Development of Cyclodextrin-Based Mono and Dual Encapsulated Powders by Spray Drying for Successful Preservation of Everlasting Flower Extract
Abstract
:1. Introduction
2. Materials and Method
2.1. Chemicals
2.2. Plant Material and Preparation of Extract
2.3. Spray-Drying Process
2.4. Technological Characterization of Spray-Dried Powders
2.4.1. Powder Yield
2.4.2. Moisture Content
2.4.3. Bulk Density
2.4.4. Hygroscopicity
2.4.5. Rehydration Time and pH Values
2.5. Physicochemical Characterization of Spray-Dried Powders
2.5.1. Particle Size Distribution
2.5.2. Microparticles Composition Analysis by FTIR Spectroscopy
2.5.3. Microparticles Morphology Determination by SEM Analysis
2.5.4. Microparticles Thermal Characterization by Differential Scanning Calorimetry (DSC)
2.6. Chemical Characterization of Microparticles
2.6.1. Analysis of Total Phenolic Content (TPC)
2.6.2. Analysis of Total Flavonoid Content (TFC)
2.6.3. Analysis of Individual Compounds in Microencapsulates by HPLC Method
2.7. Encapsulation Efficiency of Bioactive Compounds in SHE Microencapsulates
2.8. Statistical Analysis
3. Results and Discussion
3.1. Technological Characterization of the Spray-Dried Powders
3.1.1. Powder Yield
3.1.2. Moisture Content
3.1.3. Bulk and Tapped Density, Carr Index, and Hausner Ratio
3.1.4. Rehydration and pH
3.1.5. Hygroscopicity
3.2. Physicochemical Characterization of Spray-Dried Powders
3.2.1. Particle Size Distribution
3.2.2. Fourier-Transform Infrared Analysis
3.2.3. Spray-Dried Powders Morphology
3.2.4. Thermal Characteristics of Micro-Powders
3.3. Chemical Characterization of Microparticles
3.3.1. Analysis of Total Bioactives Content and Encapsulation Efficiency
3.3.2. HPLC Analysis of Individual Compounds in Microencapsulates
3.3.3. PCA Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akaberi, M.; Sahebkar, A.; Azizi, N.; Emami, S.A. Everlasting Flowers: Phytochemistry and Pharmacology of the Genus Helichrysum. Ind. Crops Prod. 2019, 138, 111471. [Google Scholar] [CrossRef]
- Vujić, B.; Vidaković, V.; Jadranin, M.; Novaković, I.; Trifunović, S.; Tešević, V.; Mandić, B. Composition, Antioxidant Potential, and Antimicrobial Activity of Helichrysum Plicatum DC. Various Extracts. Plants 2020, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Bigovic, D.; Stevic, T.; Jankovic, T.; Noveski, N.; Radanovic, D.; Pljevljakusic, D.; Djuric, Z. Antimicrobial Activity of Helichrysum Plicatum DC. Hem. Ind. 2017, 71, 337–342. [Google Scholar] [CrossRef]
- Bigovic, D.; Brankovic, S.; Kitic, D.; Radenkovic, M.; Jankovic, T.; Savikin, K.; Zivanovic, S. Relaxant Effect of the Ethanol Extract of Helichrysum Plicatum (Asteraceae) on Isolated Rat Ileum Contractions. Molecules 2010, 15, 3391–3401. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Drinić, Z.; Bigović, D.; Alimpić-Aradski, A.; Duletić-Laušević, S.; Šavikin, K. In Vitro Antineurodegenerative Activity and in Silico Predictions of Blood-Brain Barrier Penetration of Helichrysum Plicatum Flower Extract. Lek. Sirovine 2020, 40, 45–51. [Google Scholar] [CrossRef]
- Castro-López, C.; Espinoza-González, C.; Ramos-González, R.; Boone-Villa, V.D.; Aguilar-González, M.A.; Martínez-Ávila, G.C.G.; Aguilar, C.N.; Ventura-Sobrevilla, J.M. Spray-Drying Encapsulation of Microwave-Assisted Extracted Polyphenols from Moringa Oleifera: Influence of Tragacanth, Locust Bean, and Carboxymethyl-Cellulose Formulations. Food Res. Int. 2021, 144, 110291. [Google Scholar] [CrossRef] [PubMed]
- Samborska, K.; Boostani, S.; Geranpour, M.; Hosseini, H.; Dima, C.; Khoshnoudi-Nia, S.; Rostamabadi, H.; Falsafi, S.R.; Shaddel, R.; Akbari-Alavijeh, S.; et al. Green Biopolymers from By-Products as Wall Materials for Spray Drying Microencapsulation of Phytochemicals. Trends Food Sci. Technol. 2021, 108, 297–325. [Google Scholar] [CrossRef]
- Šavikin, K.; Nastić, N.; Janković, T.; Bigović, D.; Miličević, B.; Vidović, S.; Menković, N.; Vladić, J. Effect of Type and Concentration of Carrier Material on the Encapsulation of Pomegranate Peel Using Spray Drying Method. Foods 2021, 10, 1968. [Google Scholar] [CrossRef] [PubMed]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Ćujić Nikolić, N.; Žilić, S.; Simić, M.; Nikolić, V.; Živković, J.; Marković, S.; Šavikin, K. Microencapsulates of Blue Maize Polyphenolics as a Promising Ingredient in the Food and Pharmaceutical Industry: Characterization, Antioxidant Properties, and In Vitro-Simulated Digestion. Foods 2023, 12, 1870. [Google Scholar] [CrossRef]
- Jovanović, M.; Ćujić-Nikolić, N.; Drinić, Z.; Janković, T.; Marković, S.; Petrović, P.; Šavikin, K. Spray Drying of Gentiana Asclepiadea L. Root Extract: Successful Encapsulation into Powders with Preserved Stability of Bioactive Compounds. Ind. Crops Prod. 2021, 172, 114044. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, L.; Xi, J.; Wang, J.; Feng, Z. Cyclodextrin Polymers: Structure, Synthesis, and Use as Drug Carriers. Prog. Polym. Sci. 2021, 118, 101408. [Google Scholar] [CrossRef]
- Radan, M.; Živković, J.; Nedeljković, S.K.; Janković, T.; Lazarević, Z.; Bigović, D.; Šavikin, K. Influence of Hydroxypropyl-β-Cyclodextrin Complexation on the Extraction Efficiency of Rutin, Quercetin and Total Polyphenols from Fagopyrum Esculentum Moench. Sustain. Chem. Pharm. 2023, 35, 101220. [Google Scholar] [CrossRef]
- Sharif, N.; Golmakani, M.-T.; Hajjari, M.M.; Aghaee, E.; Ghasemi, J.B. Antibacterial Cuminaldehyde/Hydroxypropyl-β-Cyclodextrin Inclusion Complex Electrospun Fibers Mat: Fabrication and Characterization. Food Packag. Shelf Life 2021, 29, 100738. [Google Scholar] [CrossRef]
- Agrawal, R.; Gupta, V. Cyclodextrins—A Review on Pharmaceutical Application for Drug Delivery. Int. J. Pharm. Front. Res. 2012, 2, 95–112. [Google Scholar]
- Chew, S.C.; Tan, C.P.; Nyam, K.L. Microencapsulation of Refined Kenaf (Hibiscus Cannabinus L.) Seed Oil by Spray Drying Using β-Cyclodextrin/Gum Arabic/Sodium Caseinate. J. Food Eng. 2018, 237, 78–85. [Google Scholar] [CrossRef]
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Gidwani, B.; Vyas, A. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs. Biomed. Res. Int. 2015, 2015, 198268. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Drinić, Z.; Bigović, D.; Zdunić, G.; Mudrić, J.; Šavikin, K. Effect of Carrier Type on the Spray-Dried Willowherb (Epilobium Angustifolium L.) Leaves Extract Powder Properties and Bioactive Compounds Encapsulation. Lek. Sirovine 2021, 41, 41–45. [Google Scholar] [CrossRef]
- Ćujić-Nikolić, N.; Stanisavljević, N.; Šavikin, K.; Kalušević, A.; Nedović, V.; Samardžić, J.; Janković, T. Chokeberry Polyphenols Preservation Using Spray Drying: Effect of Encapsulation Using Maltodextrin and Skimmed Milk on Their Recovery Following in Vitro Digestion. J. Microencapsul. 2019, 36, 693–703. [Google Scholar] [CrossRef]
- Wilkowska, A.; Ambroziak, W.; Czyżowska, A.; Adamiec, J. Effect of Microencapsulation by Spray Drying and Freeze Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Pol. J. Food Nutr. Sci. 2016, 66, 11–16. [Google Scholar] [CrossRef]
- Wilkowska, A.; Ambroziak, W.; Adamiec, J.; Czyżowska, A. Preservation of Antioxidant Activity and Polyphenols in Chokeberry Juice and Wine with the Use of Microencapsulation. J. Food Process. Preserv. 2017, 41, e12924. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Avendaño-Godoy, J.; Santos, J.; Lozano-Castellón, J.; Mardones, C.; von Baer, D.; Luengo, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Gómez-Gaete, C. Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying. Antioxidants 2021, 10, 1130. [Google Scholar] [CrossRef] [PubMed]
- Vidović, S.S.; Vladić, J.Z.; Vaštag, Ž.G.; Zeković, Z.P.; Popović, L.M. Maltodextrin as a Carrier of Health Benefit Compounds in Satureja Montana Dry Powder Extract Obtained by Spray Drying Technique. Powder Technol. 2014, 258, 209–215. [Google Scholar] [CrossRef]
- Caliskan, G.; Dirim, S.N. The Effect of Different Drying Processes and the Amounts of Maltodextrin Addition on the Powder Properties of Sumac Extract Powders. Powder Technol. 2016, 287, 308–314. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Corke, H. Production and Properties of Spray-Dried Amaranthus Betacyanin Pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Goula, A.M.; Adamopoulos, K.G. Effect of Maltodextrin Addition during Spray Drying of Tomato Pulp in Dehumidified Air: II. Powder Properties. Dry. Technol. 2008, 26, 726–737. [Google Scholar] [CrossRef]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites; Waterman, P.G., Mole, S., Eds.; Blackwell Scientific Publications: Oxford, UK, 1994. [Google Scholar]
- Loizzo, M.R.; Tundis, R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Avallone, L.; Menichini, F. Radical Scavenging, Antioxidant and Metal Chelating Activities of Annona Cherimola Mill. (Cherimoya) Peel and Pulp in Relation to Their Total Phenolic and Total Flavonoid Contents. J. Food Compos. Anal. 2012, 25, 179–184. [Google Scholar] [CrossRef]
- Bigović, D.; Savikin, K.; Janković, T.; Menković, N.; Zdunić, G.; Stanojković, T.; Djurić, Z. Antiradical and Cytotoxic Activity of Different Helichrysum Plicatum Flower Extracts. Nat. Prod. Commun. 2011, 6, 819–822. [Google Scholar]
- Vladić, J.; Nastić, N.; Janković, T.; Šavikin, K.; Menković, N.; Lončarević, I.; Vidović, S. Microencapsulation of Sideritis Raeseri Boiss. & Heldr. Subsp. Raeseri Extract Using Spray Drying with Maltodextrin and Whey Protein. Period. Polytech. Chem. Eng. 2022, 66, 229–238. [Google Scholar] [CrossRef]
- Amidon, G.E.; Houghton, M.E. The Effect of Moisture on the Mechanical and Powder Flow Properties of Microcrystalline Cellulose. Pharm. Res. 1995, 12, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Khelissa, S.; Gharsallaoui, A.; Fadel, A.; Barras, A.; Jama, C.; Jbilou, F.; Chihib, N.-E. Microencapsulation of Benzalkonium Chloride Enhanced Its Antibacterial and Antibiofilm Activities against Listeria Monocytogenes and Escherichia Coli. J. Appl. Microbiol. 2021, 131, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Crouter, A.; Briens, L. The Effect of Moisture on the Flowability of Pharmaceutical Excipients. AAPS PharmSciTech 2014, 15, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Hundre, S.Y.; Karthik, P.; Anandharamakrishnan, C. Effect of Whey Protein Isolate and β-Cyclodextrin Wall Systems on Stability of Microencapsulated Vanillin by Spray–Freeze Drying Method. Food Chem. 2015, 174, 16–24. [Google Scholar] [CrossRef]
- Pasrija, D.; Ezhilarasi, P.N.; Indrani, D.; Anandharamakrishnan, C. Microencapsulation of Green Tea Polyphenols and Its Effect on Incorporated Bread Quality. LWT-Food Sci. Technol. 2015, 64, 289–296. [Google Scholar] [CrossRef]
- Sharifi, F.; Otte, A.; Yoon, G.; Park, K. Continuous In-Line Homogenization Process for Scale-up Production of Naltrexone-Loaded PLGA Microparticles. J. Control. Release 2020, 325, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, J.A.; Santos, E.H.; Hill, L.E.; Gomes, C.L. Antimicrobial and Antioxidant Activities of Carvacrol Microencapsulated in Hydroxypropyl-Beta-Cyclodextrin. LWT-Food Sci. Technol. 2014, 57, 701–709. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A. Spray-Drying of Fruit and Vegetable Juices: Effect of Drying Conditions on the Product Yield and Physical Properties. Trends Food Sci. Technol. 2017, 63, 91–102. [Google Scholar] [CrossRef]
- Zigoneanu, I.G.; Astete, C.E.; Sabliov, C.M. Nanoparticles with Entrapped α-Tocopherol: Synthesis, Characterization, and Controlled Release. Nanotechnology 2008, 19, 105606. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Álvarez-Martínez, J.; González-García, V.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Helichrysum stoechas (L.) Moench Inflorescence Extract for Tomato Disease Management. Molecules 2023, 28, 5861. [Google Scholar] [CrossRef]
- Martins, M.S.; Nascimento, M.H.; Barbosa, L.L.; Campos, L.C.G.; Singh, M.N.; Martin, F.L.; Romão, W.; Filgueiras, P.R.; Barauna, V.G. Detection and Quantification Using ATR-FTIR Spectroscopy of Whey Protein Concentrate Adulteration with Wheat Flour. LWT 2022, 172, 114161. [Google Scholar] [CrossRef]
- Seo, E.-J.; Min, S.-G.; Choi, M.-J. Release Characteristics of Freeze-Dried Eugenol Encapsulated with β -Cyclodextrin by Molecular Inclusion Method. J. Microencapsul. 2010, 27, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Cassol, L.; Noreña, C.P.Z. Microencapsulation and Accelerated Stability Testing of Bioactive Compounds of Hibiscus Sabdariffa. J. Food Meas. Charact. 2021, 15, 1599–1610. [Google Scholar] [CrossRef]
- Jeff Schwegman, J.; Carpenter, J.F.; Nail, S.L. Infrared Microscopy for in Situ Measurement of Protein Secondary Structure during Freezing and Freeze-Drying. J. Pharm. Sci. 2007, 96, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Izutsu, K.; Aoyagi, N.; Kojima, S. Protection of Protein Secondary Structure by Saccharides of Different Molecular Weights during Freeze-Drying. Chem. Pharm. Bull. 2004, 52, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Lević, S.M.; Pavlović, V.B.; Marković, S.B.; Pjanović, R.V.; Đorđević, V.B.; Nedović, V.; Bugarski, B.M. Freeze vs. Spray Drying for Dry Wild Thyme (Thymus serpyllum L.) Extract Formulations: The Impact of Gelatin as a Coating Material. Molecules 2021, 26, 3933. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Másson, M.; Brewster, M.E. Self-Association of Cyclodextrins and Cyclodextrin Complexes. J. Pharm. Sci. 2004, 93, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Cyclodextrins as Encapsulation Agents for Plant Bioactive Compounds. Carbohydr. Polym. 2014, 101, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Şahin-Nadeem, H.; Dinçer, C.; Torun, M.; Topuz, A.; Özdemir, F. Influence of Inlet Air Temperature and Carrier Material on the Production of Instant Soluble Sage (Salvia Fruticosa Miller) by Spray Drying. LWT-Food Sci. Technol. 2013, 52, 31–38. [Google Scholar] [CrossRef]
- Vladić, J.; Ambrus, R.; Szabó-Révész, P.; Vasić, A.; Cvejin, A.; Pavlić, B.; Vidović, S. Recycling of Filter Tea Industry By-Products: Production of A. Millefolium Powder Using Spray Drying Technique. Ind. Crops Prod. 2016, 80, 197–206. [Google Scholar] [CrossRef]
- Mari, A.; Napolitano, A.; Masullo, M.; Pizza, C.; Piacente, S. Identification and Quantitative Determination of the Polar Constituents in Helichrysum Italicum Flowers and Derived Food Supplements. J. Pharm. Biomed. Anal. 2014, 96, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, S.; Aksoy, A.; Sağdiç, O.; Budak, Ü. Phenolic Compounds and Antioxidant and Antimicrobial Properties of Helichrysum Species Collected from Eastern Anatolia, Turkey. Turk. J. Biol. 2010, 34, 463–473. [Google Scholar] [CrossRef]
Samples | Yield | Moisture | BD | TD | CI | HR | Rehydration | pH |
---|---|---|---|---|---|---|---|---|
(%) | (%) | (g/mL) | (g/mL) | (s) | ||||
SHE | 62.48 ± 1.82 bc | 3.43 ± 0.20 a | 0.20 ± 0.01 d | 0.25 ± 0.01 d | 20.92 ± 0.51 e | 1.26 ± 0.01 e | 84.26 ± 1.74 c | 4.68 ± 0.01 e |
SHE+MD | 58.15 ± 1.69 cd | 2.94 ± 0.02 c | 0.22 ± 0.02 cd | 0.27 ± 0.02 d | 20.70 ± 0.46 e | 1.26 ± 0.01 e | 128.70 ± 1.24 a | 4.81 ± 0.00 d |
SHE+WP | 55.89 ± 1.63 d | 3.40 ± 0.01 ab | 0.22 ± 0.01 cd | 0.27 ± 0.01 d | 21.29 ± 0.45 e | 1.27 ± 0.01 e | 124.64 ± 8.06 a | 4.83 ± 0.01 d |
SHE+BCD | 60.24 ± 1.76 cd | 2.85 ± 0.13 cd | 0.23 ± 0.00 bc | 0.40 ± 0.00 ab | 41.17 ± 0.69 a | 1.70 ± 0.02 a | 61.17 ± 2.47 d | 5.05 ± 0.01 a |
SHE+HPBCD | 60.81 ± 1.77 cd | 2.52 ± 0.02 de | 0.23 ± 0.00 bc | 0.35 ± 0.00 c | 33.95 ± 0.20 c | 1.51 ± 0.00 c | 48.51 ± 1.12 e | 4.86 ± 0.01 c |
SHE+MD+BCD | 66.68 ± 1.94 b | 2.26 ± 0.14 e | 0.26 ± 0.01 ab | 0.37 ± 0.02 bc | 30.85 ± 0.85 d | 1.45 ± 0.02 d | 102.27 ± 3.01 b | 4.82 ± 0.02 d |
SHE+WP+BCD | 73.96 ± 2.16 a | 2.71 ± 0.21 cd | 0.25 ± 0.00 ab | 0.40 ± 0.00 ab | 36.62 ± 0.73 b | 1.58 ± 0.02 b | 106.70 ± 6.20 b | 4.83 ± 0.01 d |
SHE+MD+HPBCD | 63.16 ± 1.84 bc | 2.89 ± 0.16 cd | 0.25 ± 0.01 ab | 0.42 ± 0.03 a | 40.28 ± 0.75 a | 1.67 ± 0.02 a | 65.18 ± 3.32 d | 5.02 ± 0.01 b |
SHE+WP+HPBCD | 72.50 ± 2.12 a | 3.02 ± 0.10 bc | 0.27 ± 0.01 a | 0.40 ± 0.00 ab | 34.17 ± 0.83 c | 1.52 ± 0.02 c | 79.01 ± 1.11 c | 4.86 ± 0.00 c |
Samples | d10 a | d50 b | d90 | Span c | D [4,3] | D [3,2] | Uniformity |
---|---|---|---|---|---|---|---|
SHE | 2.08 ± 0.29 de | 6.49 ± 0.86 d | 136.71 ± 17.28 b | 20.74 ± 2.08 a | 30.61 ± 3.15 c | 3.29 ± 0.41 cd | 4.15 ± 0.22 a |
SHE+MD | 1.04 ± 0.15 ef | 3.99 ± 0.27 d | 7.78 ± 0.58 d | 1.69 ± 0.15 d | 4.30 ± 0.57 d | 2.11 ± 0.22 d | 2.03 ± 0.24 bc |
SHE+WP | 1.31 ± 0.07 ef | 4.81 ± 0.60 d | 9.77 ± 0.77 d | 1.76 ± 0.15 d | 9.77 ± 1.27 d | 2.42 ± 0.14 d | 1.76 ± 0.26 cd |
SHE+BCD | 1.09 ± 0.17 ef | 4.19 ± 0.51 d | 8.96 ± 0.93 d | 1.88 ± 0.22 d | 10.94 ± 1.37 d | 2.20 ± 0.14 d | 0.49 ± 0.04 e |
SHE+HPBCD | 0.81 ± 0.10 f | 4.23 ± 0.48 d | 7.82 ± 0.64 d | 1.63 ± 0.13 d | 4.45 ± 0.29 d | 2.12 ± 0.32 d | 0.46 ± 0.06 e |
SHE+MD+BCD | 1.24 ± 0.14 ef | 4.35 ± 0.47 d | 8.39 ± 1.28 d | 1.65 ± 0.16 d | 2.67 ± 0.38 d | 2.31 ± 0.17 d | 0.49 ± 0.04 e |
SHE+WP+BCD | 1.28 ± 0.17 ef | 4.62 ± 0.26 d | 8.70 ± 0.45 d | 1.61 ± 0.13 d | 4.91 ± 0.35 d | 2.38 ± 0.34 d | 0.47 ± 0.04 e |
SHE+MD+HPBCD | 1.30 ± 0.08 ef | 4.86 ± 0.64 d | 9.04 ± 1.23 d | 1.59 ± 0.10 d | 5.13 ± 0.45 d | 2.44 ± 0.12 d | 0.46 ± 0.06 e |
SHE+WP+HPBCD | 1.22 ± 0.13 ef | 4.77 ± 0.45 d | 8.86 ± 1.25 d | 1.60 ± 0.16 d | 5.04 ± 0.48 d | 2.39 ± 0.16 d | 0.46 ± 0.03 e |
Samples | T (°C) | ∆H (J/g) |
---|---|---|
SHE | 128.57 ± 17.73 b | 186.28 ± 32.65 bc |
SHE+MD | 145.77 ± 25.63 ab | 158.23 ± 13.30 bcd |
SHE+WP | 125.45 ± 9.69 b | 262.68 ± 21.37 a |
SHE+BCD | 143.99 ± 24.74 ab | 154.41 ± 8.83 bcd |
SHE+HPBCD | 127.87 ± 15.72 b | 180.56 ± 14.34 bc |
SHE+MD+BCD | 154.42 ± 25.04 ab | 155.14 ± 12.64 bcd |
SHE+WP+BCD | 143.77 ± 21.88 b | 156.04 ± 24.10 bcd |
SHE+MD+HPBCD | 141.97 ± 17.96 b | 269.96 ± 14.66 a |
SHE+WP+HPBCD | 127.88 ± 21.30 b | 170.24 ± 21.66 bc |
MD | 118.60 ± 19.06 b | 126.41 ± 21.44 cd |
WP | 200.76 ± 19.55 a | 104.28 ± 5.65 d |
BCD | 140.12 ± 10.33 ab | 198.51 ± 33.15 b |
HPBCD | 100.31 ± 10.89 b | 177.93 ± 21.56 bc |
Samples | EE (%) | TPC (mg GAE/g) * | TFC (mg Catechin/g) ** |
---|---|---|---|
SHE | 97.25 ± 1.54 a # | 106.32 ± 3.60 a | 21.85 ± 0.52 a |
SHE+MD | 84.56 ± 0.43 de | 87.93 ± 0.44 de | 19.00 ± 0.36 bc |
SHE+WP | 87.92 ± 2.04 cd | 91.42 ± 2.13 cd | 19.54 ± 0.36 c |
SHE+BCD | 92.36 ± 2.49 bc | 96.03 ± 2.59 bc | 19.34 ± 0.16 bc |
SHE+HPBCD | 96.45 ± 0.20 ab | 100.28 ± 0.21 b | 21.55 ± 0.03 a |
SHE+MD+BCD | 82.82 ± 0.83 e | 85.92 ± 0.66 de | 17.63 ± 0.02 cd |
SHE+WP+BCD | 82.40 ± 2.25 e | 85.68 ± 2.33 e | 16.30 ± 1.23 de |
SHE+MD+HPBCD | 80.07 ± 0.58 e | 83.25 ± 0.60 e | 16.08 ± 1.40 de |
SHE+WP+HPBCD | 81.55 ± 2.35 e | 84.79 ± 2.44 e | 15.66 ± 0.06 e |
Samples | Isoquercitrin * | Kaempferol-3-O-glucoside | Kaempferol | Naringenin | Apigenin7-O- glucoside | Apigenin | Naringenin Derivate 1 | Naringenin Derivate 2 | Naringenin Derivate 3 |
---|---|---|---|---|---|---|---|---|---|
SHE | 2.23 ± 0.024 a | 22.59 ± 0.270 a | 0.44 ± 0.013 b | 0.58 ± 0.020 b | 3.79 ± 0.048 a | 2.49 ± 0.036 b | 7.83 ± 0.140 a | 11.19 ± 0.267 a | 19.62 ± 0.260 a |
SHE+MD | 1.80 ± 0.004 d | 18.62 ± 0.067 d | 0.26 ± 0.001 d | 0.25 ± 0.002 d | 3.12 ± 0.011 c | 2.04 ± 0.009 d | 6.30 ± 0.030 d | 9.19 ± 0.027 c | 16.13 ± 0.023 d |
SHE+WP | 1.82 ± 0.001 d | 18.77 ± 0.002 d | 0.18 ± 0.001 e | 0.20 ± 0.009 e | 3.13 ± 0.001 c | 1.86 ± 0.002 e | 6.32 ± 0.001 d | 9.30 ± 0.009 c | 16.58 ± 0.018 c |
SHE+BCD | 1.95 ± 0.004 c | 19.88 ± 0.064 c | 0.31 ± 0.003 c | 0.34 ± 0.003 c | 3.32 ± 0.010 b | 2.16 ± 0.007 c | 6.75 ± 0.026 c | 10.28 ± 0.027 b | 17.93 ± 0.022 b |
SHE+HPBCD | 2.12 ± 0.014 b | 21.78 ± 0.094 b | 0.51 ± 0.010 a | 0.72 ± 0.018 a | 3.76 ± 0.017 a | 2.72 ± 0.018 a | 7.04 ± 0.045 b | 11.15 ± 0.068 a | 19.97 ± 0.121 a |
SHE+MD+BCD | 1.59 ± 0.011 e | 16.61 ± 0.061 e | 0.13 ± 0.010 f | 0.04 ± 0.011 f | 2.76 ± 0.010 d | 1.67 ± 0.019 f | 5.44 ± 0.028 de | 8.66 ± 0.028 d | 15.46 ± 0.272 e |
SHE+WP+BCD | 1.57 ± 0.009 ef | 16.47 ± 0.077 ef | 0.04 ± 0.013 g | 0.01 ± 0.000 g | 2.72 ± 0.015 de | 1.50 ± 0.013 g | 5.42 ± 0.042 e | 8.68 ± 0.072 d | 15.18 ± 0.086 ef |
SHE+MD+HPBCD | 1.54 ± 0.005 f | 16.29 ± 0.045 f | 0.04 ± 0.015 g | 0.01 ± 0.000 g | 2.69 ± 0.006 e | 1.46 ± 0.004 g | 5.37 ± 0.012 e | 8.70 ± 0.014 d | 15.08 ± 0.040 ef |
SHE+WP+HPBCD | 1.56 ± 0.012 ef | 16.44 ± 0.066 ef | 0.14 ± 0.002 f | 0.03 ± 0.001 fg | 2.74 ± 0.006 de | 1.69 ± 0.027 f | 5.43 ± 0.018 e | 8.51 ± 0.022 d | 14.87 ± 0.067 ef |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćujić Nikolić, N.; Jovanović, M.; Radan, M.; Lazarević, Z.; Bigović, D.; Marković, S.; Jovanović Lješković, N.; Šavikin, K. Development of Cyclodextrin-Based Mono and Dual Encapsulated Powders by Spray Drying for Successful Preservation of Everlasting Flower Extract. Pharmaceutics 2024, 16, 861. https://doi.org/10.3390/pharmaceutics16070861
Ćujić Nikolić N, Jovanović M, Radan M, Lazarević Z, Bigović D, Marković S, Jovanović Lješković N, Šavikin K. Development of Cyclodextrin-Based Mono and Dual Encapsulated Powders by Spray Drying for Successful Preservation of Everlasting Flower Extract. Pharmaceutics. 2024; 16(7):861. https://doi.org/10.3390/pharmaceutics16070861
Chicago/Turabian StyleĆujić Nikolić, Nada, Miloš Jovanović, Milica Radan, Zorica Lazarević, Dubravka Bigović, Smilja Marković, Nataša Jovanović Lješković, and Katarina Šavikin. 2024. "Development of Cyclodextrin-Based Mono and Dual Encapsulated Powders by Spray Drying for Successful Preservation of Everlasting Flower Extract" Pharmaceutics 16, no. 7: 861. https://doi.org/10.3390/pharmaceutics16070861
APA StyleĆujić Nikolić, N., Jovanović, M., Radan, M., Lazarević, Z., Bigović, D., Marković, S., Jovanović Lješković, N., & Šavikin, K. (2024). Development of Cyclodextrin-Based Mono and Dual Encapsulated Powders by Spray Drying for Successful Preservation of Everlasting Flower Extract. Pharmaceutics, 16(7), 861. https://doi.org/10.3390/pharmaceutics16070861