Nimodipine Nanoparticles: A Promising Approach for Glaucoma Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Nimodipine HPLC Assay
2.4. Preparation of NMD Nanoparticles
2.5. Optimization of NMD Nanoparticles
2.6. Characterization of Optimized NMD Nanoparticles
2.6.1. Average Particle Size, Polydispersity Index (PDI), and Zeta Potential
2.6.2. Transmission Electron Microscopy Examination (TEM)
2.6.3. Fourier Transform Infrared (FTIR) Spectroscopy Analyses
2.6.4. Differential Scanning Calorimetric (DSC) Analyses
2.6.5. Entrapment Efficiency, Drug Loading, and Production Yield Determination
2.7. Preparation of NMD-NP Eye Drops
2.8. Characterization of NMD-NP Eye Drops
2.8.1. In Vitro Release of NMD from NMD-NP Eye Drops and Its Kinetics
2.8.2. In Vitro Evaluation of NMD-NP Eye Drops Cell Toxicity
2.8.3. Ex Vivo Transcorneal Permeability of NMD from NMD-NP Eye Drops
2.8.4. In Vivo Evaluation of NMD-NP Eye Drops
3. Results and Discussion
3.1. Preparation and Optimization of Different Chitosan Nanoparticles
3.1.1. The Effect of Polymer Type and Concentration
3.1.2. The Effect of pH
3.1.3. The Effect of Stabilizer
3.1.4. The Effect of Lecithin
3.2. Characterization of Nimodipine–Loaded Nanoparticles
3.2.1. Particle Size, PDI, and Zeta Potential
3.2.2. Encapsulation Efficiency, Drug Loading, and Production Yield
3.2.3. Surface Morphology of NPs (TEM)
3.2.4. Differential Scanning Calorimetric Analysis (DSC)
3.2.5. Fourier Transform Infrared Analysis (FTIR)
3.3. In Vitro Release of NMD from Different CS NP Eye Drops and Its Kinetics
3.4. In Vitro Cytotoxicity
3.5. Ex Vivo Transcorneal Permeability Study
3.6. In Vivo Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| NMD | Nimodipine |
| MCS | Medium-molecular-weight chitosan |
| LCS | Low-molecular-weight chitosan |
| CMCS | Carboxymethyl chitosan |
| IOP | Intraocular pressure |
| NPs | Nanoparticles |
References
- Kingman, S. Glaucoma Is Second Leading Cause of Blindness Globally. Bull. World Health Organ. 2004, 82, 887–888. [Google Scholar]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Bourne, R.R. Worldwide Glaucoma through the Looking Glass. Br. J. Ophthalmol. 2006, 90, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A.; Broman, A.T. The Number of People with Glaucoma Worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.O.; Beiser, J.A.; Brandt, J.D.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Miller, J.P.; Parrish, R.K.; Wilson, M.R.; et al. The Ocular Hypertension Treatment Study: Baseline Factors That Predict the Onset of Primary Open-Angle Glaucoma. Arch. Ophthalmol. 2002, 120, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Libby, R.T.; Gould, D.B.; Anderson, M.G.; John, S.W. Complex Genetics of Glaucoma Susceptibility. Annu. Rev. Genom. Hum. Genet. 2005, 6, 15–44. [Google Scholar] [CrossRef]
- Quigley, H.A. Glaucoma: Macrocosm to Microcosm the Friedenwald Lecture. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2662–2670. [Google Scholar] [CrossRef]
- Armaly, M.F.; Krueger, D.E.; Maunder, L.; Becker, B.; Hetherington, J., Jr.; Kolker, A.E.; Levene, R.Z.; Maumenee, A.E.; Pollack, I.P.; Shaffer, R.N. Biostatistical Analysis of the Collaborative Glaucoma Study: I. Summary Report of the Risk Factors for Glaucomatous Visual-Field Defects. Arch. Ophthalmol. 1980, 98, 2163–2171. [Google Scholar] [CrossRef]
- Leske, M.C.; Connell, A.M.; Wu, S.Y.; Hyman, L.G.; Schachat, A.P. Risk Factors for Open-Angle Glaucoma. The Barbados Eye Study. Arch. Ophthalmol. 1995, 113, 918–924. [Google Scholar] [CrossRef]
- Sommer, A.; Tielsch, J.M.; Katz, J.; Quigley, H.A.; Gottsch, J.D.; Javitt, J.; Singh, K. Relationship between Intraocular Pressure and Primary Open Angle Glaucoma among White and Black Americans. The Baltimore Eye Survey. Arch. Ophthalmol. 1991, 109, 1090–1095. [Google Scholar] [CrossRef]
- Caprioli, J. Weighing IOP Fluctuation in Glaucoma Progression; Ophthalmology Times: Monroe Township, NJ, USA, 2016. [Google Scholar]
- Kim, J.H.; Caprioli, J. Intraocular Pressure Fluctuation: Is It Important? J. Ophthalmic Vis. Res. 2018, 13, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.; Kaleem, M. Glaucoma: What Every Patient Should Know. A Guide from Dr. Harry Quigley and Dr. Mona Kaleem; Johns Hopkins Glaucoma Center of Excellence: Baltimore, MD, USA, 2020. [Google Scholar]
- Balfour, J.A.; Wilde, M.I. Dorzolamide. A Review of Its Pharmacology and Therapeutic Potential in the Management of Glaucoma and Ocular Hypertension. Drugs Aging 1997, 10, 384–403. [Google Scholar] [CrossRef]
- Russo, A.; Riva, I.; Pizzolante, T.; Noto, F.; Quaranta, L. Latanoprost Ophthalmic Solution in the Treatment of Open Angle Glaucoma or Raised Intraocular Pressure: A Review. Clin. Ophthalmol. 2008, 2, 897–905. [Google Scholar]
- Ibrahim, M.M.; Abd-Elgawad, A.H.; Soliman, O.A.; Jablonski, M.M. Natural Bioadhesive Biodegradable Nanoparticle-Based Topical Ophthalmic Formulations for Management of Glaucoma. Transl. Vis. Sci. Technol. 2015, 4, 12. [Google Scholar] [CrossRef]
- Maria, D.N.; Abd-Elgawad, A.H.; Soliman, O.A.; El-Dahan, M.S.; Jablonski, M.M. Nimodipine Ophthalmic Formulations for Management of Glaucoma. Pharm. Res. 2017, 34, 809–824. [Google Scholar] [CrossRef]
- Alm, A.; Grierson, I.; Shields, M.B. Side Effects Associated with Prostaglandin Analog Therapy. Surv. Ophthalmol. 2008, 53 (Suppl. 1), S93–S105. [Google Scholar] [CrossRef]
- Rathod, N.; Borkhataria, C.; Manek, R.; Patel, V.; Patel, N.; Patel, K.; Paun, J.; Sakhiya, D. Study on the Correlation between Nimodipine (Bcs Class Ii) Solubility, Dissolution Improvement, and Brain Tissue Concentration through Cocrystallization. J. Pharm. Innov. 2023, 18, 2235–2248. [Google Scholar] [CrossRef]
- Chalikwar, S.S.; Belgamwar, V.S.; Talele, V.R.; Surana, S.J.; Patil, M.U. Formulation and Evaluation of Nimodipine-Loaded Solid Lipid Nanoparticles Delivered Via Lymphatic Transport System. Colloids Surf. B Biointerfaces 2012, 97, 109–116. [Google Scholar] [CrossRef]
- Li, J.; Fu, Q.; Liu, X.; Li, M.; Wang, Y. Formulation of Nimodipine Nanocrystals for Oral Administration. Arch. Pharm. Res. 2016, 39, 202–212. [Google Scholar] [CrossRef]
- Moreno, L.; Solas, M.; Martinez-Oharriz, M.C.; Munoz, E.; Santos-Magalhaes, N.S.; Ramirez, M.J.; Irache, J.M. Pegylated Nanoparticles for the Oral Delivery of Nimodipine: Pharmacokinetics and Effect on the Anxiety and Cognition in Mice. Int. J. Pharm. 2018, 543, 245–256. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Z.; Fu, Z.; Shi, Y.; Dai, Q.; Tang, S.; Gu, Y.; Xu, Y.; Chen, J.; Wu, X.; et al. A Novel Drug Delivery Carrier Comprised of Nimodipine Drug Solution and a Nanoemulsion: Preparation, Characterization, in Vitro, and in Vivo Studies. Int. J. Nanomed. 2020, 15, 1161–1172. [Google Scholar] [CrossRef]
- Kumar, M.; Chawla, P.A.; Faruk, A.; Chawla, V. Solid Self-Nanoemulsifying Drug Delivery Systems of Nimodipine: Development and Evaluation. Future J. Pharm. Sci. 2024, 10, 87. [Google Scholar] [CrossRef]
- Wei, R.; Wang, H.; Chen, B.; Wang, X.; Kuang, Y.; Fan, W.; Wu, X. Preparation and Characterization of a Modified Nimodipine Injection: An in Vitro and in Vivo Study. J. Drug Deliv. Sci. Technol. 2025, 107, 106769. [Google Scholar] [CrossRef]
- Sanchez-Lopez, E.; Egea, M.A.; Davis, B.M.; Guo, L.; Espina, M.; Silva, A.M.; Calpena, A.C.; Souto, E.M.B.; Ravindran, N.; Ettcheto, M.; et al. Memantine-Loaded Pegylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small 2018, 14, 201701808. [Google Scholar] [CrossRef] [PubMed]
- Lambuk, L.; Suhaimi, N.A.A.; Sadikan, M.Z.; Jafri, A.J.A.; Ahmad, S.; Nasir, N.A.A.; Uskokovic, V.; Kadir, R.; Mohamud, R. Nanoparticles for the Treatment of Glaucoma-Associated Neuroinflammation. Eye Vis. 2022, 9, 26. [Google Scholar] [CrossRef]
- Genta, I.; Perugini, P.; Pavanetto, F. Different Molecular Weight Chitosan Microspheres: Influence on Drug Loading and Drug Release. Drug Dev. Ind. Pharm. 1998, 24, 779–784. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, J.; Jia, N.; Zhao, Y.; Shen, H. Chitosan-Coated Magnetic Nanoparticles as Carriers of 5-Fluorouracil: Preparation, Characterization and Cytotoxicity Studies. Colloids Surf. B Biointerfaces 2009, 68, 1–6. [Google Scholar] [CrossRef]
- Jha, R.; Mayanovic, R.A. A Review of the Preparation, Characterization, and Applications of Chitosan Nanoparticles in Nanomedicine. Nanomaterials 2023, 13, 1302. [Google Scholar] [CrossRef]
- Barwal, I.; Kumar, R.; Dada, T.; Yadav, S.C. Effect of Ultra-Small Chitosan Nanoparticles Doped with Brimonidine on the Ultra-Structure of the Trabecular Meshwork of Glaucoma Patients. Microsc. Microanal. 2019, 25, 1352–1366. [Google Scholar] [CrossRef]
- Shinde, U.A.; Joshi, P.N.; Jain, D.D.; Singh, K. Preparation and Evaluation of N-Trimethyl Chitosan Nanoparticles of Flurbiprofen for Ocular Delivery. Curr. Eye Res. 2019, 44, 575–582. [Google Scholar] [CrossRef]
- Riekes, M.K.; Rauber, G.S.; Kuminek, G.; Tagliari, M.P.; Cardoso, S.G.; Stulzer, H.K. Determination of Nimodipine in the Presence of Its Degradation Products and Overall Kinetics through a Stability-Indicating Lc Method. J. Chromatogr. Sci. 2013, 51, 511–516. [Google Scholar] [CrossRef]
- Niwa, T.; Takeuchi, H.; Hino, T.; Kunou, N.; Kawashima, Y. Preparations of Biodegradable Nanospheres of Water-Soluble and Insoluble Drugs with D,L-Lactide/Glycolide Copolymer by a Novel Spontaneous Emulsification Solvent Diffusion Method, and the Drug Release Behavior. J. Control. Release 1993, 25, 89–98. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Abd-Elgawad, A.E.; Soliman, O.A.; Jablonski, M.M. Nanoparticle-Based Topical Ophthalmic Formulations for Sustained Celecoxib Release. J. Pharm. Sci. 2013, 102, 1036–1053. [Google Scholar] [CrossRef] [PubMed]
- Motawea, A.; Maria, S.N.; Maria, D.N.; Jablonski, M.M.; Ibrahim, M.M. Genistein Transfersome-Embedded Topical Delivery System for Skin Melanoma Treatment: In Vitro and Ex Vivo Evaluations. Drug Deliv. 2024, 31, 2372277. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Maria, D.N.; Mishra, S.R.; Guragain, D.; Wang, X.; Jablonski, M.M. Once Daily Pregabalin Eye Drops for Management of Glaucoma. ACS Nano 2019, 13, 13728–13744. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, V.; Ranetti, A.E.; Hinescu, L.G.; Ionescu, M.; Cosmescu, C.; Pos, A.G.; Cinteza, L.O. Formulation and Evaluation of in Vitro Release Kinetics of Na3cadtpa Decorporation Agent Embedded in Microemulsion-Based Gel Formulation for Topical Delivery. Farmacia 2015, 63, 656–664. [Google Scholar]
- Loftsson, T. Drug Stabiity for Pharmaceutical Scientists; Academic Press: Cambridge, MA, USA, 2013; pp. 6–15. [Google Scholar]
- Santos, R.A.; Rae, M.; Dartora, V.; Matos, J.K.R.; Camarini, R.; Lopes, L.B. Bioresponsive Nanostructured Systems for Sustained Naltrexone Release and Treatment of Alcohol Use Disorder: Development and Biological Evaluation. Int. J. Pharm. 2020, 585, 119474. [Google Scholar] [CrossRef]
- Xu, M.; McCanna, D.J.; Sivak, J.G. Use of the Viability Reagent Prestoblue in Comparison with Alamarblue and Mtt to Assess the Viability of Human Corneal Epithelial Cells. J. Pharmacol. Toxicol. Methods 2015, 71, 1–7. [Google Scholar] [CrossRef]
- Balguri, S.P.; Adelli, G.R.; Janga, K.Y.; Bhagav, P.; Majumdar, S. Ocular Disposition of Ciprofloxacin from Topical, Pegylated Nanostructured Lipid Carriers: Effect of Molecular Weight and Density of Poly (Ethylene) Glycol. Int. J. Pharm. 2017, 529, 32–43. [Google Scholar] [CrossRef]
- Maria, D.N.; Ibrahim, M.M.; Kim, M.J.; Maria, S.N.; White, W.A.; Wang, X.; Hollingsworth, T.J.; Jablonski, M.M. Evaluation of Pregabalin Bioadhesive Multilayered Microemulsion Iop-Lowering Eye Drops. J. Control Release 2024, 373, 667–687. [Google Scholar] [CrossRef]
- Haque, S.; Boyd, B.J.; McIntosh, M.P.; Pouton, C.W.; Kaminskas, L.M.; Whittaker, M. Suggested Procedures for the Reproducible Synthesis of Poly(D,L-Lactide-Co-Glycolide) Nanoparticles Using the Emulsification Solvent Diffusion Platform. Curr. Nanosci. 2018, 14, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Csaba, N.; Garcia-Fuentes, M.; Alonso, M.J. The Performance of Nanocarriers for Transmucosal Drug Delivery. Expert. Opin. Drug Deliv. 2006, 3, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Preparation and Antibacterial Activity of Chitosan Nanoparticles. Carbohydr. Res. 2004, 339, 2693–2700. [Google Scholar] [CrossRef] [PubMed]
- Warsi, M.H.; Anwar, M.; Garg, V.; Jain, G.K.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K. Dorzolamide-Loaded Plga/Vitamin E Tpgs Nanoparticles for Glaucoma Therapy: Pharmacoscintigraphy Study and Evaluation of Extended Ocular Hypotensive Effect in Rabbits. Colloids Surf. B Biointerfaces 2014, 122, 423–431. [Google Scholar] [CrossRef]
- De Campos, A.M.; Sanchez, A.; Alonso, M.J. Chitosan Nanoparticles: A New Vehicle for the Improvement of the Delivery of Drugs to the Ocular Surface. Application to Cyclosporin A. Int. J. Pharm. 2001, 224, 159–168. [Google Scholar] [CrossRef]
- Bowman, K.; Leong, K.W. Chitosan Nanoparticles for Oral Drug and Gene Delivery. Int. J. Nanomed. 2006, 1, 117–128. [Google Scholar] [CrossRef]
- Sipoli, C.C.; Santana, N.; Shimojo, A.A.M.; Azzoni, A.; de la Torre, L.G. Scalable Production of Highly Concentrated Chitosan/Tpp Nanoparticles in Different Phs and Evaluation of the in Vitro Transfection Efficiency. Biochem. Eng. J. 2015, 94, 65–73. [Google Scholar] [CrossRef]
- Van Eeckhaut, A.; Detaevernier, M.R.; Michotte, Y. Separation of Neutral Dihydropyridines and Their Enantiomers Using Electrokinetic Chromatography. J. Pharm. Biomed. Anal. 2004, 36, 799–805. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kim, J.-Y.; Park, S.-H.; Rhee, Y.-S.; Park, C.-W.; Park, E.-S. Controlled-Release Oral Dosage Forms Containing Nimodipine Solid Dispersion and Hydrophilic Carriers. J. Drug Deliv. Sci. Technol. 2017, 37, 28–37. [Google Scholar] [CrossRef]
- Riekes, M.K.; Caon, T.; da Silva, J.; Sordi, R.; Kuminek, G.; Bernardi, L.S.; Rambo, C.R.; de Campos, C.E.M.; Fernandes, D.; Stulzer, H.K. Enhanced Hypotensive Effect of Nimodipine Solid Dispersions Produced by Supercritical Co2 Drying. Powder Technol. 2015, 278, 204–210. [Google Scholar] [CrossRef]
- Mahmouda, A.A.; El-Fekya, G.S.; Kamela, R.; Awad, G.E.A. Chitosan/Sulfobutylether--Cyclodextrin Nanoparticles as a Potential Approach for Ocular Drug Delivery. Int. J. Pharm. 2011, 413, 229–236. [Google Scholar] [CrossRef]
- Budai, L.; Hajdu, M.; Budai, M.; Grof, P.; Beni, S.; Noszal, B.; Klebovich, I.; Antal, I. Gels and Liposomes in Optimized Ocular Drug Delivery: Studies on Ciprofloxacin Formulations. Int. J. Pharm. 2007, 343, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.J.; Sanchez, A. The Potential of Chitosan in Ocular Drug Delivery. J. Pharm. Pharmacol. 2003, 55, 1451–1463. [Google Scholar] [CrossRef] [PubMed]
- Zuleger, S.; Lippold, B.C. Polymer Particle Erosion Controlling Drug Release. I. Factors Influencing Drug Release and Characterization of the Release Mechanism. Int. J. Pharm. 2001, 217, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Andres-Guerrero, V.; Vicario-de-la-Torre, M.; Molina-Martinez, I.T.; Benitez-del-Castillo, J.M.; Garcia-Feijoo, J.; Herrero-Vanrell, R. Comparison of the in Vitro Tolerance and in Vivo Efficacy of Traditional Timolol Maleate Eye Drops Versus New Formulations with Bioadhesive Polymers. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3548–3556. [Google Scholar] [CrossRef]
- Roy Chowdhury, U.; Kudgus, R.A.; Rinkoski, T.A.; Holman, B.H.; Bahler, C.K.; Hann, C.R.; Reid, J.M.; Dosa, P.I.; Fautsch, M.P. Pharmacological and Pharmacokinetic Profile of the Novel Ocular Hypotensive Prodrug Cklp1 in Dutch-Belted Pigmented Rabbits. PLoS ONE 2020, 15, e0231841. [Google Scholar] [CrossRef]
- Bastia, E.; Toris, C.B.; Brambilla, S.; Galli, C.; Almirante, N.; Bergamini, M.V.W.; Masini, E.; Sgambellone, S.; Unser, A.M.; Ahmed, F.; et al. Ncx 667, a Novel Nitric Oxide Donor, Lowers Intraocular Pressure in Rabbits, Dogs, and Non-Human Primates and Enhances Tgfbeta2-Induced Outflow in Htm/Hsc Constructs. Investig. Ophthalmol. Vis. Sci. 2021, 62, 17. [Google Scholar] [CrossRef]
- Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why Is Chitosan Mucoadhesive? Biomacromolecules 2008, 9, 1837–1842. [Google Scholar] [CrossRef]




| Type of Chitosan | pH | Concentration (% w/v) | Physicochemical Properties | |||||
|---|---|---|---|---|---|---|---|---|
| Chitosan | PVA b | PF-68 c | Lecithin | PS (nm) d | PDI e | ZP (mV) f | ||
| CMCS | - | 0.1 | - | 0.5 | 1 | 127.8 ± 1.8 | 0.303 ± 0.01 | −5.5 ± 0.7 |
| CMCS * | - | 0.3 | - | 0.5 | 1 | 141.1 ± 6.5 | 0.294 ± 0.01 | −9.5 ± 0.3 |
| CMCS | - | 0.5 | - | 0.5 | 1 | 157.2 ± 3.5 | 0.320 ± 0.01 | −9.8 ± 0.3 |
| LCS | 4.5 | 0.1 | 1 | - | - | No NPs were formed (clear viscous gel) | ||
| LCS * | 4.5 | 0.1 | 1 | - | 1 | 101.9 ± 0.3 | 0.258 ± 0.01 | 18.9 ± 1.1 |
| LCS | 5.7 | 0.1 | 1 | - | 1 | 123.3 ± 1.4 | 0.245 ± 0.01 | 14.0 ± 0.6 |
| LCS | 4.5 | 0.1 | - | 0.5 | 1 | 106.5 ± 5.1 | 0.314 ± 0.02 | 16.3 ± 0.9 |
| LCS | 5.7 | 0.1 | - | 0.5 | 1 | 130.8 ± 2.6 | 0.261 ± 0.01 | 15.0 ±1.2 |
| LCS | 4.5 | 0.3 | - | 0.5 | - | No NPs were formed (clear viscous gel) | ||
| LCS | 4.5 | 0.3 | - | 0.5 | 1 | 152.0 ±1.3 | 0.332 ± 0.03 | 27.2 ± 1.1 |
| LCS | 5.7 | 0.3 | - | 0.5 | 1 | 168.0 ± 1.5 | 0.376 ± 0.00 | 21.4 ± 0.5 |
| MCS | 4.5 | 0.1 | - | 0.5 | 1 | 124.6 ± 4.4 | 0.273 ± 0.00 | 11.2 ± 0.6 |
| MCS | 5.7 | 0.1 | - | 0.5 | 1 | 128.4 ± 0.2 | 0.278 ± 0.01 | 10.04 ± 0.51 |
| MCS * | 4.5 | 0.2 | - | 0.5 | 1 | 130.0 ± 0.3 | 0.284 ± 0.00 | 22.9 ± 0.4 |
| MCS | 5.7 | 0.2 | - | 0.5 | 1 | 140.4 ± 8.9 | 0.324 ± 0.04 | 15.2 ± 0.8 |
| Formulation | Evaluation (Mean ± SEM), n = 3 | |||||
|---|---|---|---|---|---|---|
| Particle Size (nm) | PDI | Zeta Potential (mV) | EE (%) | %DL | %Y | |
| Blank CMCS NPs | 141.1 ± 6.5 | 0.294 ± 0.01 | −9.5 ± 0.3 | - | - | 32.27 ± 1.16 |
| NMD-CMCS NPs | 160.2 ± 1.2 | 0.255 ± 0.02 | −10.7 ± 0.2 | 79.91 ± 2.74 | 37.22 ± 1.28 | 40.52 ± 0.79 |
| Blank LCS NPs | 101.9 ± 0.3 | 0.258 ± 0.01 | 18.9 ± 1.1 | - | - | 57.56 ± 0.74 |
| NMD-LCS NPs | 109.6 ± 1.9 | 0.275 ± 0.02 | 18.4 ± 0.3 | 65.08 ± 1.64 | 7.52 ± 0.19 | 72.09 ± 1.33 |
| Blank MCS NPs | 130.0 ± 0.3 | 0.284 ± 0.00 | 15.2 ± 0.8 | - | - | 50.95 ± 1.01 |
| NMD-MCS NPs | 136.8 ± 0.8 | 0.233 ± 0.01 | 15.9 ± 0.7 | 63.17 ± 0.82 | 14.55 ± 0.19 | 62.25 ± 1.19 |
| Sample | Tm (°C) | Tonset (°C) | Peak Height | Area | Delta H (Enthalpy Change) J/g |
|---|---|---|---|---|---|
| NMD | 129.69 | 126.59 | 19.99 | 410.59 | 91.86 |
| NMD-CMCS PM | 120.46 | 116.91 | 6.71 | 156.27 | 52.09 |
| NMD-LCS PM | 124.56 | 121.10 | 4.53 | 108.95 | 40.35 |
| NMD-MCS PM | 128.83 | 125.81 | 9.25 | 185.96 | 51.65 |
| NMD-CMCS NPs | 125.82 | 123.55 | 1.79 | 28.98 | 7.83 |
| NMD-LCS NPs | Complete absence of NMD peak | ||||
| NMD-MCS NPs | Complete absence of NMD peak | ||||
| Formulation | Coefficient of Determination (R2) | Korsmeyer–Peppas | Drug Transport Mechanism | Release Mechanism | |||
|---|---|---|---|---|---|---|---|
| Zero | First | Higuchi | r2 | n | |||
| NMD aqueous suspension | 0.985 ± 0.004 | 0.903 ± 0.017 | 0.976 ± 0.005 | 0.982 ± 0.006 | 0.435 ± 0.028 | xxx | Dissolution |
| NMD-CMCS NP eye drops | 0.914 ± 0.038 | 0.711 ± 0.046 | 0.948 ± 0.015 | 0.959 ± 0.018 | 0.911 ± 0.031 | Non-Fickian | Anomalous diffusion |
| NMD-LCS NP eye drops | 0.941 ± 0.013 | 0.745 ± 0.008 | 0.991 ± 0.005 | 0.976 ± 0.004 | 0.826 ± 0.026 | Non-Fickian | Anomalous diffusion |
| NMD-MCS NP eye drops | 0.955 ± 0.002 | 0.729 ± 0.018 | 0.997 ± 0.000 | 0.976 ± 0.006 | 0.859 ± 0.056 | Non-Fickian | Anomalous diffusion |
| Formulation | Rate of Permeation (dM/dt) (ng/h) | Flux (ng/cm2.h) | Permeability Coefficient (P) × 10−4 (cm/h) | % of Permeability Improvement |
|---|---|---|---|---|
| NMD aqueous suspension | 62.20 ± 9.87 | 97.80 ± 15.52 | 40.75 ± 6.47 | --- |
| NMD-MCS NP eye drops | 111.47 ± 5.67 | 175.27 ± 8.92 | 73.03 ± 3.72 | 79.41 |
| Pharmacodynamic Parameters | Formulations | ||
|---|---|---|---|
| 0.3% NMD-MCS NP Eye Drops | 0.3% NMD Aqueous Suspension | 0.5% Timolol Maleate Eye Drops | |
| Baseline IOP b | 18.80 ± 0.58 | 18.8 ± 0.58 | 19.8 ± 0.7 |
| IOP at Tmax c | 14.40 ± 0.51 | 16.80 ± 0.80 | 18.2 ± 0.3 |
| Change in IOP at Tmax(∆IOP) | −4.40 ± 0.40 | −2.00 ± 0.71 | −1.7 ± 0.4 |
| % IOP Reduction at Tmax | −23.36 ± 1.76 | −10.56 ± 3.54 | −8.1 ± 1.7 |
| Tmax (h) | 2.60 ± 0.43 | 1.25 ± 0.25 | 2.5 ± 0.2 |
| Tend (h) d | 9.60 ± 0.40 | 2.2 ± 0.58 | 4.4 ± 0.6 |
| AUC0–10h (%. h) e | 118.04 ± 11.08 | 38.00 ± 7.43 | 30.0 ± 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maria, D.N.; Maria, S.N.; Jablonski, M.M.; Ibrahim, M.M. Nimodipine Nanoparticles: A Promising Approach for Glaucoma Management. Pharmaceutics 2025, 17, 1363. https://doi.org/10.3390/pharmaceutics17111363
Maria DN, Maria SN, Jablonski MM, Ibrahim MM. Nimodipine Nanoparticles: A Promising Approach for Glaucoma Management. Pharmaceutics. 2025; 17(11):1363. https://doi.org/10.3390/pharmaceutics17111363
Chicago/Turabian StyleMaria, Doaa N., Sara N. Maria, Monica M. Jablonski, and Mohamed Moustafa Ibrahim. 2025. "Nimodipine Nanoparticles: A Promising Approach for Glaucoma Management" Pharmaceutics 17, no. 11: 1363. https://doi.org/10.3390/pharmaceutics17111363
APA StyleMaria, D. N., Maria, S. N., Jablonski, M. M., & Ibrahim, M. M. (2025). Nimodipine Nanoparticles: A Promising Approach for Glaucoma Management. Pharmaceutics, 17(11), 1363. https://doi.org/10.3390/pharmaceutics17111363

