Surfactant-Enriched Cross-Linked Scaffold as an Environmental and Manufacturing Feasible Approach to Boost Dissolution of Lipophilic Drugs
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Selection of Surfactant
2.2.1. Miscibility of Propylene Glycol
2.2.2. Solubility of Candesartan Cilexetil
2.3. Experimental Design
2.4. Preparation of Optimum Surfactant-Enriched Cross-Linked Scaffold
2.5. Drug Loading
2.6. Onset of Solid-to-Liquid Transition
2.7. Duration of Solid-to-Liquid Transition
2.8. Selection of Optimized Formulation
2.9. Solid-to-Liquid Transition Assessment
2.10. In Vitro Dissolution
3. Results and Discussion
3.1. Mechanistic Solid-to-Liquid Transition
3.2. Selection of Surfactant
3.3. Model Validation for Studied Responses
3.4. Drug Loading Response Analysis
3.5. Onset of Solid-to-Liquid Transition
3.6. Duration of Solid-to-Liquid Transition
3.7. Selection of Optimized Formulation
3.8. Solid-to-Liquid Transition Assessment
3.9. In Vitro Dissolution Study
3.10. Environmental Feasibility of the Current Approach
3.11. Manufacturing Feasibility of the Current Approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Nguyen, H.; Nguyen, T.T. Eco-friendly Pharmaceutical Formulation and Production Strategies and Future Perspectives. In Sustainable Pharmaceutical Product Development and Optimization Processes: From Eco-Design to Supply Chain Integrity; Springer: Singapore, 2025; pp. 87–106. [Google Scholar]
- Rocha, B.; de Morais, L.A.; Viana, M.C.; Carneiro, G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin. Drug Discov. 2023, 18, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Worku, Z.A.; Van den Mooter, G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin. Drug Deliv. 2011, 8, 1361–1378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xing, H.; Zhao, Y.; Ma, Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics 2018, 10, 74. [Google Scholar] [CrossRef]
- Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 2007, 12, 1068–1075. [Google Scholar] [CrossRef]
- Kesharwani, R.; Jaiswal, P.; Patel, D.K.; Yadav, P.K. Lipid-based drug delivery system (LBDDS): An emerging paradigm to enhance oral bioavailability of poorly soluble drugs. Biomed. Mater. Devices 2023, 1, 648–663. [Google Scholar] [CrossRef]
- Plaza-Oliver, M.; Santander-Ortega, M.J.; Lozano, M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res. 2021, 11, 471–497. [Google Scholar] [CrossRef]
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020, 10, 1403. [Google Scholar] [CrossRef]
- Beach, M.A.; Nayanathara, U.; Gao, Y.; Zhang, C.; Xiong, Y.; Wang, Y.; Such, G.K. Polymeric nanoparticles for drug delivery. Chem. Rev. 2024, 124, 5505–5616. [Google Scholar] [CrossRef]
- Spiridon, I.; Anghel, N. Cyclodextrins as multifunctional platforms in drug delivery and beyond: Structural features, functional applications, and future trends. Molecules 2025, 30, 3044. [Google Scholar] [CrossRef]
- Suvarna, V.; Bore, B.; Bhawar, C.; Mallya, R. Complexation of phytochemicals with cyclodextrins and their derivatives-an update. Biomed. Pharmacother. 2022, 149, 112862. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, K.; Kole, E.; Singh, R.; Rout, S.K.; Verma, R.K.; Chatterjee, A.; Mujumdar, A.; Naik, J. A critical review on developments in drying technologies for enhanced stability and bioavailability of pharmaceuticals. Dry. Technol. 2024, 42, 1415–1441. [Google Scholar] [CrossRef]
- Vandelli, M.A.; Romagnoli, M.; Monti, A.; Gozzi, M.; Guerra, P.; Rivasi, F.; Forni, F. Microwave-treated gelatin microspheres as drug delivery system. J. Control. Release 2004, 96, 67–84. [Google Scholar] [CrossRef]
- Hengsawas Surasarang, S.; Keen, J.M.; Huang, S.; Zhang, F.; McGinity, J.W.; Williams, R.O., III. Hot melt extrusion versus spray drying: Hot melt extrusion degrades albendazole. Drug Dev. Ind. Pharm. 2017, 43, 797–811. [Google Scholar] [CrossRef]
- Fayed, N.D.; Osman, M.A.; Maghraby, G. Enhancement of dissolution rate and intestinal stability of candesartan cilexitil. J. Appl. Pharm. Sci. 2016, 6, 102–111. [Google Scholar] [CrossRef]
- Jain, S.; Reddy, V.A.; Arora, S.; Patel, K. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability. Drug Deliv. Transl. Res. 2016, 6, 498–510. [Google Scholar] [CrossRef]
- Aly, U.F.; Sarhan, H.A.M.; Ali, T.F.; Sharkawy, H.A.E.B. Applying different techniques to improve the bioavailability of candesartan cilexetil antihypertensive drug. Drug Des. Dev. Ther. 2020, 14, 1851–1865. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.H.; Hussein, A.A. Oral nanoemulsions of candesartan cilexetil: Formulation, characterization and in vitro drug release studies. AAPS Open 2017, 3, 4. [Google Scholar] [CrossRef]
- Chen, W.; Ross, A.; Steinhuber, B.; Hoffmann, G.; Oltra, N.S.; Ravuri, S.K.K.; Bond, S.; Bell, C.; Kopf, R. The development and qualification of liquid adsorption chromatography for poloxamer 188 characterization. J. Chromatogr. A 2021, 1652, 462353. [Google Scholar] [CrossRef] [PubMed]
- Tsoutsoura, A.; He, Z.; Alexandridis, P. Effects of Ionic Liquids on the Cylindrical Self-Assemblies Formed by Poly(ethylene oxide)–Poly(propylene oxide)–Poly(ethylene oxide) Block Copolymers in Water. Polymers 2024, 16, 349. [Google Scholar] [CrossRef]
- Khutoryanskiy, V.V. Hydrogen-bonded interpolymer complexes as materials for pharmaceutical applications. Int. J. Pharm. 2007, 334, 15–26. [Google Scholar] [CrossRef]
- Liu, Y.; Jun, Y.; Steinberg, V. Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions. J. Rheol. 2009, 53, 1069–1085. [Google Scholar] [CrossRef]
- Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010, 5, 1595–1616. [Google Scholar] [CrossRef]
- Cherniakov, I.; Domb, A.J.; Hoffman, A. Self-nano-emulsifying drug delivery systems: An update of the biopharmaceutical aspects. Expert Opin. Drug Deliv. 2015, 12, 1121–1133. [Google Scholar] [CrossRef]
- Grant, N.; Zhang, H. Poorly water-soluble drug nanoparticles via an emulsion-freeze-drying approach. J. Colloid Interface Sci. 2011, 356, 573–578. [Google Scholar] [CrossRef]
- Ohori, R.; Akita, T.; Yamashita, C. Scale-up/tech transfer issues of the lyophilization cycle for biopharmaceuticals and recently emerging technologies and approaches. Dry. Technol. 2023, 41, 233–250. [Google Scholar] [CrossRef]
- Ali, I.S.M.; Sajad, U.A.; Abdul Rasool, B.K. Solid dispersion systems for enhanced dissolution of poorly water-soluble candesartan cilexetil: In vitro evaluation and simulated pharmacokinetics studies. PLoS ONE 2024, 19, e0303900. [Google Scholar] [CrossRef] [PubMed]
- Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation. AAPS PharmSciTech 2016, 17, 20–42. [Google Scholar] [CrossRef]
- Roschangar, F.; Li, J.; Zhou, Y.; Aelterman, W.; Borovika, A.; Colberg, J.; Dickson, D.P.; Gallou, F.; Hayler, J.D.; Koenig, S.G.; et al. Improved iGAL 2.0 metric empowers pharmaceutical scientists to make meaningful contributions to United Nations Sustainable Development Goal 12. ACS Sustain. Chem. Eng. 2021, 10, 5148–5162. [Google Scholar] [CrossRef]
- Sherif, A.Y.; Shahba, A.A.-W. Development of a multifunctional oral dosage form via integration of solid dispersion technology with a black seed oil-based self-nanoemulsifying drug delivery system. Biomedicines 2023, 11, 2733. [Google Scholar] [CrossRef]








| Run | Tween 80 Concentration | Propylene Glycol Concentration | Pluronic F68 Concentration |
|---|---|---|---|
| 1 | 42.6 | 52.4 | 5.0 |
| 2 | 37.1 | 47.9 | 15.0 |
| 3 | 43.4 | 46.3 | 10.3 |
| 4 | 30.0 | 57.0 | 13.6 |
| 5 | 30.0 | 65.0 | 5.0 |
| 6 | 48.1 | 36.9 | 15.0 |
| 7 | 65.0 | 30.0 | 5.0 |
| 8 | 43.4 | 46.3 | 10.3 |
| 9 | 35.7 | 59.3 | 5.0 |
| 10 | 36.7 | 53.6 | 9.8 |
| 11 | 48.6 | 46.4 | 5.0 |
| 12 | 59.2 | 30.0 | 10.8 |
| 13 | 48.1 | 36.9 | 15.0 |
| 14 | 43.4 | 46.3 | 10.3 |
| 15 | 56.5 | 38.5 | 5.0 |
| 16 | 30.0 | 57.0 | 13.6 |
| 17 | 59.2 | 30.0 | 10.8 |
| Surfactant | Miscibility with Propylene Glycol | Solubility of Candesartan Cilexetil (mg/g) |
|---|---|---|
| Span 80 | Immiscible | - |
| Span 20 | Immiscible | - |
| HCO-10 | Immiscible | - |
| Tween 80 | Miscible | 12.57 ± 0.14 |
| Tween 20 | Miscible | 12.09 ± 0.12 |
| Kolliphor EL | Miscible | 11.66 ± 0.09 |
| HCO-60 | Miscible | 10.24 ± 0.03 |
| HCO-30 | Miscible | 9.44 ± 0.22 |
| Tween 85 | Miscible | 9.03 ± 0.26 |
| Tween 60 | Miscible | 8.74 ± 0.16 |
| Run Number | Drug Loading (mg/g) | Onset of Solid-to-Liquid Transition (°C) | Duration of Solid-to-Liquid Transition (s) |
|---|---|---|---|
| 1 | 13.3 | 31.5 | 95 |
| 2 | 14.4 | 35 | 189 |
| 3 | 15.3 | 33.5 | 149 |
| 4 | 11.1 | 33 | 166 |
| 5 | 11.2 | 30 | 83 |
| 6 | 16.6 | 36 | 200 |
| 7 | 18.7 | 34 | 91 |
| 8 | 13.6 | 33.5 | 144 |
| 9 | 10.8 | 30.5 | 84 |
| 10 | 12.2 | 33 | 136 |
| 11 | 12.5 | 32 | 96 |
| 12 | 18.2 | 36 | 178 |
| 13 | 16.2 | 35.5 | 203 |
| 14 | 14.3 | 33.5 | 149 |
| 15 | 15.9 | 33.5 | 102 |
| 16 | 11.9 | 32.5 | 107 |
| 17 | 19.1 | 37 | 207 |
| Response | R2 | Adjusted R2 | Predicted R2 | Adequate Precision | F-Value | p-Value | Lack of Fit (p-Value) |
|---|---|---|---|---|---|---|---|
| Drug loading (mg/g) | 0.9270 | 0.9165 | 0.8905 | 25.46 | 88.84 | <0.0001 | 0.3312 |
| Onset of solid-to-liquid transition (°C) | 0.9576 | 0.9515 | 0.9332 | 33.99 | 157.99 | <0.0001 | 0.3922 |
| Duration of solid-to-liquid transition (Sec) | 0.8418 | 0.8192 | 0.7324 | 15.81 | 37.25 | <0.0001 | 0.6761 |
| Response | Tween 80 | Propylene Glycol | Pluronic F68 |
|---|---|---|---|
| Drug loading | +6.61 *** | −8.60 *** | +1.28 * |
| Onset of solid-to-liquid transition | +1.89 *** | −6.89 *** | +3.22 *** |
| Duration of solid-to-liquid transition | −5.08 ns | −107.93 *** | +97.54 *** |
| Response | 95% PI Low | Data Mean | 95% PI High |
|---|---|---|---|
| Drug loading | 17.1 | 19.3 | 19.5 |
| Onset of solid-to-liquid transition | 35.3 | 35.5 | 36.7 |
| Duration of solid-to-liquid transition | 145.3 | 188.0 | 204.7 |
| Test Agent | Mean | |
|---|---|---|
| IDR (%/min) | DE (%) | |
| Candesartan cilexetil powder | 0.00 ± 0.0 | 1.78 ± 0.8 |
| Physical mixture | 2.20 ± 0.2 | 37.19 ± 4.9 |
| Surfactant-enriched cross-linked scaffold | 6.30 ± 0.4 | 92.87 ± 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherif, A.Y.; Alshora, D.H.; Ibrahim, M.A. Surfactant-Enriched Cross-Linked Scaffold as an Environmental and Manufacturing Feasible Approach to Boost Dissolution of Lipophilic Drugs. Pharmaceutics 2025, 17, 1387. https://doi.org/10.3390/pharmaceutics17111387
Sherif AY, Alshora DH, Ibrahim MA. Surfactant-Enriched Cross-Linked Scaffold as an Environmental and Manufacturing Feasible Approach to Boost Dissolution of Lipophilic Drugs. Pharmaceutics. 2025; 17(11):1387. https://doi.org/10.3390/pharmaceutics17111387
Chicago/Turabian StyleSherif, Abdelrahman Y., Doaa Hasan Alshora, and Mohamed A. Ibrahim. 2025. "Surfactant-Enriched Cross-Linked Scaffold as an Environmental and Manufacturing Feasible Approach to Boost Dissolution of Lipophilic Drugs" Pharmaceutics 17, no. 11: 1387. https://doi.org/10.3390/pharmaceutics17111387
APA StyleSherif, A. Y., Alshora, D. H., & Ibrahim, M. A. (2025). Surfactant-Enriched Cross-Linked Scaffold as an Environmental and Manufacturing Feasible Approach to Boost Dissolution of Lipophilic Drugs. Pharmaceutics, 17(11), 1387. https://doi.org/10.3390/pharmaceutics17111387

