Triboelectric Charging Properties of the Functional Groups of Common Pharmaceutical Materials Using Density Functional Theory Calculations
Abstract
:1. Introduction
2. Theoretical Approach
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsusaka, S.; Maruyama, H.; Matsuyama, T.; Ghadiri, M. Triboelectric Charging of Powders: A Review. Chem. Eng. Sci. 2010, 65, 5781–5807. [Google Scholar] [CrossRef]
- Taghavivand, M.; Sowinski, A.; Mehrani, P. Triboelectric Effects of Continuity Additives and a Silica Catalyst Support on Polyethylene Fluidized Bed Wall Fouling. Chem. Eng. Sci. 2021, 245, 116882. [Google Scholar] [CrossRef]
- Nifuku, M.; Katoh, H. A Study on the Static Electrification of Powders during Pneumatic Transportation and the Ignition of Dust Cloud. Powder Technol. 2003, 135–136, 234–242. [Google Scholar] [CrossRef]
- Pu, Y.; Mazumder, M.; Cooney, C. Effects of Electrostatic Charging on Pharmaceutical Powder Blending Homogeneity. J. Pharm. Sci. 2009, 98, 2412–2421. [Google Scholar] [CrossRef] [PubMed]
- Karner, S.; Maier, M.; Urbanetz, N.A.; Karner, S.; Maier, M.; Littringer, E.; Urbanetz, N.A. Surface Roughness Effects on the Tribo-Charging and Mixing Homogeneity of Adhesive Mixtures Used in Dry Powder Inhalers. Powder Technol. 2014, 264, 544–549. [Google Scholar] [CrossRef]
- Lacks, D.J.; Shinbrot, T. Long-Standing and Unresolved Issues in Triboelectric Charging. Nat. Rev. Chem. 2019, 3, 465–476. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, X.B.; Wang, N.; Zhao, X. Atomic Force Microscopy—A Powerful Tool for Studying Contact Electrification. Adv. Mater. Technol. 2023, 8, 2201408. [Google Scholar] [CrossRef]
- Zafar, U.; Alfano, F.; Ghadiri, M. Evaluation of a New Dispersion Technique for Assessing Triboelectric Charging of Powders. Int. J. Pharm. 2018, 543, 151–159. [Google Scholar] [CrossRef]
- Nan, Y.; Shao, J.; Willatzen, M.; Wang, Z.L. Understanding Contact Electrification at Water/Polymer Interface. Res. A Sci. Partn. J. 2022, 2022, 9861463. [Google Scholar] [CrossRef]
- Alfano, F.O.; Di Renzo, A.; Di Maio, F.P.; Ghadiri, M. Computational Analysis of Triboelectrification Due to Aerodynamic Powder Dispersion. Powder Technol. 2021, 382, 491–504. [Google Scholar] [CrossRef]
- Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.M.; Govender, T.; Naicker, T.; Kruger, H.G.; Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; et al. Current Trends in Computer Aided Drug Design and a Highlight of Drugs Discovered via Computational Techniques: A Review. Eur. J. Med. Chem. 2021, 224, 113705. [Google Scholar] [CrossRef]
- Rosenkranz, S.; Breitung-Faes, S.; Kwade, A.; Rosenkranz, S.; Breitung-Faes, S.; Kwade, A. Experimental Investigations and Modelling of the Ball Motion in Planetary Ball Mills. Powder Technol. 2011, 212, 224–230. [Google Scholar] [CrossRef]
- Wong, J.; Kwok, P.C.L.; Chan, H.-K. Electrostatics in Pharmaceutical Solids. Chem. Eng. Sci. 2015, 125, 225–237. [Google Scholar] [CrossRef]
- Lee, V.; James, N.M.; Waitukaitis, S.R.; Jaeger, H.M. Collisional Charging of Individual Submillimeter Particles: Using Ultrasonic Levitation to Initiate and Track Charge Transfer. Phys. Rev. Mater. 2018, 2, 35602. [Google Scholar] [CrossRef]
- Biegaj, K.W.; Rowland, M.G.; Lukas, T.M.; Heng, J.Y.Y. Surface Chemistry and Humidity in Powder Electrostatics: A Comparative Study between Tribocharging and Corona Discharge. ACS Omega 2017, 2, 1576–1582. [Google Scholar] [CrossRef]
- Byun, K.-E.; Cho, Y.; Seol, M.; Kim, S.; Kim, S.-W.; Shin, H.-J.; Park, S.; Hwang, S. Control of Triboelectrification by Engineering Surface Dipole and Surface Electronic State. ACS Appl. Mater. Interfaces 2016, 8, 18519–18525. [Google Scholar] [CrossRef]
- Li, L.-H.; Kontsevoi, O.Y.; Freeman, A.J. Atomic-Scale Understanding of the Interaction of Poly(3-Hexylthiophene) with the NiO (100) Surface: A First-Principles Study. J. Phys. Chem. C 2014, 118, 20298–20305. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Li, H.; Wang, F.; Hu, Y. First-Principles Investigations on the Contact Electrification Mechanism between Metal and Amorphous Polymers for Triboelectric Nanogenerators. Nano Energy 2019, 63, 103864. [Google Scholar] [CrossRef]
- Middleton, J.R.; Scott, A.J.; Storey, R.; Marucci, M.; Ghadiri, M. Prediction of the Effective Work Function of Aspirin and Paracetamol Crystals by Density Functional Theory—A First-Principles Study. Cryst. Growth Des. 2023, 23, 6308–6317. [Google Scholar] [CrossRef] [PubMed]
- Brunsteiner, M.; Zellnitz, S.; Pinto, J.T.; Karrer, J.; Paudel, A. Can We Predict Trends in Tribo-Charging of Pharmaceutical Materials from First Principles? Powder Technol. 2019, 356, 892–898. [Google Scholar] [CrossRef]
- Maurer, R.J.; Freysoldt, C.; Reilly, A.M.; Brandenburg, J.G.; Hofmann, O.T.; Björkman, T.; Lebègue, S.; Tkatchenko, A. Advances in Density-Functional Calculations for Materials Modeling. Annu. Rev. Mater. Res. 2019, 49, 1–30. [Google Scholar] [CrossRef]
- Reilly, A.M.; Cooper, R.I.; Adjiman, C.S.; Bhattacharya, S.; Boese, A.D.; Brandenburg, J.G.; Bygrave, P.J.; Bylsma, R.; Campbell, J.E.; Car, R.; et al. Report on the Sixth Blind Test of Organic Crystal Structure Prediction Methods. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 439–459. [Google Scholar] [CrossRef] [PubMed]
- Obot, I.B.; Macdonald, D.D.; Gasem, Z.M.; Obot, I.B.; Macdonald, D.D.; Gasem, Z.M. Density Functional Theory (DFT) as a Powerful Tool for Designing New Organic Corrosion Inhibitors. Part 1: An Overview. Corros. Sci. 2015, 99, 1–30. [Google Scholar] [CrossRef]
- Robinson, R.L.M.; Geatches, D.; Vatvani, D.R.M.; Marchese Robinson, R.L.; Geatches, D.; Morris, C.; Mackenzie, R.; Maloney, A.G.P.; Roberts, K.J.; Moldovan, A.; et al. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory. J. Chem. Inf. Model. 2019, 59, 4778–4792. [Google Scholar] [CrossRef]
- Akkermans, R.L.C.; Spenley, N.A.; Robertson, S.H. COMPASS III: Automated Fitting Workflows and Extension to Ionic Liquids. Mol. Simul. 2021, 47, 540–551. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Für Krist. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 73005. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, R.W.G. Crystal Structures, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1965; Volume 1. [Google Scholar]
- Bruhn, J.F.; Scapin, G.; Cheng, A.; Mercado, B.Q.; Waterman, D.G.; Ganesh, T.; Dallakyan, S.; Read, B.N.; Nieusma, T.; Lucier, K.W.; et al. Small Molecule Microcrystal Electron Diffraction for the Pharmaceutical Industry—Lessons Learned from Examining over Fifty Samples. Front. Mol. Biosci. 2021, 8, 648603. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theor. Chim. Acta. 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Lowell, J.; Rose-Innes, A.C. Contact Electrification. Adv. Phys. 1980, 29, 947–1023. [Google Scholar] [CrossRef]
- Fatti, G.; Ciniero, A.; Dini, D.; Fatti, G.; Ciniero, A.; Ko, H.; Lee, H.U.; Na, Y.; Jeong, C.K.; Lee, S.; et al. Rational Design Strategy for Triboelectric Nanogenerators Based on Electron Back Flow and Ionic Defects: The Case of Polytetrafluoroethylene. Adv. Electron. Mater. 2023, 9, 2300333. [Google Scholar] [CrossRef]
- Singh-Miller, N.E.; Marzari, N. Surface Energies, Work Functions, and Surface Relaxations of Low-Index Metallic Surfaces from First Principles. Phys. Rev. B 2009, 80, 235407. [Google Scholar] [CrossRef]
- Kawano, H. Effective Work Functions of the Elements: Database, Most Probable Value, Previously Recommended Value, Polycrystalline Thermionic Contrast, Change at Critical Temperature, Anisotropic Dependence Sequence, Particle Size Dependence. Prog. Surf. Sci. 2022, 97, 100583. [Google Scholar] [CrossRef]
- Antony, A.C.; Thelen, D.; Zhelev, N.; Adib, K.; Manley, R.G. Electronic Charge Transfer during Metal/SiO2 Contact: Insight from Density Functional Theory. J. Appl. Phys. 2021, 129, 65304. [Google Scholar] [CrossRef]
- Tao, J.; Wang, L.; Li, J.; Dai, Z. Contact Electrification and Adhesion between Carbon Nanotube and Graphene on Metal Surfaces: Insights from First-Principles Study. J. Bionic Eng. 2022, 19, 103–112. [Google Scholar] [CrossRef]
- Veregin, R.P.N.; Hawkins, M.S.; Li, Q.; Gusarov, S.; Kovalenko, A.; Veregin, R.P.N.; Hawkins, M.S. Linking the Chemistry and Physics of Electronic Charge Transfer in Insulators: Theory and Experiment. J. Imaging Sci. Technol. 2013, 57, 30401–30412. [Google Scholar] [CrossRef]
- Li, Q.; Gusarov, S.; Kovalenko, A.; Veregin, R.P.N.; Veregin, R.P.N. Interfacial Water and Triboelectric Charging: A Theoretical Study of the Role of Water on the PMMA/Silica Tribopair. J. Imaging Sci. Technol. 2015, 59, 40502–40515. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Li, H.; Wang, F.; Yang, W.; Hu, Y. Insights into the Mechanism of Metal-Polymer Contact Electrification for Triboelectric Nanogenerator via First-Principles Investigations. Nano Energy 2018, 48, 607–616. [Google Scholar] [CrossRef]
- Yoshida, M.; Ii, N.; Shimosaka, A.; Shirakawa, Y.; Hidaka, J. Experimental and Theoretical Approaches to Charging Behavior of Polymer Particles. Chem. Eng. Sci. 2006, 61, 2239–2248. [Google Scholar] [CrossRef]
- Lin, S.; Xu, C.; Xu, L.; Wang, Z.L. The Overlapped Electron-Cloud Model for Electron Transfer in Contact Electrification. Adv. Funct. Mater. 2020, 30, 1909724. [Google Scholar] [CrossRef]
System—Xc Functional | Kinetic Energy Cutoff | MP Grid Sampling (a × b × c) | No. of k-Points |
---|---|---|---|
Al—LDA, CA-PZ | 210 | 6 × 6 × 6 | 10 |
Al—GGA, PBE | 210 | 6 × 6 × 6 | 10 |
Cu—LDA, CA-PZ | 450 | 8 × 8 × 8 | 20 |
Cu—GGA, PBE | 450 | 8 × 8 × 8 | 20 |
Ni—LDA, CA-PZ | 440 | 8 × 8 × 8 | 20 |
Ni—GGA, PBE | 440 | 8 × 8 × 8 | 20 |
Paracetamol—LDA, CA-PZ | 630 | 4 × 3 × 2 | 8 |
Paracetamol—GGA, PBE | 630 | 4 × 3 × 2 | 8 |
Lattice Parameters (Å) | |||||||
---|---|---|---|---|---|---|---|
a | b | c | α | β | γ | ||
Al | Experimental [29] | 4.05 | - | - | 90 | 90 | 90 |
DFT—(LDA, CA-PZ) | 3.99 | - | - | 90 | 90 | 90 | |
DFT—(GGA, PBE) | 4.04 | - | - | 90 | 90 | 90 | |
MM—COMPASSIII | 4.04 | - | - | 90 | 90 | 90 | |
Cu | Experimental [29] | 3.60 | - | - | 90 | 90 | 90 |
DFT—(LDA, CA-PZ) | 3.52 | - | - | 90 | 90 | 90 | |
DFT—(GGA, PBE) | 3.63 | - | - | 90 | 90 | 90 | |
MM—COMPASSIII | 3.61 | - | - | 90 | 90 | 90 | |
Ni | Experimental [29] | 3.54 | - | - | 90 | 90 | 90 |
DFT—(LDA, CA-PZ) | 3.42 | - | - | 90 | 90 | 90 | |
DFT—(GGA, PBE) | 3.51 | - | - | 90 | 90 | 90 | |
MM—COMPASSIII | 3.52 | - | - | 90 | 90 | 90 | |
Paracet. | Experimental [30] | 7.07 | 9.19 | 11.49 | 90 | 98.64 | 90 |
DFT—(GGA, PBE) | 7.02 | 9.04 | 11.76 | 90 | 99.32 | 90 | |
MM—COMPASSIII | 7.14 | 8.91 | 11.70 | 90 | 97.03 | 90 |
System | Fermi Energy (eV) | Vacuum Energy (eV) | Theoretical Work Function (eV) |
---|---|---|---|
Isolated Paracetamol | −1.673 | 0.012 | 1.685 |
Al Surface | −2.215 | 0.073 | 2.288 |
Cu Surface | −2.879 | 0.073 | 2.952 |
Ni Surface | −3.403 | 0.057 | 3.460 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Middleton, J.R.; Ghadiri, M.; Scott, A.J. Triboelectric Charging Properties of the Functional Groups of Common Pharmaceutical Materials Using Density Functional Theory Calculations. Pharmaceutics 2024, 16, 433. https://doi.org/10.3390/pharmaceutics16030433
Middleton JR, Ghadiri M, Scott AJ. Triboelectric Charging Properties of the Functional Groups of Common Pharmaceutical Materials Using Density Functional Theory Calculations. Pharmaceutics. 2024; 16(3):433. https://doi.org/10.3390/pharmaceutics16030433
Chicago/Turabian StyleMiddleton, James R., Mojtaba Ghadiri, and Andrew J. Scott. 2024. "Triboelectric Charging Properties of the Functional Groups of Common Pharmaceutical Materials Using Density Functional Theory Calculations" Pharmaceutics 16, no. 3: 433. https://doi.org/10.3390/pharmaceutics16030433
APA StyleMiddleton, J. R., Ghadiri, M., & Scott, A. J. (2024). Triboelectric Charging Properties of the Functional Groups of Common Pharmaceutical Materials Using Density Functional Theory Calculations. Pharmaceutics, 16(3), 433. https://doi.org/10.3390/pharmaceutics16030433