An Innovative Inhibitor with a New Chemical Moiety Aimed at Biliverdin IXβ Reductase for Thrombocytopenia and Resilient against Cellular Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Chemical Synthesis of Olsalkene (OSK)
2.3. Expression and Partial Purification of AzoR
2.4. Expression and Purification of BLVRB
2.5. Crystallization and Structure Determination of the BLVRB:OSK Complex
2.6. Enzyme Activity Assays
2.7. Isothermal Titration Calorimetry (ITC)
2.8. NMR Experiments
3. Results and Discussion
3.1. Enhancing Stability: Substituting Diazenyl Bond with Alkene Bond to Prevent Azoreductase Cleavage
3.2. Thermodynamic Analysis of OSK Binding to BLVRB
3.3. Investigating the Binding Site of Olsalkene (OSK) in BLVRB Using NMR Spectroscopy
3.4. X-ray Crystal Structure of BLVRB-OSK Complex
3.5. BLVRB Enzymatic Kinetics with Inhibitors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BLVRB | Biliverdin IXβ reductase |
NADPH | Nicotinamide adenine dinucleotide phosphate |
FMN | Flavin mononucleotide |
FDA | U.S. Food and Drug Administration |
NMR | Nuclear magnetic resonance |
ITC | Isothermal titration calorimetry |
DLS | Dynamic light scattering |
DMSO | Dimethyl sulfoxide |
MK | Megakaryocyte |
ROS | Reactive oxygen species |
HSQC | Heteronuclear single quantum coherence spectroscopy |
OSA | Olsalazine |
OSK | Olsalkene |
PhlB | Phoxine-B |
AzoR | Azoreductase |
BR | Bilirubin |
BV | Biliverdin |
iPSCs | Induced pluripotent stem cells |
HSCs | Hematopoietic stem cells |
CFU-MK | MK-colony-forming |
NADH | Nicotinamide adenine dinucleotide |
API | Active pharmaceutical ingredient |
CSP | Chemical shift perturbation |
2-MHQ | Methylhydroquinone |
TLC | Thin-layer chromatography |
PBS | Phosphate-based saline |
References
- Patel, S.R.; Hartwig, J.H.; Italiano, J.E., Jr. The biogenesis of platelets from megakaryocyte proplatelets. J. Clin. Investig. 2005, 115, 3348–3354. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk-Nivau, A.; Poirault-Chassac, S.; Gandrille, S.; Derkaoui, S.M.; Kauskot, A.; Letourneur, D.; Le Visage, C.; Baruch, D. Three-Dimensional Environment Sustains Hematopoietic Stem Cell Differentiation into Platelet-Producing Megakaryocytes. PLoS ONE 2015, 10, e0136652. [Google Scholar] [CrossRef]
- Chen, S.; Su, Y.; Wang, J. ROS-mediated platelet generation: A microenvironment-dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death Dis. 2013, 4, e722. [Google Scholar] [CrossRef]
- Sim, X.; Poncz, M.; Gadue, P.; French, D.L. Understanding platelet generation from megakaryocytes: Implications for in vitro-derived platelets. Blood 2016, 127, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zheng, J. Platelet generation in vivo and in vitro. Springerplus 2016, 5, 787. [Google Scholar] [CrossRef]
- van der Meijden, P.E.J.; Heemskerk, J.W.M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2019, 16, 166–179. [Google Scholar] [CrossRef]
- Almazni, I.; Stapley, R.; Morgan, N.V. Inherited Thrombocytopenia: Update on Genes and Genetic Variants Which may be Associated With Bleeding. Front. Cardiovasc. Med. 2019, 6, 80. [Google Scholar] [CrossRef]
- D'Andrea, G.; Chetta, M.; Margaglione, M. Inherited platelet disorders: Thrombocytopenias and thrombocytopathies. Blood Transfus. 2009, 7, 278–292. [Google Scholar] [CrossRef]
- Balduini, C.L.; Savoia, A. Genetics of familial forms of thrombocytopenia. Hum. Genet. 2012, 131, 1821–1832. [Google Scholar] [CrossRef]
- Battinelli, E.; Willoughby, S.R.; Foxall, T.; Valeri, C.R.; Loscalzo, J. Induction of platelet formation from megakaryocytoid cells by nitric oxide. Proc. Natl. Acad. Sci. USA 2001, 98, 14458–14463. [Google Scholar] [CrossRef]
- Kaufman, R.M.; Djulbegovic, B.; Gernsheimer, T.; Kleinman, S.; Tinmouth, A.T.; Capocelli, K.E.; Cipolle, M.D.; Cohn, C.S.; Fung, M.K.; Grossman, B.J.; et al. Platelet transfusion: A clinical practice guideline from the AABB. Ann. Intern. Med. 2015, 162, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Schafer, A.I. Thrombocytosis. N. Engl. J. Med. 2004, 350, 1211–1219. [Google Scholar] [CrossRef]
- Sardina, J.L.; Lopez-Ruano, G.; Sanchez-Abarca, L.I.; Perez-Simon, J.A.; Gaztelumendi, A.; Trigueros, C.; Llanillo, M.; Sanchez-Yague, J.; Hernandez-Hernandez, A. p22phox-dependent NADPH oxidase activity is required for megakaryocytic differentiation. Cell Death Differ. 2010, 17, 1842–1854. [Google Scholar] [CrossRef]
- Wu, S.; Li, Z.; Gnatenko, D.V.; Zhang, B.; Zhao, L.; Malone, L.E.; Markova, N.; Mantle, T.J.; Nesbitt, N.M.; Bahou, W.F. BLVRB redox mutation defines heme degradation in a metabolic pathway of enhanced thrombopoiesis in humans. Blood 2016, 128, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Otake, T.; Morimoto, M.; Ueba, N.; Kunita, N.; Nakagami, T.; Yamasaki, N.; Taji, S. In vitro anti-human immunodeficiency virus type 1 activity of biliverdin, a bile pigment. Jpn. J. Cancer Res. 1991, 82, 755–757. [Google Scholar] [CrossRef]
- Sedlak, T.W.; Saleh, M.; Higginson, D.S.; Paul, B.D.; Juluri, K.R.; Snyder, S.H. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc. Natl. Acad. Sci. USA 2009, 106, 5171–5176. [Google Scholar] [CrossRef]
- Dennery, P.A. Evaluating the Beneficial and Detrimental Effects of Bile Pigments in Early and Later Life. Front. Pharmacol. 2012, 3, 115. [Google Scholar] [CrossRef]
- Baranano, D.E.; Rao, M.; Ferris, C.D.; Snyder, S.H. Biliverdin reductase: A major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA 2002, 99, 16093–16098. [Google Scholar] [CrossRef]
- Motohashi, H.; Kimura, M.; Fujita, R.; Inoue, A.; Pan, X.; Takayama, M.; Katsuoka, F.; Aburatani, H.; Bresnick, E.H.; Yamamoto, M. NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation. Blood 2010, 115, 677–686. [Google Scholar] [CrossRef]
- Prasher, P.; Sharma, M. Medicinal chemistry of acridine and its analogues. Medchemcomm 2018, 9, 1589–1618. [Google Scholar] [CrossRef]
- Duarte, P.; Ferreira, D.P.; Ferreira Machado, I.; Vieira Ferreira, L.F.; Rodriguez, H.B.; San Roman, E. Phloxine B as a probe for entrapment in microcrystalline cellulose. Molecules 2012, 17, 1602–1616. [Google Scholar] [CrossRef]
- Nesbitt, N.M.; Zheng, X.; Li, Z.; Manso, J.A.; Yen, W.Y.; Malone, L.E.; Ripoll-Rozada, J.; Pereira, P.J.B.; Mantle, T.J.; Wang, J.; et al. In silico and crystallographic studies identify key structural features of biliverdin IXbeta reductase inhibitors having nanomolar potency. J. Biol. Chem. 2018, 293, 5431–5446. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.T.; Nesbitt, N.M.; Gnatenko, D.V.; Li, Z.; Zhang, B.; Seeliger, M.A.; Browne, S.; Mantle, T.J.; Bahou, W.F.; Wang, J. Enzymatic Activity and Thermodynamic Stability of Biliverdin IXbeta Reductase Are Maintained by an Active Site Serine. Chemistry 2017, 23, 1891–1900. [Google Scholar] [CrossRef]
- Paukovich, N.; Xue, M.; Elder, J.R.; Redzic, J.S.; Blue, A.; Pike, H.; Miller, B.G.; Pitts, T.M.; Pollock, D.D.; Hansen, K.; et al. Biliverdin Reductase B Dynamics Are Coupled to Coenzyme Binding. J. Mol. Biol. 2018, 430, 3234–3250. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.J.; Macedo-Ribeiro, S.; Parraga, A.; Perez-Luque, R.; Cunningham, O.; Darcy, K.; Mantle, T.J.; Coll, M. Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme. Nat. Struct. Biol. 2001, 8, 215–220. [Google Scholar] [CrossRef]
- Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658–666. [Google Scholar] [CrossRef]
- Rasooly, R. Expanding the bactericidal action of the food color additive phloxine B to gram-negative bacteria. FEMS Immunol. Med. Microbiol. 2005, 45, 239–244. [Google Scholar] [CrossRef]
- Jennings, A.S.; Schwartz, S.L.; Balter, N.J.; Gardner, D.; Witorsch, R.J. Effects of oral erythrosine (2′,4′,5′,7′-tetraiodofluorescein) on the pituitary-thyroid axis in rats. Toxicol. Appl. Pharmacol. 1990, 103, 549–556. [Google Scholar] [CrossRef]
- Ballister, E.R. Inducible Protein Dimerization New Tools and Applications to Understanding the Mitotic Checkpoint; University of Pennsylvania: Philadelphia, PA, USA, 2014. [Google Scholar]
- Kim, M.; Ha, J.H.; Choi, J.; Kim, B.R.; Gapsys, V.; Lee, K.O.; Jee, J.G.; Chakrabarti, K.S.; de Groot, B.L.; Griesinger, C.; et al. Repositioning Food and Drug Administration-Approved Drugs for Inhibiting Biliverdin IXbeta Reductase B as a Novel Thrombocytopenia Therapeutic Target. J. Med. Chem. 2022, 65, 2548–2557. [Google Scholar] [CrossRef]
- Johnson, J.R.; Samuels, P. Review of autoimmune thrombocytopenia: Pathogenesis, diagnosis, and management in pregnancy. Clin. Obstet. Gynecol. 1999, 42, 317–326. [Google Scholar] [CrossRef]
- Vertzoni, M.; Carlsson, A.; Abrahamsson, B.; Goumas, K.; Reppas, C. Degradation kinetics of metronidazole and olsalazine by bacteria in ascending colon and in feces of healthy adults. Int. J. Pharm. 2011, 413, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Karatza, E.; Goumas, C.; Muenster, U.; Reppas, C.; Vertzoni, M. Ex vivo evaluation of degradation rates of metronidazole and olsalazine in distal ileum and in cecum: The impact of prandial state. Int. J. Pharm. 2017, 534, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Sousa, T.; Yadav, V.; Zann, V.; Borde, A.; Abrahamsson, B.; Basit, A.W. On the colonic bacterial metabolism of azo-bonded prodrugsof 5-aminosalicylic acid. J. Pharm. Sci. 2014, 103, 3171–3175. [Google Scholar] [CrossRef]
- Fitton, A.N.W.A. Olsalazine A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Potential in Inflammatory Bowel Disease. Drugs 1991, 41, 647–664. [Google Scholar]
- Liu, G.; Zhou, J.; Fu, Q.S.; Wang, J. The Escherichia coli azoreductase AzoR Is involved in resistance to thiol-specific stress caused by electrophilic quinones. J. Bacteriol. 2009, 191, 6394–6400. [Google Scholar] [CrossRef]
- Nakanishi, M.; Yatome, C.; Ishida, N.; Kitade, Y. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J. Biol. Chem. 2001, 276, 46394–46399. [Google Scholar] [CrossRef]
- Kim, B.; Choi, J.; Ryu, K.S. Validation of protein refolding via 1-dimensional 1H-15N heteronuclear single quantum correlation experiments. J. Korean Magn. Reson. Soc. 2019, 23, 104–107. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef]
- Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef]
- Lee, M.S.; Lee, S.O.; Choi, J.; Ryu, M.; Lee, M.K.; Kim, J.H.; Hwang, E.; Lee, C.K.; Chi, S.W.; Ryu, K.S. MUL1-RING recruits the substrate, p53-TAD as a complex with UBE2D2-UB conjugate. FEBS J. 2022, 289, 3568–3586. [Google Scholar] [CrossRef] [PubMed]
Half-Holo BLVRB from ITC | ||||||
---|---|---|---|---|---|---|
Drugs | N | ΔH (kcal/mol) | TΔS (kcal/mol) | ΔG (kcal/mol) | KD (μM) | pKD (μM) |
Phloxine B 1 | 0.99 | −3.88 ± 0.06 | 4.12 ± 0.12 | −8.00 ± 0.10 | 1.36 ± 0.22 | 5.87 ± 0.07 |
Olsalazine 1 | 0.99 | −9.79 ± 0.09 | 0.01 ± 0.20 | −9.79 ± 0.18 | 0.07 ± 0.02 | 7.15 ± 0.12 |
Olsalazine | 0.96 | −13.54 ± 0.08 | −4.22 ± 0.13 | −9.32 ± 0.09 | 0.15 ± 0.23 | 6.82 ± 0.67 |
Olsalkene | 0.96 | −15.31 ± 0.12 | −5.98 ± 0.17 | −9.33 ± 0.11 | 0.14 ± 0.27 | 6.85 ± 0.84 |
Apo-BLVRB from NMR CSP experiment | ||||||
Olsalazine | - | - | - | - | 9.31 ± 2.41 | - |
Olsalkene | - | - | - | - | 11.40 ± 2.22 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.-M.; Ha, J.-H.; dela Cerna, M.V.C.; Burlison, J.A.; Choi, J.; Kim, B.-R.; Bang, J.K.; Ryu, K.-S.; Lee, D. An Innovative Inhibitor with a New Chemical Moiety Aimed at Biliverdin IXβ Reductase for Thrombocytopenia and Resilient against Cellular Degradation. Pharmaceutics 2024, 16, 1148. https://doi.org/10.3390/pharmaceutics16091148
Jung H-M, Ha J-H, dela Cerna MVC, Burlison JA, Choi J, Kim B-R, Bang JK, Ryu K-S, Lee D. An Innovative Inhibitor with a New Chemical Moiety Aimed at Biliverdin IXβ Reductase for Thrombocytopenia and Resilient against Cellular Degradation. Pharmaceutics. 2024; 16(9):1148. https://doi.org/10.3390/pharmaceutics16091148
Chicago/Turabian StyleJung, Hoe-Myung, Jung-Hye Ha, Mark Vincent C. dela Cerna, Joseph A. Burlison, Joonhyeok Choi, Bo-Ram Kim, Jeong Kyu Bang, Kyoung-Seok Ryu, and Donghan Lee. 2024. "An Innovative Inhibitor with a New Chemical Moiety Aimed at Biliverdin IXβ Reductase for Thrombocytopenia and Resilient against Cellular Degradation" Pharmaceutics 16, no. 9: 1148. https://doi.org/10.3390/pharmaceutics16091148
APA StyleJung, H.-M., Ha, J.-H., dela Cerna, M. V. C., Burlison, J. A., Choi, J., Kim, B.-R., Bang, J. K., Ryu, K.-S., & Lee, D. (2024). An Innovative Inhibitor with a New Chemical Moiety Aimed at Biliverdin IXβ Reductase for Thrombocytopenia and Resilient against Cellular Degradation. Pharmaceutics, 16(9), 1148. https://doi.org/10.3390/pharmaceutics16091148