. Genet. Mol. Res. 2015, 14, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.J.; Xu, C.S.; Li, Y.P.; Li, J.; Xu, J.J.; Xia, P. Telmisartan inhibits Ang II-induced MMP-9 expression in macrophages in stabilizing atheromatous plaque. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8004–8012. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.H.; Kim, J.M.; Chum, E.; van Breemen, C.; Chung, A.W. Long-term effects of losartan on structure and function of the thoracic aorta in a mouse model of Marfan syndrome. Br. J. Pharmacol. 2009, 158, 1503–1512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, Y.J.; Yang, C.G.; Qiao, W.B.; Liu, Y.C.; Liu, S.Y.; Dong, G.J. Sacubitril/valsartan attenuates myocardial inflammation, hypertrophy, and fibrosis in rats with heart failure with preserved ejection fraction. Eur. J. Pharmacol. 2023, 961, 176170. [Google Scholar] [CrossRef] [PubMed]
- Antar, S.A.; Abdo, W.; Taha, R.S.; Farage, A.E.; El-Moselhy, L.E.; Amer, M.E.; Abdel Monsef, A.S.; Abdel Hamid, A.M.; Kamel, E.M.; Ahmeda, A.F.; et al. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats. Life Sci. 2022, 291, 120260. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, S.; Xu, W.; Zhao, M.; Zhang, Y.; Xiao, H. Metformin Directly Binds to MMP-9 to Improve Plaque Stability. J. Cardiovasc. Dev. Dis. 2023, 10, 54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, H.; Ao, H.; Guo, G.; Liu, M. The Role and Mechanism of Metformin in Inflammatory Diseases. J. Inflamm. Res. 2023, 16, 5545–5564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Onursal, C.; Reel, B.; Bintepe, C.; Guzeloglu, M.; Ersoy, N.; Bagriyanik, A. Pioglitazone inhibits oxidative stress, MMP-mediated inflammation and vascular dysfunction in high glucose-induced human saphenous vein grafts. J. Diabetes Complicat. 2023, 37, 108421. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, B.; Mummidi, S.; DeMarco, V.G.; Higashi, Y. Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration. Mediat. Inflamm. 2023, 2023, 6112301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lambadiari, V.; Pililis, S.; Lampsas, S.; Kountouri, A.; Thymis, J.; Pliouta, L.; Peppa, M.; Kalantaridou, S.; Oikonomou, E.; Siasos, G.; et al. Endothelial Function and Matrix Metalloproteinase 9 (MMP9) in Women with Polycystic Ovary Syndrome (PCOS). Int. J. Mol. Sci. 2025, 26, 5488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsai, H.C.; Chen, Y.H. Dexamethasone downregulates the expressions of MMP-9 and oxidative stress in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection. Parasitology 2021, 148, 187–197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Ge, P.; Liu, J.; Luo, Y.; Guo, H.; Zhang, G.; Xu, C.; Chen, H. Glucocorticoid Treatment in Acute Respiratory Distress Syndrome: An Overview on Mechanistic Insights and Clinical Benefit. Int. J. Mol. Sci. 2023, 24, 12138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qi, Y.; Yan, Y.; Tang, D.; Han, J.; Zhu, X.; Cui, M.; Wu, H.; Tao, Y.; Fan, F. Inflammatory and Immune Mechanisms in COPD: Current Status and Therapeutic Prospects. J. Inflamm. Res. 2024, 17, 6603–6618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, J.; Kim, G.M.; Ahmed, S.H.; Xu, J.; Yan, P.; Xu, X.M.; Hsu, C.Y. Glucocorticoid receptor-mediated suppression of activator protein-1 activation and matrix metalloproteinase expression after spinal cord injury. J. Neurosci. 2001, 21, 92–97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Zou, J.; Niimi, M.; Qiu, X.; Zhang, S.; Yang, H.; Zhu, M.; Fan, J. Matrix Metalloproteinase-9 Enhances Osteoclastogenesis: Insights from Transgenic Rabbit Bone Marrow Models and In Vitro Studies. Int. J. Mol. Sci. 2025, 26, 3194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boukhedouni, N.; Martins, C.; Darrigade, A.S.; Drullion, C.; Rambert, J.; Barrault, C.; Garnier, J.; Jacquemin, C.; Thiolat, D.; Lucchese, F.; et al. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo. JCI Insight 2020, 5, e133772. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jones, N.A.; Boswell-Smith, V.; Lever, R.; Page, C.P. The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro. Pulm. Pharmacol. Ther. 2005, 18, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Kim, Y.A.; Joo, H.S.; Kim, J.W. The Effect of Roflumilast on Lipopolysaccharide-induced Acute Lung Injury During Neutropenia Recovery in Mice. In Vivo 2024, 38, 1127–1132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- The Effect of Roflumilast on Absolute Neutrophil Count, MMP-9 Serum, % VEP1 Value, and CAT Scores in Stable COPD Patients. J. Respirol. Indones. 2022, 42, 141–150. [CrossRef]
- Roflumilast in Chronic Obstructive Pulmonary Disease (COPD) Patients Treated With Fixed Dose Combinations of Long-Acting β2-Agonist (LABA) and Inhaled Corticosteroid (ICS). Available online: https://clinicaltrials.gov/study/NCT01443845?utm_source=chatgpt.com (accessed on 1 November 2025).
- Kumar, R.; Khan, M.I.; Panwar, A.; Vashist, B.; Rai, S.K.; Kumar, A. PDE4 Inhibitors and their Potential Combinations for the Treatment of Chronic Obstructive Pulmonary Disease: A Narrative Review. Open Respir. Med. J. 2024, 18, e18743064340418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takemori, N.; Ooi, H.K.; Imai, G.; Hoshino, K.; Saio, M. Possible mechanisms of action of clarithromycin and its clinical application as a repurposing drug for treating multiple myeloma. Ecancermedicalscience 2020, 14, 1088. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beigelman, A.; Goss, C.W.; Wang, J.; Srinivasan, M.; Boomer, J.; Zhou, Y.; Bram, S.; Casper, T.J.; Coverstone, A.M.; Kanchongkittiphon, W.; et al. Azithromycin therapy in infants hospitalized for respiratory syncytial virus bronchiolitis: Airway matrix metalloproteinase-9 levels and subsequent recurrent wheeze. Ann. Allergy Asthma Immunol. 2024, 132, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Zhang, W.W.; Sewell, K.; Gorman, G.; Kuo, H.C.; Aban, I.; Ambalavanan, N.; Whitley, R.J. Azithromycin Treatment vs Placebo in Children With Respiratory Syncytial Virus-Induced Respiratory Failure: A Phase 2 Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e203482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terpstra, L.C.; Altenburg, J.; Doodeman, H.J.; Piñeros, Y.S.S.; Lutter, R.; Heijerman, H.G.M.; Boersma, W.G. The effect of azithromycin on sputum inflammatory markers in bronchiectasis. BMC Pulm. Med. 2023, 23, 151. [Google Scholar] [CrossRef]
- Awad, A.M.; Elshaer, S.L.; Gangaraju, R.; Abdelaziz, R.R.; Nader, M.A. Ameliorative effect of montelukast against STZ induced diabetic nephropathy: Targeting HMGB1, TLR4, NF-κB, NLRP3 inflammasome, and autophagy pathways. Inflammopharmacology 2024, 32, 495–508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, J.; Zhuang, J.; Wang, J.; Shan, Z. Montelukast inhibits abdominal aortic aneurysm formation in mice via activating the AMPK/mTOR signalling pathway. Langenbecks Arch. Surg. 2024, 409, 362, Erratum in Langenbecks Arch. Surg. 2025, 410, 61. https://doi.org/10.1007/s00423-025-03625-8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, K.; Li, M.; Wei, P.; Tian, K.; Liu, H.; Fu, W.; Hou, H.; Chen, Y.; Xu, B.; Li, Y.; et al. Cysteine Leukotriene Receptor Antagonist-Montelukast-Treatment Improves Experimental Abdominal Aortic Aneurysms in Mice. Cardiovasc. Ther. 2024, 2024, 8826287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Jun Yun, H.; Ding, Y.; Du, H.; Geng, X. Montelukast sodium protects against focal cerebral ischemic injury by regulating inflammatory reaction via promoting microglia polarization. Brain Res. 2023, 1817, 148498. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.F.; Marques, M.M.; Justino, G.C. Leukotrienes vs. Montelukast-Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals 2022, 15, 1039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, T.H.; Liu, P.S.; Tsai, M.M.; Chen, J.L.; Wang, S.J.; Hsieh, H.L. The COX-2-derived PGE2 autocrine contributes to bradykinin-induced matrix metalloproteinase-9 expression and astrocytic migration via STAT3 signaling. Cell Commun. Signal. 2020, 18, 185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haartmans, M.J.J.; Timur, U.T.; Emanuel, K.S.; Caron, M.M.J.; Jeuken, R.M.; Welting, T.J.M.; van Osch, G.J.V.M.; Heeren, R.M.A.; Cillero-Pastor, B.; Emans, P.J. Evaluation of the Anti-Inflammatory and Chondroprotective Effect of Celecoxib on Cartilage Ex Vivo and in a Rat Osteoarthritis Model. Cartilage 2022, 13, 19476035221115541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sieck, G. Physiology in perspective: Cell migration and the regenerative process. Physiology 2013, 28, 368–369. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhao, H.; Pond, G.; Simos, D.; Wang, Z.; Robertson, S.; Singh, G.; Vandermeer, L.; Clemons, M.; Addison, C.L. Doxycycline-Induced Changes in Circulating MMP or TIMP2 Levels Are Not Associated with Skeletal-Related Event-Free or Overall Survival in Patients with Bone Metastases from Breast Cancer. Cancers 2023, 15, 571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sauer, A.; Putensen, C.; Bode, C. Immunomodulation by Tetracyclines in the Critically Ill: An Emerging Treatment Option? Crit. Care 2022, 26, 74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergold, P.J.; Furhang, R.; Lawless, S. Treating Traumatic Brain Injury with Minocycline. Neurotherapeutics 2023, 20, 1546–1564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Attia, M.S.; Alblowi, J.A. Effect of Subantimicrobial Dose Doxycycline Treatment on Gingival Crevicular Fluid Levels of MMP-9 and MMP-13 in Periodontitis Stage 2, Grade B in Subjects with Type 2 Diabetes Mellitus. J. Immunol. Res. 2020, 2020, 2807259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Li, X.; Jin, A. Rapamycin Inhibits Nf-ΚB Activation by Autophagy to Reduce Catabolism in Human Chondrocytes. J. Investig. Surg. 2020, 33, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ding, X.F.; Pressley, K.; Bouamar, H.; Wang, B.; Zheng, G.; Broome, L.E.; Nazarullah, A.; Brenner, A.J.; Kaklamani, V.; et al. Everolimus Inhibits the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer Via Downregulation of MMP9 Expression. Clin. Cancer Res. 2020, 26, 1486–1496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gomez-Manjarres, D.C.; Axell-House, D.B.; Patel, D.C.; Odackal, J.; Yu, V.; Burdick, M.D.; Mehrad, B. Sirolimus suppresses circulating fibrocytes in idiopathic pulmonary fibrosis in a randomized controlled crossover trial. JCI Insight 2023, 8, e166901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wołosowicz, M.; Łukaszuk, B.; Kasacka, I.; Chabowski, A. Diverse Impact of N-Acetylcysteine or Alpha-Lipoic Acid Supplementation during High-Fat Diet Regime on Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 in Visceral and Subcutaneous Adipose Tissue. Cell Physiol. Biochem. 2022, 56, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.V.; Fandl, H.K.; Hijmans, J.G.; Stockelman, K.A.; Ruzzene, S.T.; Reiakvam, W.R.; Goldthwaite, Z.A.; Greiner, J.J.; DeSouza, C.A.; Garcia, V.P. Effect of 17β-Estradiol on Endothelial Cell Expression of Inflammation- Related MicroRNA. MicroRNA 2025, 14, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, X.; Zhang, Y.; Qiao, J.; Sasano, H.; McNamara, K.; Zhao, B.; Zhang, D.; Fan, Y.; Liu, L.; et al. Estradiol-Induced MMP-9 Expression via PELP1-Mediated Membrane-Initiated Signaling in ERα-Positive Breast Cancer Cells. Horm. Cancer 2020, 11, 87–96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jia, K.; Luo, X.; Yi, J.; Zhang, C. Hormonal influence: Unraveling the impact of sex hormones on vascular smooth muscle cells. Biol. Res. 2024, 57, 61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joseph, C.; Alsaleem, M.; Orah, N.; Narasimha, P.L.; Miligy, I.M.; Kurozumi, S.; Ellis, I.O.; Mongan, N.P.; Green, A.R.; Rakha, E.A. Elevated MMP9 expression in breast cancer is a predictor of shorter patient survival. Breast Cancer Res. Treat. 2020, 182, 267–282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katzen, J.; Wagner, B.D.; Venosa, A.; Kopp, M.; Tomer, Y.; Russo, S.J.; Headen, A.C.; Basil, M.C.; Stark, J.M.; Mulugeta, S.; et al. An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis. JCI Insight 2019, 4, e126125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tune, B.X.J.; Sim, M.S.; Poh, C.L.; Guad, R.M.; Woon, C.K.; Hazarika, I.; Das, A.; Gopinath, S.C.B.; Rajan, M.; Sekar, M.; et al. Matrix Metalloproteinases in Chemoresistance: Regulatory Roles, Molecular Interactions, and Potential Inhibitors. J. Oncol. 2022, 2022, 3249766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwon, M.J. Matrix metalloproteinases as therapeutic targets in breast cancer. Front. Oncol. 2023, 12, 1108695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Merlo, S.; Sortino, M.A. Estrogen activates matrix metalloproteinases-2 and -9 to increase beta amyloid degradation. Mol. Cell Neurosci. 2012, 49, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Bautista, G.; Salguero-Zacarias, S.; Villeda-Gabriel, G.; García-López, G.; Osorio-Caballero, M.; Palafox-Vargas, M.L.; Acuña-González, R.J.; Lara-Pereyra, I.; Díaz-Ruíz, O.; Flores-Herrera, H. Escherichia coli induced matrix metalloproteinase-9 activity and type IV collagen degradation is regulated by progesterone in human maternal decidual. BMC Pregnancy Childbirth 2024, 24, 645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, J.A.; Baker, D.; Peresleni, T.; Heiselman, C.; Kocis, C.; Demishev, M.; Garry, D.J. Vaginal matrix metalloproteinase-9 (MMP-9) as a potential early predictor of preterm birth. J. Perinat. Med. 2024, 52, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Cheng, B.; Dai, R.; Wang, R. The Role of Androgen Receptor in Cross Talk Between Stromal Cells and Prostate Cancer Epithelial Cells. Front. Cell Dev. Biol. 2021, 9, 729498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sorrentino, C.; D’Angiolo, R.; Gentile, G.; Giovannelli, P.; Perillo, B.; Migliaccio, A.; Castoria, G.; Di Donato, M. The Androgen Regulation of Matrix Metalloproteases in Prostate Cancer and Its Related Tumor Microenvironment. Endocrines 2023, 4, 350–365. [Google Scholar] [CrossRef]
- Khorram, A.A.; Pourasgharian, R.; Shams, A.S.; Toufani, S.; Mostafaei, M.; Khademi, R.; Daghayeghi, R.; Valifard, M.; Shahrokhi, M.; Seyedipour, S.; et al. Androgen deprivation therapy use and the risk of heart failure in patients with prostate cancer: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2024, 24, 756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zailani, H.; Wang, W.L.; Satyanarayanan, S.K.; Chiu, W.C.; Liu, W.C.; Sung, Y.S.; Chang, J.P.; Su, K.P. Omega-3 Polyunsaturated Fatty Acids and Blood-Brain Barrier Integrity in Major Depressive Disorder: Restoring Balance for Neuroinflammation and Neuroprotection. Yale J. Biol. Med. 2024, 97, 349–363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savran, L.; Sağlam, M. Clinical effects of omega-3 fatty acids supplementation in the periodontal treatment of smokers and non-smokers with periodontitis: A retrospective study. Clin. Oral Investig. 2024, 28, 437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolosowicz, M.; Prokopiuk, S.; Kaminski, T.W. Recent Advances in the Treatment of Insulin Resistance Targeting Molecular and Metabolic Pathways: Fighting a Losing Battle? Medicina 2022, 58, 472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shinto, L.; Marracci, G.; Baldauf-Wagner, S.; Strehlow, A.; Yadav, V.; Stuber, L.; Bourdette, D. Omega-3 fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 131–136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gurbanov, V.; Öztürk, A.; Doğruel, F.; Saraçoğlu, H.; Yazıcı, C. Increasing Serum Vitamin D Levels Reduces Gingival Crevicular Fluid Matrix Metalloproteinase-9 Levels in Periodontal Health and Diseases. J. Clin. Periodontol. 2025, 52, 1115–1124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lubis, B.; Lelo, A.; Amelia, P.; Prima, A. The Effect of Thiamine, Ascorbic Acid, and the Combination of Them on the Levels of Matrix Metalloproteinase-9 (MMP-9) and Tissue Inhibitor of Matrix Metalloproteinase-1 (TIMP-1) in Sepsis Patients. Infect. Drug Resist. 2022, 15, 5741–5751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Li, G.; Luo, X.; Huang, Y.; Wen, L.; Li, J. Endothelial Dysfunction and Hyperhomocysteinemia-Linked Cerebral Small Vessel Disease: Underlying Mechanisms and Treatment Timing. Front. Neurol. 2021, 12, 736309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cannataro, R.; Fazio, A.; La Torre, C.; Caroleo, M.C.; Cione, E. Polyphenols in the Mediterranean Diet: From Dietary Sources to microRNA Modulation. Antioxidants 2021, 10, 328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koelman, L.; Egea Rodrigues, C.; Aleksandrova, K. Effects of Dietary Patterns on Biomarkers of Inflammation and Immune Responses: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 101–115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aliashrafi, S.; Ebrahimi-Mameghani, M.; Jafarabadi, M.A.; Lotfi-Dizaji, L.; Vaghef-Mehrabany, E.; Arefhosseini, S.R. Effect of high-dose vitamin D supplementation in combination with weight loss diet on glucose homeostasis, insulin resistance, and matrix metalloproteinases in obese subjects with vitamin D deficiency: A double-blind, placebo-controlled, randomized clinical trial. Appl. Physiol. Nutr. Metab. 2020, 45, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Shi, F.; Yin, W.; Guo, Y.; Liu, A.; Shuai, J.; Sun, J. Gut microbiota dysbiosis: The potential mechanisms by which alcohol disrupts gut and brain functions. Front. Microbiol. 2022, 13, 916765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, X.E.; Yang, S.M.; Zhou, X.J.; Zhang, Y. Effects of mesalazine combined with bifid triple viable on intestinal flora, immunoglobulin and levels of cal, MMP-9, and MPO in feces of patients with ulcerative colitis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Patibandla, S.; Bhatt, N.; Lief, S.; Beauti, S.M.; Ansari, A.Z. Gut Microbiota Modulation in the Management of Chronic Obstructive Pulmonary Disease: A Literature Review. Cureus 2024, 16, e66875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]

| Drug/Class | Mechanistic Target | References | Clinical/Experimental Context | Effect On MMP-9 |
|---|---|---|---|---|
| Statins | Rhoa/Rac1 NF-Κb/AP-1 | 74, 77 | Atherosclerosis, Vascular Inflammation | (−) Expression/Activity |
| ACE Inhbs/Arbs | Ang II → AT1R | 81, 83 | Aneurysm, Cardiac Remodeling | (−) MMP-9 Expression |
| Metformin | AMPK/Mtor | 91 | Diabetes, Vascular Disease | (−) MMP-9 + (+) Stability |
| Pioglitazone | Pparγ | 93 | Metabolic Inflammation | (−) Activity |
| Doxycycline | Zn2+ Chelation/TIMP-2 | 122 | Periodontitis, Vascular Remodeling | (−) Activity |
| Macrolides | NF-Κb/AP-1 | 108 | Airway Inflammation | (−) Expression |
| Montelukast | Cyslt1/AMPK/Mtor | 112 | Aneurysm, Neuroinflammation | (−) Activity |
| Rapamycin | Mtorc1 Inhibition | 125 | Fibrosis, Transplant Models | (−) MMP-9 Expression |
| Omega-3/Vit. D | Nf-Κb/Redox Modulation | 144 | Inflammatory, Metabolic Disease | (−) Expression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolosowicz, M.; Prokopiuk, S.; Kaminski, T.W. Matrix Metalloproteinase-9 (MMP-9) as a Therapeutic Target: Insights into Molecular Pathways and Clinical Applications. Pharmaceutics 2025, 17, 1425. https://doi.org/10.3390/pharmaceutics17111425
Wolosowicz M, Prokopiuk S, Kaminski TW. Matrix Metalloproteinase-9 (MMP-9) as a Therapeutic Target: Insights into Molecular Pathways and Clinical Applications. Pharmaceutics. 2025; 17(11):1425. https://doi.org/10.3390/pharmaceutics17111425
Chicago/Turabian StyleWolosowicz, Marta, Slawomir Prokopiuk, and Tomasz W. Kaminski. 2025. "Matrix Metalloproteinase-9 (MMP-9) as a Therapeutic Target: Insights into Molecular Pathways and Clinical Applications" Pharmaceutics 17, no. 11: 1425. https://doi.org/10.3390/pharmaceutics17111425
APA StyleWolosowicz, M., Prokopiuk, S., & Kaminski, T. W. (2025). Matrix Metalloproteinase-9 (MMP-9) as a Therapeutic Target: Insights into Molecular Pathways and Clinical Applications. Pharmaceutics, 17(11), 1425. https://doi.org/10.3390/pharmaceutics17111425

