Phase I Clinical Study with the GRPR-Antagonist [99mTc]Tc-DB8 for SPECT Imaging of Prostate Cancer: Does the Injected Peptide Mass Make a Difference?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. SPECT Imaging Protocol
2.4. Assessment of Dosimetry
2.5. GRPR Expression Analysis by Immunohistochemistry
2.6. Statistical Analysis
3. Results
3.1. Patients
3.2. Safety, Tolerability, and Activity Distribution of [99mTc]Tc-DB8
3.3. Dosimetry Assessment
3.4. Imaging Findings
3.5. Immunohistochemistry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCa | breast cancer |
BMs | bone metastases |
CT | computed tomography |
GRPR | gastrin-releasing peptide receptor |
GS | Gleason score |
IHC | immunohistochemistry |
LNM | lymph node metastases |
MRI | magnetic resonance imaging |
PCa | prostate cancer |
PET | positron emission tomography |
PSA | prostate-specific antigen |
PSMA | prostate-specific membrane antigen |
SPECT | single-photon emission computed tomography |
SUV | standardized uptake value |
References
- Vaccarella, S.; Li, M.; Bray, F.; Kvale, R.; Serraino, D.; Lorenzoni, V.; Auvinen, A.; Dal Maso, L. Prostate cancer incidence and mortality in Europe and implications for screening activities: Population based study. BMJ 2024, 386, e077738. [Google Scholar] [CrossRef]
- Kitajima, K.; Murphy, R.C.; Nathan, M.A. Choline PET/CT for imaging prostate cancer: An update. Ann. Nucl. Med. 2013, 27, 581–591. [Google Scholar] [CrossRef]
- Miller, K.; Steger, G.G.; Niepel, D.; Luftner, D. Harnessing the potential of therapeutic agents to safeguard bone health in prostate cancer. Prostate Cancer Prostatic Dis. 2018, 21, 461–472. [Google Scholar] [CrossRef]
- Abida, W.; Beltran, H.; Raychaudhuri, R. State of the Art: Personalizing treatment for patients with metastatic castration-resistant prostate cancer. Am. Soc. Clin. Oncol. Educ. Book 2025, 45, e473636. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Nguyen, N.T.; Sainsbury, F.; Kimizuka, N.; Muyldermans, S.; Benesova-Schäfer, M. PSMA-targeted radiotheranostics in modern nuclear medicine: Then, now, and what of the future? Theranostics 2024, 14, 3043–3079. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Mohammadi, M.; Sainsbury, F.; Nguyen, N.T.; Kimizuka, N.; Muyldermans, S.; Benesova-Schäfer, M. Bibliometric and scientometric analysis of PSMA-targeted radiotheranostics: Knowledge mapping and global standing. Front. Oncol. 2024, 14, 1397790. [Google Scholar] [CrossRef]
- Udovicich, C.; Jia, A.Y.; Loblaw, A.; Eapen, R.; Hofman, M.S.; Siva, S. Evolving Paradigms in Prostate Cancer: The Integral Role of Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography in Primary Staging and Therapeutic Decision-Making. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Minamimoto, R.; Hancock, S.; Schneider, B.; Chin, F.T.; Jamali, M.; Loening, A.; Vasanawala, S.; Gambhir, S.S.; Iagaru, A. Pilot comparison of 68Ga-RM2 PET and 68Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J. Nucl. Med. 2016, 57, 557–562. [Google Scholar] [CrossRef]
- Duan, H.; Song, H.; Davidzon, G.A.; Moradi, F.; Liang, T.; Loening, A.; Vasanawala, S.; Iagaru, A. Prospective Comparison of 68Ga-NeoB and 68Ga-PSMA-R2 PET/MRI in Patients with Biochemically Recurrent Prostate Cancer. J. Nucl. Med. 2024, 65, 897–903. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Zhao, J.; Eiber, M.; Tian, R. Current status of PSMA-targeted imaging and therapy. Front. Oncol. 2023, 13, 1230251. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Moreno, P.; Ramos-Alvarez, I.; Moody, T.W.; Jensen, R.T. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert. Opin. Ther. Targets 2016, 20, 1055–1073. [Google Scholar] [CrossRef]
- Markwalder, R.; Reubi, J.C. Gastrin-releasing peptide receptors in the human prostate: Relation to neoplastic transformation. Cancer Res. 1999, 59, 1152–1159. [Google Scholar]
- Körner, M.; Waser, B.; Rehmann, R.; Reubi, J.C. Early over-expression of GRP receptors in prostatic carcinogenesis. Prostate 2014, 74, 217–224. [Google Scholar] [CrossRef]
- Cornelio, D.B.; Roesler, R.; Schwartsmann, G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann. Oncol. 2007, 18, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Bouchareb, Y.; AlSaadi, A.; Zabah, J.; Jain, A.; Al-Jabri, A.; Phiri, P.; Shi, J.Q.; Delanerolle, G.; Sirasanagandla, S.R. Technological advances in SPECT and SPECT/CT imaging. Diagnostics 2024, 14, 1431. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, M.; Ruigrok, E.A.M.; van Leenders, G.J.H.H.; van den Brink, L.; Balcioglu, H.E.; van Weerden, W.M.; Dalm, S.U. GRPR versus PSMA: Expression profiles during prostate cancer progression demonstrate the added value of GRPR-targeting theranostic approaches. Front. Oncol. 2023, 13, 1199432. [Google Scholar] [CrossRef] [PubMed]
- Mansi, R.; Nock, B.A.; Dalm, S.U.; Busstra, M.B.; van Weerden, W.M.; Maina, T. Radiolabeled bombesin analogs. Cancers 2021, 13, 5766. [Google Scholar] [CrossRef]
- Bodei, L.; Ferrari, M.; Nunn, A.; Llull, J.; Cremonesi, M.; Martano, L.; Laurora, G.; Scardino, E.; Tiberini, S.; Bufi, G.; et al. Lu-177-AMBA Bombesin Analogue in Hormone Refractory Prostate Cancer Patients: A Phase I Escalation Study with Single-Cycle Administrations. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, S221. [Google Scholar]
- Bertacinni, G.; Impicciatore, M.; Molina, E.; Zappia, L. Action of bombesin on human gastrointestinal motility. Ital. J. Gastroenterol. 1974, 6, 45–51. [Google Scholar]
- de Castiglione, R.; Gozzini, L. Bombesin receptor antagonists. Crit. Rev. Oncol. Hematol. 1996, 24, 117–151. [Google Scholar] [CrossRef]
- Nock, B.A.; Kaloudi, A.; Lymperis, E.; Giarika, A.; Kulkarni, H.R.; Klette, I.; Singh, A.; Krenning, E.P.; de Jong, M.; Maina, T.; et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: Preclinical and first clinical results. J. Nucl. Med. 2017, 58, 75–80. [Google Scholar] [CrossRef]
- Nock, B.A.; Charalambidis, D.; Sallegger, W.; Waser, B.; Mansi, R.; Nicolàs, G.P.; Ketani, E.; Nikolopoulou, A.; Fani, M.; Reubi, J.C.; et al. New gastrin releasing peptide receptor-directed [99mTc]Demobesin 1 mimics: Synthesis and comparative evaluation. J. Med. Chem. 2018, 61, 3138–3150. [Google Scholar] [CrossRef]
- Bläuenstein, P.; Pfeiffer, G.; Schubiger, P.A.; Anderegg, G.; Zollinger, K.; May, K.; Proso, Z.; Ianovici, E.; Lerch, P. Chemical and Biological Properties of a Cationic Tc-Tetraamine Complex. Int. J. Appl. Radiat. Isot. 1985, 36, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Mather, S.J.; Nock, B.A.; Maina, T.; Gibson, V.; Ellison, D.; Murray, I.; Sobnack, R.; Colebrook, S.; Wan, S.; Halberrt, G.; et al. GRP receptor imaging of prostate cancer using [99mTc]Demobesin 4: A first-in-man study. Mol. Imaging Biol. 2014, 16, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Van de Wiele, C.; Dumont, F.; Broecke, R.V.; Oosterlinck, W.; Cocquyt, V.; Serreyn, R.; Peers, S.; Thornback, J.; Slegers, G.; Dierckx, R.A. Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: A feasibility study. Eur. J. Nucl. Med. 2000, 27, 1694–1699. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Fauconnier, T.; Bennett, S.; Valliant, J.; Nguyen, T.; Lau, F.; Lu, L.F.; Pollak, A.; Bell, R.A.; Thornback, J.R. Rhenium(V) and Technetium(V) Oxo complexes of an N2N’S peptidic chelator: Evidence of interconversion between the Syn and Anti conformations. Inorg. Chem. 1997, 36, 5799–5808. [Google Scholar] [CrossRef]
- Chernov, V.; Rybina, A.; Zelchan, R.; Medvedeva, A.; Bragina, O.; Lushnikova, N.; Doroshenko, A.; Usynin, E.; Tashireva, L.; Vtorushin, S.; et al. Phase I Trial of [99mTc]Tc-maSSS-PEG2-RM26, a Bombesin Analogue Antagonistic to Gastrin-Releasing Peptide Receptors (GRPRs), for SPECT Imaging of GRPR Expression in Malignant Tumors. Cancers 2023, 15, 1631. [Google Scholar] [CrossRef]
- Nock, B.A.; Kaloudi, A.; Kanellopoulos, P.; Janota, B.; Bromińska, B.; Iżycki, D.; Mikołajczak, R.; Czepczynski, R.; Maina, T. [99mTc]Tc-DB15 in GRPR-targeted tumor imaging with SPECT: From preclinical evaluation to the first clinical outcomes. Cancers 2021, 13, 5093. [Google Scholar] [CrossRef]
- Rinscheid, A.; Gäble, A.; Wienand, G.; Dierks, A.; Kircher, M.; Günther, T.; Patt, M.; Bundschuh, R.A.; Lapa, C.; Pfob, C.H. Biodistribution and radiation dosimetry of [99mTc]Tc-N4-BTG in patients with biochemical recurrence of prostate cancer. EJNMMI Res. 2024, 14, 42. [Google Scholar] [CrossRef]
- Bragina, O.; Chernov, V.; Larkina, M.; Varvashenya, R.; Zelchan, R.; Medvedeva, A.; Ivanova, A.; Tashireva, L.; Maina, T.; Nock, B.A.; et al. The impact of the injected mass of the gastrin-releasing peptide receptor antagonist on uptake in breast cancer: Lessons from a Phase I trial of [99mTc]Tc-DB8. Pharmaceutics 2025, 17, 1000. [Google Scholar] [CrossRef]
- Medvedeva, A.; Chernov, V.; Larkina, M.; Rybina, A.; Zelchan, R.; Bragina, O.; Varvashenya, R.; Zebzeeva, O.; Bezvekhniaia, E.; Tolmachev, V.; et al. Single-Photon Emission Computer Tomography Imaging of Prostate-Specific Membrane Antigen (PSMA) Expression in Prostate Cancer Patients Using a Novel Peptide-Based Probe [99mTc]Tc-BQ0413 with Picomolar Affinity to PSMA: A Phase I/II Clinical Study. ACS Pharmacol. Transl. Sci. 2025, 8, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Morgat, C.; MacGrogan, G.; Brouste, V.; Vélasco, V.; Sévenet, N.; Bonnefoi, H.; Fernandez, P.; Debled, M.; Hindié, E. Expression of Gastrin-Releasing Peptide Receptor in Breast Cancer and Its Association with Pathologic, Biologic, and Clinical Parameters: A Study of 1,432 Primary Tumors. J. Nucl. Med. 2017, 58, 1401–1407. [Google Scholar] [CrossRef]
- Schally, A.V.; Comaru-Schally, A.M.; Nagy, A.; Kovacs, M.; Szepeshazi, K.; Plonowski, A.; Varga, J.L.; Halmos, G. Hypothalamic hormones and cancer. Front. Neuroendocrinol. 2001, 22, 248–291. [Google Scholar] [CrossRef]
- Schwartsmann, G.; DiLeone, L.P.; Horowitz, M.; Schunemann, D.; Cancella, A.; Pereira, A.S.; Richter, M.; Souza, F.; da Rocha, A.B.; Souza, F.H.; et al. A phase I trial of the bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC3095 in patients with advanced solid malignancies. Investig. New Drugs 2006, 24, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.B.; Rozengurt, E. Chronic desensitization to bombesin by progressive down-regulation of bombesin receptors in Swiss 3T3 cells. Distinction from acute desensitization. J. Biol. Chem. 1990, 265, 12052–12058. [Google Scholar] [CrossRef]
- Cescato, R.; Maina, T.; Nock, B.; Nikolopoulou, A.; Charalambidis, D.; Piccand, V.; Reubi, J.C. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J. Nucl. Med. 2008, 49, 318–326. [Google Scholar] [CrossRef]
- Von Eyben, F.E.; Picchio, M.; von Eyben, R.; Rhee, H.; Bauman, G. 68Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography for prostate cancer: A systematic review and meta-analysis. Eur. Urol. Focus 2018, 4, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Mohseninia, N.; Eisazadeh, R.; Mirshahvalad, S.A.; Zamani-Siahkali, N.; Hörmann, A.A.; Pirich, C.; Iagaru, A.; Beheshti, M. Diagnostic Value of Gastrin-Releasing Peptide Receptor-Targeted PET Imaging in Oncology: A Systematic Review. Semin. Nucl. Med. 2025, 55, 776–788. [Google Scholar] [CrossRef]
- Stoykow, C.; Erbes, T.; Maecke, H.R.; Bulla, S.; Bartholomä, M.; Mayer, S.; Drendel, V.; Bronsert, P.; Werner, M.; Gitsch, G.; et al. Gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist 68Ga-RM2 And PET. Theranostics 2016, 6, 1641–1650. [Google Scholar] [CrossRef]
- Baratto, L.; Duan, H.; Laudicella, R.; Toriihara, A.; Hatami, N.; Ferri, V.; Iagaru, A. Physiological 68Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: An atlas of semi-quantitative measurements. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Persson, K.; Pacini, G.; Sundler, F.; Ahren, B. Islet Function Phenotype in Gastrin-Releasing Peptide Receptor Gene-Deficient Mice. Endocrinology 2002, 143, 3717–3726. [Google Scholar] [CrossRef]
- Zang, J.; Mao, F.; Wang, H.; Zhang, J.; Liu, Q.; Peng, L.; Li, F.; Lang, L.; Chen, X.; Zhu, Z. 68Ga-NOTA-RM26 PET/CT in the Evaluation of Breast Cancer: A Pilot Prospective Study. Clin. Nucl. Med. 2018, 43, 663–669. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, G.; Fan, X.; Lang, L.; Hou, G.; Chen, L.; Wu, H.; Zhu, Z.; Li, F.; Chen, X. PET using a GRPR antagonist 68Ga-RM26 in healthy volunteers and prostate cancer patients. J. Nucl. Med. 2018, 59, 922–928. [Google Scholar] [CrossRef]
- Soldin, O.P.; Mattison, D.R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Van den Wyngaert, T.; Strobel, K.; Kampen, W.U.; Kuwert, T.; van der Bruggen, W.; Mohan, H.K.; Gnanasegaran, G.; Delgado-Bolton, R.; Weber, W.A.; Beheshti, M.; et al. The EANM practice guidelines for bone scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1723–1738. [Google Scholar] [CrossRef]
- Velikyan, I.; Sundin, A.; Eriksson, B.; Lundqvist, H.; Sörensen, J.; Bergström, M.; Långström, B. In vivo binding of [68Ga]-DOTATOC to somatostatin receptors in neuroendocrine tumours—Impact of peptide mass. Nucl. Med. Biol. 2010, 37, 265–275. [Google Scholar] [CrossRef]
- Pandit-Taskar, N.; O’Donoghue, J.A.; Morris, M.J.; Wills, E.A.; Schwartz, L.H.; Gonen, M.; Scher, H.I.; Larson, S.M.; Divgi, C.R. Antibody Mass Escalation Study in Patients with Castration-Resistant Prostate Cancer Using 111In-J591: Lesion Detectability and Dosimetric Projections for 90Y Radioimmunotherapy. J. Nucl. Med. 2008, 49, 1066–1074. [Google Scholar] [CrossRef]
- Divgi, C.R.; Welt, S.; Kris, M.; Real, F.X.; Yeh, S.D.J.; Gralla, R.; Merchant, B.; Schweighart, S.; Unger, M.; Larson, S.M.; et al. Phase I and Imaging Trial of Indium 111-Labeled Anti-Epidermal Growth Factor Receptor Monoclonal Antibody 225 in Patients With Squamous Cell Lung Carcinoma. J. Natl. Cancer Inst. 1991, 83, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Dijkers, E.C.; Oude Munnink, T.H.; Kosterink, J.G.; Brouwers, A.H.; Jager, P.L.; de Jong, J.R.; van Dongen, G.A.; Schröder, C.P.; Lub-de Hooge, M.N.; de Vries, E.G. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 2010, 87, 586–592. [Google Scholar] [CrossRef]
- Fleischmann, A.; Läderach, U.; Friess, H.; Buechler, M.W.; Reubi, J.C. Bombesin Receptors in Distinct Tissue Compartments of Human Pancreatic Diseases. Lab. Investig. 2000, 80, 1807–1817. [Google Scholar] [CrossRef]
- Gao, X.; Tang, Y.; Chen, M.; Li, J.; Yin, H.; Gan, Y.; Zu, X.; Cai, Y.; Hu, S. A prospective comparative study of [68Ga]GaRM26 and [68Ga]Ga--PSMA-617 PET/CT imaging in suspicious prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2177–2187. [Google Scholar] [CrossRef] [PubMed]
- Beer, M.; Montani, M.; Gerhardt, J.; Wild, P.J.; Hany, T.F.; Hermanns, T.; Müntener, M.; Kristiansen, G. Profiling gastrin-releasing peptide receptor in prostate tissues: Clinical implications and molecular correlates. Prostate 2012, 72, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Ananias, H.J.; van den Heuvel, M.C.; Helfrich, W.; de Jong, I.J. Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. Prostate 2009, 69, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Touijer, K.A.; Michaud, L.; Alvarez, H.A.V.; Gopalan, A.; Kossatz, S.; Gonen, M.; Beattie, B.; Sandler, I.; Lyaschenko, S.; Eastham, J.A.; et al. Prospective study of the radiolabelled GRPR antagonist BAY86-7548 for positron emission tomography/computed tomography imaging of newly diagnosed prostate cancer. Eur. Urol. Oncol. 2019, 2, 166–173. [Google Scholar] [CrossRef]
- Kähkönen, E.; Jambor, I.; Kemppainen, J.; Lehtiö, K.; Grönroos, T.J.; Kuisma, A.; Luoto, P.; Sipilä, H.J.; Tolvanen, T.; Alanen, K.; et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin. Cancer Res. 2013, 19, 5434–5443. [Google Scholar] [CrossRef]
- Bakker, I.L.; Fröberg, A.C.; Busstra, M.B.; Verzijlbergen, J.F.; Konijnenberg, M.; van Leenders, G.J.L.H.; Schoots, I.G.; de Blois, E.; van Weerden, W.M.; Dalm, S.U.; et al. GRPr antagonist 68Ga-SB3 PET/CT imaging of primary prostate cancer in therapy-naïve patients. J. Nucl. Med. 2021, 62, 1517–1523. [Google Scholar] [CrossRef]
- Ghezzo, S.; Mapelli, P.; Samanes Gajate, A.; Palmisano, A.; Cucchiara, V.; Brembilla, G.; Bezzi, C.; Suardi, N.; Scifo, P.; Briganti, A.; et al. Diagnostic accuracy of fully hybrid [68Ga]Ga-PSMA-11 PET/MRI and [68Ga]Ga-RM2 PET/MRI in patients with biochemically recurrent prostate cancer: A prospective single-center phase II clinical trial. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 907–918. [Google Scholar] [CrossRef]
- Baratto, L.; Song, H.; Duan, H.; Hatami, N.; Bagshaw, H.P.; Buyyounouski, M.; Hancock, S.; Shah, S.; Srinivas, S.; Swift, P.; et al. PSMA- and GRPR-Targeted PET: Results from 50 Patients with Biochemically Recurrent Prostate Cancer. Nucl. Med. 2021, 62, 1545–1549. [Google Scholar] [CrossRef]
Dose (µg) | Patient/ Age (y) | Weight (kg) | Histotype Grade Group/Gleason Score/PSA * (ng/mL) | Clinical Stage | MRI Size (mm) | Imaging Results 2 h pi (SUVmax) | IRS | |
---|---|---|---|---|---|---|---|---|
PT | LNM and BM | |||||||
40 | 1/73 | 84 | PAA G5GS 9 (4 + 5) PSA = 34.5 | T3N1M1 HS | 39 × 22 | 5.63 | LNM—N/D BM—N/D | (2 × 4) 8 |
2/66 | 85 | PAA G2GS 7 (3 + 4) PSA = 5.4 | T2N0M0 HS | 8 × 9 | 3.72 | LNM—N/D BM—N/D | (1 × 1) 1 | |
3/73 | 80 | PAA G3GS 7 (4 + 3) PSA = 0.27 Brachytherapy > 10 y (2011) | T2cNxM0 HS | 41 × 50 | 6.62 | LNM—N/D BM—N/D | ||
4/74 | 65 | PAA G2GS 7 (3 + 4) PSA = 1.07 | T3bNxM0 HS | 67 × 45 | 4.56 | LNM—N/D BM—N/D | ||
5/68 | 64 | PAA G3GS 7 (4 + 3) PSA = 80.47 | T2NxM0 HS | 22 × 18 | 3.79 | LNM—N/D BM—N/D | ||
6/57 | 86 | PAA G5GS 10 (5 + 5) PSA = 1.28 | T4N1M0 HS | 42 × 31 | 3.19 | LNM—N/D BM—N/D | (2 × 4) 8 | |
80 | 7/72 | 83 | PAA G1GS 6 (3 + 3) PSA = 52 | T2N0M0 HS | 14 × 10 | 4.05 | LNM—N/D BM—N/D | |
8/76 | 55 | PAA G5GS 9 (4 + 5) PSA = 800 | T3bNxM1 CR | 16 × 6 | 3.61 | LNM—N/D BM—9.8 *** | ||
9/63 | 120 | PAA G5GS 9 (4 + 5) PSA = 7.3 Prostatectomy > 10 y (2011) | T3N0M0 CR | 50 × 25 | N/D | LNM—N/D BM—N/D (CT positive) | ||
10/65 | 76 | PAA G5GS 9 (4 + 5) PSA = 100 | T3N1M1 HS | 41 × 36 | 4.99 | LNM—2.27 (Paraaortic) BM—6.56 | (1 × 4) 4 | |
11/48 | 70 | PAA G5GS 9 (4 + 5) PSA = 0.19 | T3bNxM0 HS | 35 × 26 | 1.65 | LNM—N/D BM—N/D (CT positive) | (1 × 3) 3 | |
120 | 12/70 | 107 | PAA G3GS 7 (4 + 3) PSA = 41 | T3bN1M1 CR | 19 × 11 | 9.96 | LNM—N/D BM—N/D | |
13/72 | 79 | PAA G5GS 10 (5 + 5) PSA = 11.21 | T2aN1M1b CR | 34 × 33 | 4.05 | LNM—2.79 (Mesenteric) BM—N/D | ||
1/604 | 99 | PAA G5GS 10 (5 + 5) PSA = 418 | T4N1M1 CR | 22 × 31 | N/D | LNM—N/D BM—N/D | ||
15/64 | 89 | PAA G5GS 9 (4 + 5) PSA = 11.4 | T3bN1M1 CR | 25 × 22 | 3.7 | LNM—N/D BM—2.0 | ||
16/62 | 115 | PAA G2GS 7 (3 + 4) ** PSA = 1.5 | T1aN0M0 HS | 37 × 28 | 6.0 | LNM—N/D BM—2.25 | (2 × 3) 6 |
Organ | 40 µg | 80 µg | 120 µg |
---|---|---|---|
Adrenals | 0.0064 ± 0.0036 | 0.0060 ± 0.0001 | 0.0036 ± 0.0015 |
Brain | 0.0012 ± 0.0006 | 0.0015 ± 0.0005 | 0.0009 ± 0.0003 |
Breasts | 0.0011 ± 0.0005 | 0.0013 ± 0.0003 | 0.0008 ± 0.0002 |
Gall bladder wall | 0.0049 ± 0.0014 | 0.0059 ± 0.0012 | 0.0048 ± 0.0025 |
LLI wall | 0.0054 ± 0.0027 | 0.0077 ± 0.0035 | 0.0049 ± 0.0007 |
Small intestine wall | 0.0049 ± 0.0024 | 0.0065 ± 0.0021 | 0.0039 ± 0.0008 |
Stomach wall | 0.0040 ± 0.0019 | 0.0047 ± 0.0010 | 0.0030 ± 0.0011 |
ULI | 0.0052 ± 0.0024 | 0.0060 ± 0.0017 | 0.0041 ± 0.0006 |
Heart wall | 0.0043 ± 0.0022 | 0.0050 ± 0.0013 | 0.0034 ± 0.0008 |
Kidneys | 0.0073 ± 0.0025 | 0.0066 ± 0.0016 | 0.0054 ± 0.0024 |
Liver | 0.0037 ± 0.0018 | 0.0040 ± 0.0005 | 0.0029 ± 0.0007 |
Lungs | 0.0030 ± 0.0013 | 0.0034 ± 0.0012 | 0.0023 ± 0.0006 |
Muscle | 0.0019 ± 0.0009 | 0.0026 ± 0.0012 | 0.0015 ± 0.0004 |
Pancreas | 0.0196 ± 0.0090 * | 0.0119 ± 0.0034 | 0.0071 ± 0.0025 |
Red Marrow | 0.0026 ± 0.0013 | 0.0035 ± 0.0015 | 0.0021 ± 0.0006 |
Osteogenic cells | 0.0067 ± 0.0034 | 0.0092 ± 0.0040 | 0.0052 ± 0.0018 |
Skin | 0.0015 ± 0.0008 | 0.0021 ± 0.0010 | 0.0012 ± 0.0004 |
Spleen | 0.0051 ± 0.0023 | 0.0059 ± 0.0012 | 0.0046 ± 0.0017 |
Testes | 0.0047 ± 0.0046 | 0.0064 ± 0.0041 | 0.0040 ± 0.0027 |
Thymus | 0.0077 ± 0.0058 | 0.0116 ± 0.0059 | 0.0039 ± 0.0012 |
Thyroid | 0.0060 ± 0.0039 | 0.0065 ± 0.0029 | 0.0030 ± 0.0012 |
Urinary bladder wall | 0.0130 ± 0.0102 | 0.0370 ± 0.0401 | 0.0174 ± 0.0080 |
Prostate | 0.0059 ± 0.0034 | 0.0099 ± 0.0058 | 0.0054 ± 0.0017 |
Total | 0.0027 ± 0.0013 | 0.0036 ± 0.0015 | 0.0021 ± 0.0006 |
Effective dose equivalent (mSv/MBq) | 0.0058 ± 0.0032 | 0.0079 ± 0.0042 | 0.0044 ± 0.0016 |
Effective dose (mSv/MBq) | 0.0047 ± 0.0026 | 0.0066 ± 0.0036 | 0.0038 ± 0.0012 |
Dose | 2 h | 4 h | 6 h |
---|---|---|---|
40 µg | 4.5 ± 1.5 [2.53–6.57] | 4.9 ± 0.9 [3.69–5.86] | 6.4 ± 2.7 [3.63–11.67] |
80 µg | 5.2 ± 1.7 [3.75–7.67] | 4.3 ± 1.8 [2.74–6.82] | 6.5 ± 2.1 [4.45–8.65] |
120 µg | 6.5 ± 4.0 [3.81–12.44] | 7.2 ± 3.1 [4.64–11.25] | 7.0 ± 2.2 [4.73–9.11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlova, A.; Rybina, A.; Medvedeva, A.; Zelchan, R.; Bragina, O.; Tashireva, L.; Larkina, M.; Varvashenya, R.; Lushnikova, N.; Kanellopoulos, P.; et al. Phase I Clinical Study with the GRPR-Antagonist [99mTc]Tc-DB8 for SPECT Imaging of Prostate Cancer: Does the Injected Peptide Mass Make a Difference? Pharmaceutics 2025, 17, 1323. https://doi.org/10.3390/pharmaceutics17101323
Orlova A, Rybina A, Medvedeva A, Zelchan R, Bragina O, Tashireva L, Larkina M, Varvashenya R, Lushnikova N, Kanellopoulos P, et al. Phase I Clinical Study with the GRPR-Antagonist [99mTc]Tc-DB8 for SPECT Imaging of Prostate Cancer: Does the Injected Peptide Mass Make a Difference? Pharmaceutics. 2025; 17(10):1323. https://doi.org/10.3390/pharmaceutics17101323
Chicago/Turabian StyleOrlova, Anna, Anastasia Rybina, Anna Medvedeva, Roman Zelchan, Olga Bragina, Liubov Tashireva, Maria Larkina, Ruslan Varvashenya, Nadejda Lushnikova, Panagiotis Kanellopoulos, and et al. 2025. "Phase I Clinical Study with the GRPR-Antagonist [99mTc]Tc-DB8 for SPECT Imaging of Prostate Cancer: Does the Injected Peptide Mass Make a Difference?" Pharmaceutics 17, no. 10: 1323. https://doi.org/10.3390/pharmaceutics17101323
APA StyleOrlova, A., Rybina, A., Medvedeva, A., Zelchan, R., Bragina, O., Tashireva, L., Larkina, M., Varvashenya, R., Lushnikova, N., Kanellopoulos, P., Maina, T., Nock, B. A., Tolmachev, V., & Chernov, V. (2025). Phase I Clinical Study with the GRPR-Antagonist [99mTc]Tc-DB8 for SPECT Imaging of Prostate Cancer: Does the Injected Peptide Mass Make a Difference? Pharmaceutics, 17(10), 1323. https://doi.org/10.3390/pharmaceutics17101323