Short Peptides as Excipients in Parenteral Protein Formulations: A Mini Review
Abstract
1. Introduction
2. Stabilizers
3. Antioxidants
4. Viscosity Reducers
5. Excipients for Lyophilizates
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ab | antibody |
Ala | alanine |
Arg | arginine |
Asn | asparagine |
Asp | aspartic acid |
BGG | bovine gamma globulin |
BLA | biologics license application |
Cys | cysteine |
EPO | erythropoietin |
(US) FDA | the united states food and drug administration |
G-CSF | granulocyte colony-stimulating factor |
Gln | glutamine |
Glu | glutamic acid |
Gly | glycine |
GSH | glutathione (reduced form) |
GSSH | glutathione (oxidized form) |
HC | high-concentration |
His | histidine |
hPTH | human parathormone |
HSA | human serum albumin |
IID | inactive ingredient database |
Ile | isoleucine |
Leu | leucine |
Lys | lysine |
mAb | monoclonal antibody |
Met | methionine |
Phe | phenylalanine |
Pro | proline |
rAHF | granulocyte colony-stimulating factor |
rhIL-2 | recombinant human interleukin-2 |
rHSA | recombinant human serum albumin |
ROS | reactive oxygen species |
SC | subcutaneous |
Ser | serine |
SPPS | solid-phase peptide synthesis |
Tg | glass transition temperature of the dried amorphous matrix |
Tg’ | glass transition temperature of maximally freeze-concentrated solutes |
Thr | threonine |
Trp | tryptophan |
Tyr | tyrosine |
Val | valine |
References
- Moorkens, E.; Meuwissen, N.; Huys, I.; Declerck, P.; Vulto, A.G.; Simoens, S. The Market of Biopharmaceutical Medicines: A Snapshot of a Diverse Industrial Landscape. Front. Pharmacol. 2017, 8, 314. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, L. Top Companies and Drugs by Sales in 2020. Nat. Rev. Drug Discov. 2021, 20, 253. [Google Scholar] [CrossRef] [PubMed]
- Moorkens, E.; Jonker-Exler, C.; Huys, I.; Declerck, P.; Simoens, S.; Vulto, A.G. Overcoming Barriers to the Market Access of Biosimilars in the European Union: The Case of Biosimilar Monoclonal Antibodies. Front. Pharmacol. 2016, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Rovgaard, L.; Frokjaer, S.; van de Weert, M. Pharmaceutical Formulation Development of Peptides and Proteins, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9780429106712. [Google Scholar]
- Ecker, D.M.; Crawford, T.J.; Seymour, P. The Therapeutic Monoclonal Antibody Product Market. Available online: https://www.bioprocessintl.com/economics/the-therapeutic-monoclonal-antibody-product-market (accessed on 26 September 2025).
- Jain, D.; Mahammad, S.S.; Singh, P.P.; Kodipyaka, R. A Review on Parenteral Delivery of Peptides and Proteins. Drug Dev. Ind. Pharm. 2019, 45, 1403–1420. [Google Scholar] [CrossRef]
- Weinbuch, D.; Hawe, A.; Jiskoot, W.; Friess, W. Introduction into Formulation Development of Biologics. In Challenges in Protein Product Development; AAPS Advances in the Pharmaceutical Sciences Series; Warne, N., Mahler, H.C., Eds.; Springer: Cham, Switzerland, 2018; Volume 38, pp. 3–22. [Google Scholar]
- Jameel, F.; Moussa, E.M.; Mills, B.J.; Ihnat, P.M. Chapter 12: Strategies in the Development of Formulations for Antibody-Based Therapeutics. In Development of Biopharmaceutical Drug-Device Products; AAPS Advances in the Pharmaceutical Sciences Series; Jameel, F., Skoug, J., Nesbitt, R., Eds.; Springer: Cham, Switzerland, 2020; Volume 35, pp. 265–297. [Google Scholar]
- Kamerzell, T.J.; Esfandiary, R.; Joshi, S.B.; Middaugh, C.R.; Volkin, D.B. Protein-Excipient Interactions: Mechanisms and Biophysical Characterization Applied to Protein Formulation Development. Adv. Drug Deliv. Rev. 2011, 63, 1118–1159. [Google Scholar] [CrossRef]
- Strickley, R.G.; Lambert, W.J. A Review of Formulations of Commercially Available Antibodies. J. Pharm. Sci. 2021, 110, 2590–2608.e56. [Google Scholar] [CrossRef]
- Bjelošević, M.; Zvonar Pobirk, A.; Planinšek, O.; Ahlin Grabnar, P. Excipients in Freeze-Dried Biopharmaceuticals: Contributions toward Formulation Stability and Lyophilisation Cycle Optimisation. Int. J. Pharm. 2020, 576, 119029. [Google Scholar] [CrossRef]
- Rao, V.A.; Kim, J.J.; Patel, D.S.; Rains, K.; Estoll, C.R. A Comprehensive Scientific Survey of Excipients Used in Currently Marketed, Therapeutic Biological Drug Products. Pharm. Res. 2020, 37, 200. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Shire, S.J. (Ed.) Formulation of Proteins and Monoclonal Antibodies (MAbs). In Monoclonal Antibodies: Meeting the Challenges in Manufacturing, Formulation, Delivery and Stability of Final Drug Product; Elsevier: Amsterdam, The Netherlands, 2015; pp. 93–120. [Google Scholar]
- Ohtake, S.; Kita, Y.; Arakawa, T. Interactions of Formulation Excipients with Proteins in Solution and in the Dried State. Adv. Drug Deliv. Rev. 2011, 63, 1053–1073. [Google Scholar] [CrossRef]
- Singh, S.K. Sucrose and Trehalose in Therapeutic Protein Formulations. In Challenges in Protein Product Development; AAPS Advances in the Pharmaceutical Sciences Series; Warne, N., Mahler, H.C., Eds.; Springer: Cham, Switzerland, 2018; Volume 38, pp. 63–95. [Google Scholar]
- Timasheff, S.N. Protein Hydration, Thermodynamic Binding, and Preferential Hydration. Biochemistry 2002, 41, 13473–13482. [Google Scholar] [CrossRef]
- Li, J.; Garg, M.; Shah, D.; Rajagopalan, R. Solubilization of Aromatic and Hydrophobic Moieties by Arginine in Aqueous Solutions. J. Chem. Phys. 2010, 133. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, E.; Safenkova, I.; Stein-Margolina, B.; Shubin, V.; Gurvits, B. L-Arginine Induces Protein Aggregation and Transformation of Supramolecular Structures of the Aggregates. Amino Acids 2013, 45, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, E.; Safenkova, I.; Stein-Margolina, V.; Shubin, V.; Polshakov, V.; Gurvits, B. PH-Responsive Modulation of Insulin Aggregation and Structural Transformation of the Aggregates. Biochimie 2015, 109, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Ren, S. Effects of Arginine in Therapeutic Protein Formulations: A Decade Review and Perspectives. Antib. Ther. 2023, 6, 265–276. [Google Scholar] [CrossRef]
- Rosa, C.L.; Milardi, D.; Amato, E.; Pappalardo, M.; Grasso, D. Molecular Mechanism of the Inhibition of Cytochrome c Aggregation by Phe-Gly. Arch. Biochem. Biophys. 2005, 435, 182–189. [Google Scholar] [CrossRef]
- Artemova, N.; Stein-Margolina, V.; Smirnova, E.; Gurvits, B. Formation of Supramolecular Structures of a Native-like Protein in the Presence of Amphiphilic Peptides: Variations in Aggregate Morphology. FEBS Lett. 2012, 586, 186–190. [Google Scholar] [CrossRef]
- Artemova, N.V.; Stein-Margolina, V.A.; Bumagina, Z.M.; Gurvits, B.Y. Acceleration of Protein Aggregation by Amphiphilic Peptides: Transformation of Supramolecular Structure of the Aggregates. Biotechnol. Prog. 2011, 27, 846–854. [Google Scholar] [CrossRef]
- Artemova, N.V.; Kasakov, A.S.; Bumagina, Z.M.; Lyutova, E.M.; Gurvits, B.Y. Protein Aggregates as Depots for the Release of Biologically Active Compounds. Biochem. Biophys. Res. Commun. 2008, 377, 595–599. [Google Scholar] [CrossRef]
- Nuhu, M.M.; Curtis, R. Arginine Dipeptides Affect Insulin Aggregation in a PH- and Ionic Strength-Dependent Manner. Biotechnol. J. 2015, 10, 404–416. [Google Scholar] [CrossRef]
- Vekaria, N. Developing Novel Low Concentration Excipients to Suppress Protein Aggregation. Available online: https://research.manchester.ac.uk/files/234005751/FULL_TEXT.PDF (accessed on 12 September 2025).
- Shukla, D.; Schneider, C.P.; Trout, B.L. Complex Interactions between Molecular Ions in Solution and Their Effect on Protein Stability. J. Am. Chem. Soc. 2011, 133, 18713–18718. [Google Scholar] [CrossRef]
- Tosstorff, A.; Peters, G.H.J.; Winter, G. Study of the Interaction between a Novel, Protein-Stabilizing Dipeptide and Interferon-Alpha-2a by Construction of a Markov State Model from Molecular Dynamics Simulations. Eur. J. Pharm. Biopharm. 2020, 149, 105–112. [Google Scholar] [CrossRef]
- Tosstorff, A.; Svilenov, H.; Peters, G.H.J.; Harris, P.; Winter, G. Structure-Based Discovery of a New Protein-Aggregation Breaking Excipient. Eur. J. Pharm. Biopharm. 2019, 144, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Hin Lui, L. In-Silico Discovery and Experimental Verification of Excipients for Biologics. Available online: https://discovery.ucl.ac.uk/id/eprint/10086373/13/Lok_Hin_Lui.pdf (accessed on 12 September 2025).
- Somers, F.; Faict, D. Stabilization of Pharmaceutical Protein Formulations with Small Peptides. U.S. Patent No 7,141,544, 19 November 2003. [Google Scholar]
- Kerwin, B.A. Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: Structure and Degradation Pathways. J. Pharm. Sci. 2008, 97, 2924–2935. [Google Scholar] [CrossRef] [PubMed]
- EMA Note for Guidance on Inclusion of Antioxidants and Antimicrobial Preservatives in Medicinal Products. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/note-guidance-inclusion-antioxidants-antimicrobial-preservatives-medicinal-products_en.pdf (accessed on 28 November 2024).
- Akers, M.J.; DeFelippis, M.R. Peptides and Proteins as Parenteral Solutions. In Pharmaceutical Formulation Development of Peptides and Proteins; Hovgaard, L., Frokjaer, S., van de Weert, M., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 162–205. [Google Scholar]
- Li, Y.; Wei, G.; Chen, J. Glutathione: A Review on Biotechnological Production. Appl. Microbiol. Biotechnol. 2004, 66, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Schiavoni, M.; Napolitano, M.; Giuffrida, G.; Coluccia, A.; Siragusa, S.; Calafiore, V.; Lassandro, G.; Giordano, P. Status of Recombinant Factor VIII Concentrate Treatment for Hemophilia a in Italy: Characteristics and Clinical Benefits. Front Med. 2019, 6, 261. [Google Scholar] [CrossRef]
- ADVATE Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/advate-epar-product-information_en.pdf (accessed on 12 September 2025).
- ADYNOVI Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/adynovi-epar-product-information_en.pdf (accessed on 12 September 2025).
- Jameel, F.; Tchessalov, S.; Bjornson, E.; Lu, X.; Besman, M.; Pikal, M. Development of Freeze-Dried Biosynthetic Factor VIII: I. A Case Study in the Optimization of Formulation Formulation. Pharm. Dev. Technol. 2009, 14, 687–697. [Google Scholar] [CrossRef]
- Knepp, V.M.; Whatley, J.L.; Muchnik, A.; Calderwood, T.S. Identification of Antioxidants for Prevention of Peroxide-Mediated Oxidation of Recombinant Human Ciliary Neurotrophic Factor and Recombinant Human Nerve Growth Factor. PDA J. Pharm. Sci. Tech. 1996, 50, 163–171. [Google Scholar]
- Mahler, H.-C.; Ravuri, S.K.K. Pharmaceutical Formulation for Proteins. WO 2011/089062 A2, 14 January 2011. [Google Scholar]
- Ha, E.; Wang, W.; Wang, Y.J. Peroxide Formation in Polysorbate 80 and Protein Stability. J. Pharm. Sci. 2002, 91, 2252–2264. [Google Scholar] [CrossRef]
- Reyes, N.; Ruiz, L.; Aroche, K.; Gerónimo, H.; Brito, O.; Hardy, E.; Gonzälez, L.R. Stability of Ala 125 Recombinant Human Interleukin-2 in Solution. J. Pharm. Pharmacol. 2005, 57, 31–37. [Google Scholar] [CrossRef]
- Morar-Mitrica, S.; Puri, M.; Sassi, A.B.; Fuller, J.; Hu, P.; Crotts, G.; Nesta, D. Development of a Stable Low-Dose Aglycosylated Antibody Formulation to Minimize Protein Loss during Intravenous Administration. MAbs 2015, 7, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Chu, J.-W.; Ricci, M.S.; Brems, D.N.; Wang, D.I.C.; Trout, B.L. Effects of Antioxidants on the Hydrogen Peroxide-Mediated Oxidation of Methionine Residues in Granulocyte Colony-Stimulating Factor and Human Parathyroid Hormone Fragment 13–34. Pharm. Res. 2004, 21, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, F.; Berteau, C.; Filipe-Santos, O.; Wang, T.; Rojas, H.; Granger, C. Evaluation of the Impact of Viscosity, Injection Volume, and Injection Flow Rate on Subcutaneous Injection Tolerance. Med. Devices: Evid. Res. 2015, 2015, 473–484. [Google Scholar] [CrossRef]
- Sahin, E.; Deshmukh, S. Challenges and Considerations in Development and Manufacturing of High Concentration Biologics Drug Products. J. Pharm. Innov. 2020, 15, 255–267. [Google Scholar] [CrossRef]
- Whitaker, N.; Xiong, J.; Pace, S.E.; Kumar, V.; Middaugh, C.R.; Joshi, S.B.; Volkin, D.B. A Formulation Development Approach to Identify and Select Stable Ultra–High-Concentration Monoclonal Antibody Formulations with Reduced Viscosities. J. Pharm. Sci. 2017, 106, 3230–3241. [Google Scholar] [CrossRef]
- Hung, J.J.; Dear, B.J.; Dinin, A.K.; Borwankar, A.U.; Mehta, S.K.; Truskett, T.T.; Johnston, K.P. Improving Viscosity and Stability of a Highly Concentrated Monoclonal Antibody Solution with Concentrated Proline. Pharm. Res. 2018, 35, 133. [Google Scholar] [CrossRef]
- Proj, M.; Zidar, M.; Lebar, B.; Strašek, N.; Miličić, G.; Žula, A.; Gobec, S. Discovery of Compounds with Viscosity-Reducing Effects on Biopharmaceutical Formulations with Monoclonal Antibodies. Comput. Struct. Biotechnol. J. 2022, 20, 5420–5429. [Google Scholar] [CrossRef]
- Prašnikar, M.; Proj, M.; Bjelošević Žiberna, M.; Lebar, B.; Knez, B.; Kržišnik, N.; Roškar, R.; Gobec, S.; Grabnar, I.; Žula, A.; et al. The Search for Novel Proline Analogs for Viscosity Reduction and Stabilization of Highly Concentrated Monoclonal Antibody Solutions. Int. J. Pharm. 2024, 655, 124055. [Google Scholar] [CrossRef]
- Prašnikar, M.; Bjelošević Žiberna, M.; Kržišnik, N.; Roškar, R.; Grabnar, I.; Žula, A.; Ahlin Grabnar, P. Additive Effects of the New Viscosity-Reducing and Stabilizing Excipients for Monoclonal Antibody Formulation. Int. J. Pharm. 2025, 674, 125451. [Google Scholar] [CrossRef]
- Soane, D.S.; Wuthrich, P.; Mahoney, R.P.; Portilla, R.C.; Moody, M.; Greene, D.G. Excipient Compounds for Biopolymer Formulations. U.S. Patent 10,478,498, 19 November 2019. [Google Scholar]
- Gu, J.H.; Fesinmeyer, R.M.; Qian, R. Excipients to Reduce the Viscosity of Antibody Formulations and Formulation Compositions. WO 2018/200533 A1, 24 April 2018. [Google Scholar]
- Bowen, M.N.; Liu, J.; Patel, A.R. Compositions and Methods Useful for Reducing the Viscosity of Protein-Containing Formulations. WO 2011/139718 A1, 26 April 2011. [Google Scholar]
- Agrawal, N.J.; Ghattyvenkatakrishna, P.; Kanapuram, S.; Sloey, C.J. N-Acetylated and Non-Acetylated Dipeptides Containing Arginine to Reduce the Viscosity of Viscous Compositions of Therapeutic Polypeptides. European Patent 3,615,069, 27 April 2018. [Google Scholar]
- Meng-Lund, H.; Holm, T.P.; Poso, A.; Jorgensen, L.; Rantanen, J.; Grohganz, H. Exploring the Chemical Space for Freeze-Drying Excipients. Int. J. Pharm. 2019, 566, 254–263. [Google Scholar] [CrossRef]
- Holm, T.P.; Meng-Lund, H.; Rantanen, J.; Jorgensen, L.; Grohganz, H. Screening of Novel Excipients for Freeze-Dried Protein Formulations. Eur. J. Pharm. Biopharm. 2021, 160, 55–64. [Google Scholar] [CrossRef]
- Stärtzel, P. Arginine as an Excipient for Protein Freeze-Drying: A Mini Review. J. Pharm. Sci. 2018, 107, 960–967. [Google Scholar] [CrossRef]
- Haeuser, C.; Goldbach, P.; Huwyler, J.; Friess, W.; Allmendinger, A. Excipients for Room Temperature Stable Freeze-Dried Monoclonal Antibody Formulations. J. Pharm. Sci. 2020, 109, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Paik, S.H.; Kim, Y.J.; Han, S.K.; Kim, J.M.; Huh, J.W.; Park, Y.I. Mixture of Three Amino Acids as Stabilizers Replacing Albumin in Lyophilization of New Third Generation Recombinant Factor VIII GreenGene F. Biotechnol. Prog. 2012, 28, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Jouhn-Wern Jang, T.; Kitamura, S.; Keith Guillory, J.; Jang, J. The Effect of Excipients on Glass Transition Temperatures for FK906 in the Frozen and Lyophilized States. PDA J. Pharm. Sci. Technol. 1995, 49, 166–174. [Google Scholar] [PubMed]
- Hansen, L.L. Stabilization of Freeze-Dried Cake. U.S. Patent 6,586,574, 15 August 2000. [Google Scholar]
- Jensen, M.B.; Hansen, B.L.; Kornfelt, T. Stabilised Solid Compositions of Factor VII Polypeptides. U.S. Patent 8,299,029, 25 September 2006. [Google Scholar]
- Hansen, B.L.; Jensen, M.B.; Kornfelt, T. Stabilised Compositions of Factor VII Polypeptides. U.S. Patent 8,658,597, 19 March 2009. [Google Scholar]
- Hile, D.D.; Strohmeier, G. Buffers for Controlling the PH of Morphogenetic Proteins. US 2014/0336114A1, 25 November 2013. [Google Scholar]
- NovoSeven® Summary of Product Characteristics. Available online: https://ec.europa.eu/health/documents/community-register/2017/20170126136967/anx_136967_en.pdf (accessed on 12 September 2025).
- NovoSeven® RT, Prescribing Information. Available online: https://www.fda.gov/media/70442/download (accessed on 12 September 2025).
- Yu, Y.B.; Taraban, M.B.; Briggs, K.T.; Brinson, R.G.; Marino, J.P. Excipient Innovation Through Precompetitive Research. Pharm. Res. 2021, 38, 2179–2184. [Google Scholar] [CrossRef]
- Lax, E.R.; Shah, T. Chapter 6. Economic and Environmental Factors Affecting the Sustainability of Peptide Therapeutic Manufacturing. In Peptide Therapeutics: Strategy and Tactics for Chemistry, Manufacturing and Controls; Srivastava, V., Ed.; RSC: Cambridge, UK, 2019; pp. 151–193. [Google Scholar]
- Pennington, M.W.; Zell, B.; Bai, C.J. Commercial Manufacturing of Current Good Manufacturing Practice Peptides Spanning the Gamut from Neoantigen to Commercial Large-Scale Products. Med. Drug Discov. 2021, 9, 100071. [Google Scholar] [CrossRef]
- Rasmussen, J.H. Synthetic Peptide API Manufacturing: A Mini Review of Current Perspectives for Peptide Manufacturing. Bioorg Med. Chem. 2018, 26, 2914–2918. [Google Scholar] [CrossRef]
- Achilleos, K.; Petrou, C.; Nicolaidou, V.; Sarigiannis, Y. Beyond Efficacy: Ensuring Safety in Peptide Therapeutics through Immunogenicity Assessment. J. Pept. Sci. 2025, 31, e70016. [Google Scholar] [CrossRef]
- Guan, J.; Xie, P.; Meng, D.; Yao, L.; Yu, D.; Chiang, Y.-C.; Lee, T.-Y.; Wang, J. ToxiPep: Peptide Toxicity Prediction via Fusion of Context-Aware Representation and Atomic-Level Graph. Comput. Struct. Biotechnol. J. 2025, 27, 2347–2358. [Google Scholar] [CrossRef]
- Novel Excipient Review Program Proposal; Request for Information and Comments. Available online: https://www.federalregister.gov/documents/2019/12/05/2019-26266/novel-excipient-review-program-proposal-request-for-information-and-comments (accessed on 25 September 2025).
- ICH. The Common Technical Document for the Registration of Pharmaceuticals for Human Use: Quality–M4Q(R1). Available online: https://database.ich.org/sites/default/files/M4Q_R1_Guideline.pdf (accessed on 25 September 2025).
- EMA. Guideline on Excipients in the Dossier for Application for Marketing Authorisation of a Medicinal Product. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-excipients-dossier-application-marketing-authorisation-medicinal-product-revision-2_en.pdf (accessed on 25 September 2025).
- NovoSeven: EPAR–Scientific Discussion. Available online: https://www.ema.europa.eu/en/documents/scientific-discussion/novoseven-epar-scientific-discussion_en.pdf (accessed on 25 September 2025).
- Eglovitch, J.S. FDA’s Novel Excipient Pilot Program Opens for Candidates. Available online: https://www.raps.org/news-and-articles/news-articles/2021/9/fdas-novel-excipient-pilot-program-opens-for-candi (accessed on 25 September 2025).
- Xie, V. Accepting Novel Excipients for Innovative Drug Development. Available online: https://www.cphi-online.com/news/accepting-novel-excipients-for-innovative-drug-development/ (accessed on 25 September 2025).
- Sikora, K.; Jaśkiewicz, M.; Neubauer, D.; Migoń, D.; Kamysz, W. The Role of Counter-Ions in Peptides—An Overview. Pharmaceuticals 2020, 13, 442. [Google Scholar] [CrossRef]
Excipient Category | Function | Examples in Approved Products |
---|---|---|
Buffering Agents | Stabilize the pH of the solution | Histidine Buffer Citrate Buffer Phosphate Buffer |
Tonicity Modifiers | Adjust tonicity and ionic strength (in case of ionic excipients) | NaCl Sucrose Trehalose Mannitol Sorbitol |
Surfactants | Inhibit protein adsorption (competitive) and surface-induced protein denaturation | Polysorbate 20 Polysorbate 80 Poloxamer 188 |
Stabilizers | Enhance both the conformational and colloidal stability of proteins | Sucrose Trehalose Arginine Proline Sorbitol |
Antioxidants | Inhibit oxidation | Methionine |
Viscosity Modifiers | Reduce solution viscosity | Arginine Proline Glycine NaCl |
Bulking Agents | Provide the appropriate structure and appearance of the lyophilizate and optimize its collapse temperature | Glycine Mannitol Sucrose Trehalose |
Lyoprotectants | Enhance stability of proteins during exposure to freeze-drying-related stresses | Sucrose Trehalose Arginine |
Protein | Peptide Stabilizer | Impact | Reference |
---|---|---|---|
cytochrome c | Ala-His | No pronounced effect | [22] |
Phe-Gly | Aggregation inhibition | ||
Gly-Phe | No pronounced effect | ||
alcohol dehydrogenase | Arg-Phe | Aggregation enhancement (1 mM) Aggregation inhibition (4.5 mM) | [25] |
Ala-Phe-Lys | Aggregation enhancement (1 mM) Aggregation inhibition (4.5 mM) | ||
α-lactalbumin | Arg-Phe | Aggregation enhancement | [24] |
Glu-Val-Phe | No pronounced effect | ||
Asp-Phe | No pronounced effect | ||
alcohol dehydrogenase | Arg-Phe | Aggregation enhancement (1 mM, 38–39 °C) No pronounced effect (1 mM, 40–42 °C) | [23] |
Asp-Phe | Aggregation enhancement | ||
insulin | Arg-Arg | Aggregation enhancement (pH 7.5) Aggregation inhibition (pH 3.7 and 5.5) | [26] |
Arg-Phe | Aggregation inhibition | ||
Leu-Arg | Aggregation inhibition (100 mM, pH 5.5) | ||
Arg-Glu | |||
Phe-Arg | |||
Glu-Arg | |||
Arg-Val | No pronounced effect | ||
Val-Arg | |||
Glu-Arg-NH2 | |||
Arg-Phe-NH2 | |||
Arg-Glu-NH2 | |||
recombinant human serum albumin | Arg-Arg | Aggregation enhancement | [27] |
Arg-Phe | |||
Phe-Arg | |||
Glu-Glu | |||
Arg-Glu | |||
Glu-Arg | |||
ovalbumin | Arg-Arg | Aggregation enhancement | |
Arg-Phe | |||
Phe-Arg | |||
Glu-Glu | |||
Arg-Glu | |||
Glu-Arg | |||
α-chymotrypsinogen A | Arg-Arg | No pronounced effect | [27] |
Arg-Phe | |||
Phe-Arg | Aggregation inhibition | ||
Glu-Glu | |||
Arg-Glu | |||
Glu-Arg | |||
α-chymotrypsinogen A, concanavalin A | Arg-Arg | Aggregation inhibition (sulfate salts, chloride salts at concentration of 0.1 M) Aggregation enhancement (chloride salts at concentration of 0.25 M) | [28] |
Arg-Arg-Arg | |||
Arg-Arg-Arg-Arg | |||
interferon-α2a | Gly-D-Asn | Aggregation inhibition | [29,30] |
MEDI-578 | Ala-Pro | No pronounced effect | [31] |
Gly-Gly | |||
Gly-Gln | |||
His-His | Attractive self-interactions reduction | ||
His-Lys | |||
His-Ser | |||
Arg-Arg | |||
motavizumab | Ala-Pro | No pronounced effect | |
Gly-Gly | No pronounced effect | ||
Gly-Gln | Repulsive interactions reduction | ||
His-His | Repulsive interactions enhancement | ||
His-Lys | No pronounced effect | ||
His-Ser | No pronounced effect | ||
Arg-Arg | No pronounced effect | ||
erythropoietin omega | Gly-Gly | Protein loss reduction | [32] |
Gly-Gly-Gly | |||
Gly-Tyr | |||
Gly-Phe | |||
Gly-His | |||
Gly-Asp | |||
Gly-Ala | |||
Ala-Gly | |||
Ala-Ala |
Protein | GSH Concentration | Impact | Reference |
---|---|---|---|
recombinant factor VIII | 16 mM | Prevent oxidation 1 | [40] |
recombinant human Ciliary Neurotrophic Factor | 15 mM | Prevent peroxide-induced oxidation | [41] |
recombinant human Nerve Growth Factor | |||
N/A 2 | 3 mM | Minimize polysorbate degradation | [42] |
IL-2 mutein | 16 mM | Partially prevents peroxide-induced oxidation | [43] |
rhIL-2A125 | 0.3 mM | Accelerate degradation of the protein | [44] |
otelixizumab | 5 mM | Accelerate degradation of the protein | [45] |
G-CSF | 60 mM | No obvious effect (pH 4.5) | [46] |
Protein (Concentration) | Peptide Viscosity Reducer | Viscosity Reduction (Excipient Concentration) | Reference |
---|---|---|---|
mAb A (150 mg/mL), mAb B (150 mg/mL) | His-Tyr | mAb A: −70% (25 mM) mAb B: −56% (25 mM) | [51] |
His-Ala | mAb A: −65% (25 mM) mAb B: −43% (25 mM) | ||
His-Gly | mAb A: −66% (25 mM) mAb B: −40% (25 mM) | ||
His-Ser | mAb A: −61% (25 mM) mAb B: −42% (25 mM) | ||
His-Phe | mAb A: −60% (25 mM) mAb B: −43% (25 mM) | ||
His-Lys | mAb A: −58% (25 mM) mAb B: −43% (25 mM) | ||
His-Arg | mAb A: −58% (25 mM) mAb B: −39% (25 mM) | ||
His-Val | mAb A: −43% (25 mM) mAb B: −9% (25 mM) | ||
Asp-Gly | mAb A: −54% (25 mM) mAb B: −35% (25 mM) | ||
His-Asp | mAb A: −57% (25 mM) mAb B: −36% (25 mM) | ||
Asp-Leu | mAb A: −53% (25 mM) mAb B: −26% (25 mM) | ||
mAb (150 mg/mL) | Pro-Pro | −51% (25 mM) | [52] |
Pro-Gln | −31% (25 mM) | ||
Pro-Tyr | −37% (25 mM) | ||
Pro-Ala | −22% (25 mM) | ||
Gly-Pro | −34% (25 mM) | ||
Pro-Gly | −9% (25 mM) | ||
Val-Pro | −26% (25 mM) | ||
Val-Pro-Pro | −31% (25 mM) | ||
Gly-Pro-Ala | −12%(25 mM) | ||
mAb (170 mg/mL) | Pro-Pro | −49% (25 mM) −48% (50 mM) −59% (100 mM) −33% (200 mM) | [53] |
Pro-Gln | −35% (25 mM) | ||
Pro-Tyr | −49% (25 mM) | ||
Gly-Pro | −40% (25 mM) | ||
Val-Pro | −33% (25 mM) | ||
Gly-Pro-Ala | −52% (25 mM) | ||
BGG (280 mg/mL) | Arg-Arg-Arg-Arg-Arg | −32% (50 mM) −30% (100 mM) | [54] |
His-His-His-His-His | −24% (25 mM) −35% (50 mM) −22% (100 mM) | ||
Trp-Trp-Lys-Lys-Lys | −24% (50 mM) −25% (100 mM) | ||
Asp-Asp-Asp-Asp-Asp | +4% (50 mM) +29% (100 mM) | ||
Leu-Glu | −9% (50 mM) +10% (100 mM) | ||
Tyr-Glu | −30% (50 mM) −14% (100 mM) | ||
Arg-Pro | −35% (50 mM) −33% (100 mM) | ||
Arg-Lys | −33% (50 mM) −19% (100 mM) | ||
Arg-His | −34% (50 mM) −9% (100 mM) | ||
Arg-Arg | −28% (50 mM) −22% (100 mM) | ||
Arg-Glu | −37% (50 mM) −16% (100 mM) | ||
tezepelumab (128 mg/mL) | Arg-Arg-Arg-Arg | −53% (100 mM) | [55] |
Arg-Arg | −46% (100 mM) −49% (200 mM) | ||
Arg-Lys | −46% (100 mM) −47% (200 mM) | ||
Arg-Phe | −7% (10 mM) −44% (100 mM) −50% (200 mM) −43% (500 mM) | ||
Arg-Pro | −32% (200 mM) | ||
Arg-Val | −51% (200 mM) | ||
Arg-Ala | −43% (100 mM) −47% (200 mM) | ||
Asp-Arg | −34% (200 mM) | ||
Lys-Arg | −11% (10 mM) −52% (200 mM) −36% (500 mM) | ||
Pro-Arg | 0% (10 mM) −35% (100 mM) −46% (200 mM) −49% (500 mM) | ||
Leu-Arg | −49% (200 mM) | ||
Val-Arg | −47% (200 mM) | ||
Ala-Arg | −47% (200 mM) | ||
evolocumab (150 mg/mL) | Arg-Arg | −68% (150 mM) | [55] |
Arg-Phe | −73% (150 mM) | ||
Arg-Pro | −65% (150 mM) | ||
Arg-Tyr | −67% (150 mM) | ||
Arg-Ala | −62% (150 mM) | ||
Arg-Val | −61% (150 mM) | ||
Phe-Arg | −75% (150 mM) | ||
Pro-Arg | −75% (150 mM) | ||
Val-Arg | −70% (150 mM) | ||
Ala-Arg | −68% (150 mM) | ||
anti-CD4 mAb (222–244 mg/mL) | Arg-Arg | −74% (30 mM) −72% (150 mM) | [56] 1 |
Arg-Arg-Arg | −80% (30 mM) −82% (150 mM) | ||
Ab1 (210 mg/mL) Ab2 (210 mg/mL) Ab3 (210 mg/mL) | Ac-Pro-Arg | Ab1: −87% (150 mM) Ab2: −77% (150 mM) Ab3: −34% (150 mM) | [57] 1 |
Ac-Ser-Arg | Ab1: −84% (150 mM) Ab2: −63% (150 mM) Ab3: −27% (150 mM) | ||
Glu-Arg | Ab1: −56% (25 mM) Ab2: −53% (25 mM) Ab3: −15% (25 mM) | ||
Ac-Pro-Arg-NH2 | Ab1: −83% (150 mM) Ab2: −88% (150 mM) Ab3: −46% (150 mM) |
Peptide Excipient | Concentration Range | Comment |
---|---|---|
Arg-Arg | 20–250 mM | Arg-Arg can act both as stabilizer and viscosity reducing agent. The boundary between aggregation inhibition and enhancement may be related to protein type and charge, formulation pH, excipient concentration and peptide counterion. |
GSH | 0.3–60 mM | GSH is present in at least two approved therapeutic protein lyophilized formulations. Its antioxidant activity is dependent on protein type, excipient concentration and formulation pH. It can potentially induce a disulfide shuffling. |
Arg-Phe | 0.5–500 mM | Arg-Phe can act both as stabilizer and viscosity reducing agent. The boundary between aggregation inhibition and enhancement may be related to protein type and charge, formulation pH, excipient concentration and incubation temperature. Exceeding a certain concentration threshold (200 mM) can lead to a reversal of the viscosity reducing effect. |
Gly-Gly | 10–300 mM | Gly-Gly is present in at least two approved therapeutic protein lyophilized formulations. Its usage as buffering agent (approx. 10 mM) as well as cryo/lyoprotectant and bulking agent (approx. 300 mM) has been demonstrated in patent literature. However, no specific mechanism underlying its stabilizing effect in lyophilized formulations has been reported to date. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migoń, D.; Jaremicz, Z.; Kamysz, W. Short Peptides as Excipients in Parenteral Protein Formulations: A Mini Review. Pharmaceutics 2025, 17, 1328. https://doi.org/10.3390/pharmaceutics17101328
Migoń D, Jaremicz Z, Kamysz W. Short Peptides as Excipients in Parenteral Protein Formulations: A Mini Review. Pharmaceutics. 2025; 17(10):1328. https://doi.org/10.3390/pharmaceutics17101328
Chicago/Turabian StyleMigoń, Dorian, Zbigniew Jaremicz, and Wojciech Kamysz. 2025. "Short Peptides as Excipients in Parenteral Protein Formulations: A Mini Review" Pharmaceutics 17, no. 10: 1328. https://doi.org/10.3390/pharmaceutics17101328
APA StyleMigoń, D., Jaremicz, Z., & Kamysz, W. (2025). Short Peptides as Excipients in Parenteral Protein Formulations: A Mini Review. Pharmaceutics, 17(10), 1328. https://doi.org/10.3390/pharmaceutics17101328