The Preparation of Curcumin-Loaded Pickering Emulsion Using Gelatin–Chitosan Colloidal Particles as Emulsifier for Possible Application as a Bio-Inspired Cosmetic Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation and Characterization of CMC-GA Complexes
2.3. Preparation of Emulsion
2.4. Determination of Creaming Index
2.5. Optical Microscopy of Emulsion
2.6. Rheometric Measurements
2.7. Curcumin Loading in the Emulsion
2.8. Determination of the Sun Protection Factor (SPF)
2.9. Cellular Uptake Studies
3. Results
3.1. Preparation of Composite Colloidal Particles through the Interaction between CMC and GA
3.2. Exploring Composite Colloidal Particles as Emulsifiers for Coconut Oil and Water
3.3. Effect of pH on the Stability of the CMC-GA-Emulsified Pickering Emulsion
3.4. Loading of Curcumin and Estimating the Sun Protection Factor (spf)
3.5. Estimation of the Cellular Uptake of Curcumin through the Pickering Emulsion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gopinath, H.; Karthikeyan, K. Turmeric: A condiment, cosmetic and cure. Indian J. Dermatol. Venereol. Leprol. 2018, 84, 16–21. [Google Scholar] [CrossRef]
- Deng, H.; Wan, M.; Li, H.; Chen, Q.; Li, R.; Liang, B.; Zhu, H. Curcumin protection against ultraviolet-induced photo-damage in Hacat cells by regulating nuclear factor erythroid 2-related factor 2. Bioengineered 2021, 12, 9993–10006. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, R.; Shi, H.; Li, X.; Li, Y.; Taha, A.; Xu, C. Protective effect of curcumin against ultraviolet A irradiation-induced photoaging in human dermal fibroblasts. Mol. Med. Rep. 2018, 17, 7227–7237. [Google Scholar] [CrossRef]
- Kępińska-Pacelik, J.; Biel, W. Turmeric and curcumin-health-promoting properties in humans versus dogs. Int. J. Mol Sci. 2023, 24, 14561. [Google Scholar] [CrossRef]
- Bulnes, S.; Picó-Gallardo, M.; Bengoetxea, H.; Lafuente, J.V. Effects of curcumin nano delivery on schizophrenia and glioblastoma. Int. Rev. Neurobiol. 2023, 171, 163–203. [Google Scholar]
- Di Lorenzo, R.; Forgione, F.; Bernardi, A.; Sacchi, A.; Laneri, S.; Greco, G. Curcumin as a topical agent in clinical studies. Skin Pharmacol. Physiol. 2023, 36, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, 2895–2900. [Google Scholar] [PubMed]
- Kumar, B.; Aggarwal, R.; Prakash, U.; Sahoo, P.K. Emerging therapeutic potential of curcumin in the management of dermatological diseases: An extensive review of drug and pharmacological activities. Futur. J. Pharm. Sci. 2023, 9, 42. [Google Scholar] [CrossRef]
- Bhalke, R.D.; Kulkarni, S.S.; Kendre, P.N.; Pande, V.V.; Giri, M.A. A facile approach to fabrication and characterization of novel herbal microemulsion-based UV shielding cream. Future J. Pharm. Sci. 2020, 6, 76. [Google Scholar]
- Scomoroscenco, C.; Teodorescu, M.; Raducan, A.; Stan, M.; Voicu, S.N.; Trica, B.; Ninciuleanu, C.M.; Nistor, C.L.; Mihaescu, C.I.; Petcu, C.; et al. Novel gel microemulsion as topical drug delivery system for curcumin in dermatocosmetics. Pharmaceutics 2021, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, I.; Jasmin, L.D.; Randjelovic, D.; Zugic, A.; Tadic, V.; Markovic, B.; Cekic, N.; Zivkovic, L.; Topalovic, D.; Spremo-Potparevic, B.; et al. Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. Int. J. Pharm. 2018, 550, 333–346. [Google Scholar] [CrossRef]
- Aboudzadeh, M.A. Emulsion-Based Encapsulation of Antioxidants, 1st ed.; Springer: Cambridge, UK, 2020; pp. 1–473. [Google Scholar]
- Berton-Carabin, C.C.; Schroën, K. Pickering emulsions for food applications: Background, trends, and challenges. Annu. Rev. Food Sci. Technol. 2015, 6, 263–297. [Google Scholar] [CrossRef]
- Pickering, S.U. Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Zhan, F.; Youssef, M.; Li, J.; Li, B. Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquid and liquid-gas interfaces. Adv. Colloid Interface Sci. 2022, 308, 102743. [Google Scholar] [CrossRef] [PubMed]
- Hunter, T.N.; Pugh, R.J.; Franks, G.V.; Jameson, G.J. The role of particles in stabilising foams and emulsions. Adv. Colloid Interface Sci. 2008, 137, 57–81. [Google Scholar] [CrossRef]
- Chevalier, Y.; Bolzinger, M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Gordobil, O.; Blažević, N.; Simonič, M.; Sandak, A. Potential of lignin multifunctionality for a sustainable skincare: Impact of emulsification process parameters and oil-phase on the characteristics of O/W Pickering emulsions. Int. J. Biol. Macromol. 2023, 233, 123561. [Google Scholar] [CrossRef] [PubMed]
- Binks, B.P.; Clint, J.H.; Mackenzie, G.; Simcock, C.; Whitby, C.P. Naturally occurring spore particles at planar fluid interfaces and in emulsions. Langmuir 2005, 21, 8161–8167. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Dong, M.; Huang, J.; Lin, G.; Liang, J.; Deng, S.; Gu, C.; Yang, Q. Preparation and Physico-Chemical Characterization of OSA-Modified Starches from Different Botanical Origins and Study on the Properties of Pickering Emulsions Stabilized by These Starches. Polymers 2023, 15, 706. [Google Scholar] [CrossRef]
- Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 2012, 13, 267–275. [Google Scholar] [CrossRef]
- Tolstoguzov, V.B. Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydrocoll. 1991, 4, 429–468. [Google Scholar] [CrossRef]
- Grinberg, V.Y.; Tolstoguzov, V.B. Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocoll. 1997, 11, 145–158. [Google Scholar] [CrossRef]
- Alves, M.M.; Garnier, C.; Lefebvre, J.; Gonçalves, M.P. Microstructure and flow behavior of liquid water-gelatin-locust bean gum systems. Food Hydrocoll. 2001, 15, 117–125. [Google Scholar] [CrossRef]
- Klinkesorn, U. The Role of Chitosan in Emulsion Formation and Stabilization. Food Rev. Int. 2013, 29, 371–393. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Kumar, M.N.; Muzzarelli, R.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004, 104, 6017–6084. [Google Scholar] [CrossRef]
- Bhawana; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J. Agric. Food Chem. 2011, 59, 2056–2061. [Google Scholar] [CrossRef] [PubMed]
- Lankalapalli, S.; Kolapalli, V.R. Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian J. Pharm. Sci. 2009, 71, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.D.; Saraf, S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacogn. Res. 2010, 2, 22–25. [Google Scholar]
- de Abreu, F.R.; Campana, S.P. Preparation and characterization of carboxymethylchitosan. Polímeros Ciência Tecnol. 2005, 15, 79–83. [Google Scholar] [CrossRef]
- Haririan, Y.; Asefnejad, A.; Hamishehkar, H.; Farahpour, M.R. Carboxymethyl chitosan-gelatin-mesoporous silica nanoparticles containing Myrtus communis L. extract as a novel transparent film wound dressing. Int. J. Biol. Macromol. 2023, 253, 127081. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, Y.; Ding, S.; Qu, L.; Hem, R.; Dai, C. Emulsification and encapsulation properties of conjugates formed between whey protein isolate and carboxymethyl cellulose under acidic conditions. Food Chem. 2024, 430, 136995. [Google Scholar] [CrossRef] [PubMed]
- Firebaugh, J.D.; Daubert, C.R. Emulsifying and Foaming Properties of a Derivatized Whey Protein Ingredient. Inter. J. Food Prop. 2005, 8, 243–253. [Google Scholar] [CrossRef]
- Dutra, E.A.; Oliveira, D.A.G.; Kedor- Hackmann, E.R.M.; Santoro, M.I.R.M. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Braz. J. Pharm. Sci. 2004, 40, 381–385. [Google Scholar] [CrossRef]
- Sayre, R.M.; Agin, P.P.; Levee, G.J.; Marlowe, E. Comparison of in-vivo and in-vitro testing of sunscreening formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Das, R.P.; Gandhi, V.V.; Singh, B.G.; Kunwar, A. Balancing loading, cellular uptake, and toxicity of gelatin-pluronic nanocomposite for drug delivery: Influence of HLB of pluronic. J. Biomed. Mater. Res. A 2022, 110, 304–315. [Google Scholar] [CrossRef]
- Shibayama, M.; Okamoto, M. Dynamic light scattering study on gelatin aqueous solutions and gels. J. Chem. Phys. 2001, 115, 4285–4291. [Google Scholar] [CrossRef]
- Almutairy, B.K.; Alshetaili, A.; Alali, A.S.; Ahmed, M.M.; Anwer, M.K.; Aboudzadeh, M.A. Design of olmesartan medoxomil-loaded nanosponges for hypertension and lung cancer treatments. Polymers 2021, 13, 2272. [Google Scholar] [CrossRef]
- Marto, J.; Gouveia, L.F.; Gonçalves, L.; Chiari-Andréo, B.G.; Isaac, V.; Pinto, P.; Oliveira, E.; Almeida, A.J.; Ribeiro, H.M. Design of novel starch-based Pickering emulsions as platforms for skin photoprotection. J. Photochem. Photobiol. B Biol. 2016, 162, 56–64. [Google Scholar] [CrossRef]
- Das, R.P.; Gandhi, V.V.; Verma, G.; Ajish, J.K.; Singh, B.G.; Kunwar, A. Gelatin-lecithin-F127 gel mediated self-assembly of curcumin vesicles for enhanced wound healing. Int. J. Biol. Macromol. 2022, 210, 403–414. [Google Scholar] [CrossRef]
- Aboudzadeh, M.A.; Shaplov, A.S.; Hernandez, G.; Vlasov, P.S.; Lozinskaya, E.I.; Pozo-Gonzalo, C.; Forsyth, M.; Vygodskii, Y.S.; Mecerreyes, D. Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds. J. Mater. Chem. A 2015, 3, 2338–23043. [Google Scholar] [CrossRef]
- Pérez-Salas, J.L.; Medina-Torres, L.; Rocha-Guzmán, N.E.; Calderas, F.; González-Laredo, R.F.; Bernad-Bernad, M.J.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A. A water in oil gelled emulsion as a topical release vehicle for curcumin. Starch 2022, 74, 2200006. [Google Scholar] [CrossRef]
- Ergin, A.D.; Inal, O.; Barkat, A. In vitro and ex vivo assessments of surfactant-free topical curcumin emulgel. J. Res. Pharm. 2023, 27, 544–556. [Google Scholar]
- Wei, Z.; Zhanga, H.; Huang, Q. Curcumin-loaded Pickering emulsion stabilized by insoluble complexes involving ovotransferrin–gallic acid conjugates and carboxymethyldextran. Food Funct. 2019, 10, 4911–4923. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Tartéb, R.; Nuria, C. Acevedo, curcumin encapsulation in Pickering emulsions co-stabilized by starch nanoparticles and chitin nanofibers. RSC Adv. 2021, 11, 16275–16284. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, C.; Liu, X.; Mackie, A.; Zhang, M.; Dai, L.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Co-encapsulation of curcumin and β-carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocoll. 2022, 122, 107064. [Google Scholar] [CrossRef]
- Ahmed, S.; Ikram, S. Chitosan and gelatin based biodegradable packaging films with UV-light protection. J. Photochem. Photobiol. B Biol. 2016, 163, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Kulka, K.; Sionkowska, A. Chitosan based materials in cosmetic applications: A review. Molecules 2023, 28, 1817. [Google Scholar] [CrossRef] [PubMed]
- Karamanlioglu, M.; Yesilkir-Baydar, S. Production and characterization of a coconut oil incorporated gelatin-based film and its potential biomedical application. Biomed. Mater. 2022, 17, 045014. [Google Scholar] [CrossRef]
- Leśnik, P.; Woźnica-Niesobska, E.; Janc, J.; Mierzchała-Pasierb, M.; Łysenko, L. Effect of a 3% gelatin solution on urinary KIM-1 levels in patients after thyroidectomy: A preliminary randomized controlled trial. Sci. Rep. 2021, 11, 23617. [Google Scholar] [CrossRef]
- Shariatinia, Z. Carboxymethyl chitosan: Properties and biomedical applications. Int. J. Biol. Macromol. 2018, 120 Pt B, 1406–1419. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Huang, X.; Gaenzle, M.; Wu, Z.; Nishinari, K.; Yang, N.; Fang, Y. Ambient storage of microencapsulated Lactobacillus plantarum ST-III by complex coacervation of type-A gelatin and gum arabic. Food Funct. 2018, 9, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Kalliola, S.; Repo, E.; Srivastava, V.; Zhao, F.; Heiskanen, J.P.; Sirviö, J.A.; Liimatainen, H.; Sillanpää, M. Carboxymethyl Chitosan and Its Hydrophobically Modified Derivative as pH-Switchable Emulsifiers. Langmuir 2018, 34, 2800–2806. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Heuzey, M.C. Pickering emulsion gels based on insoluble chitosan/gelatin electrostatic complexes. RSC Adv. 2016, 6, 89776–89784. [Google Scholar] [CrossRef]
- Luna-Canales, I.C.; Delgado-Buenrostro, N.L.; Chirino, Y.I.; Nava-Arzaluz, G.; Piñón-Segundo, E.; Martínez-Cruz, G.; Ganem-Rondero, A. Curcumin-loaded microemulsion: Formulation, characterization, and in vitro skin penetration. Drug Dev. Ind. Pharm. 2023, 49, 42–51. [Google Scholar] [CrossRef]
- Khan, S.; Akhtar, N.; Minhas, M.U.; Shah, H.; Khan, K.U.; Thakur, R.R.S. A difunctional Pluronic®127-based in situ formed injectable thermogels as prolonged and controlled curcumin depot, fabrication, in vitro characterization and in vivo safety evaluation. J. Biomater. Sci. Polym Ed. 2021, 32, 281–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.G.; Bagora, N.; Nayak, M.; Ajish, J.K.; Gupta, N.; Kunwar, A. The Preparation of Curcumin-Loaded Pickering Emulsion Using Gelatin–Chitosan Colloidal Particles as Emulsifier for Possible Application as a Bio-Inspired Cosmetic Formulation. Pharmaceutics 2024, 16, 356. https://doi.org/10.3390/pharmaceutics16030356
Singh BG, Bagora N, Nayak M, Ajish JK, Gupta N, Kunwar A. The Preparation of Curcumin-Loaded Pickering Emulsion Using Gelatin–Chitosan Colloidal Particles as Emulsifier for Possible Application as a Bio-Inspired Cosmetic Formulation. Pharmaceutics. 2024; 16(3):356. https://doi.org/10.3390/pharmaceutics16030356
Chicago/Turabian StyleSingh, Beena G., Nalin Bagora, Minati Nayak, Juby K. Ajish, Nitish Gupta, and Amit Kunwar. 2024. "The Preparation of Curcumin-Loaded Pickering Emulsion Using Gelatin–Chitosan Colloidal Particles as Emulsifier for Possible Application as a Bio-Inspired Cosmetic Formulation" Pharmaceutics 16, no. 3: 356. https://doi.org/10.3390/pharmaceutics16030356
APA StyleSingh, B. G., Bagora, N., Nayak, M., Ajish, J. K., Gupta, N., & Kunwar, A. (2024). The Preparation of Curcumin-Loaded Pickering Emulsion Using Gelatin–Chitosan Colloidal Particles as Emulsifier for Possible Application as a Bio-Inspired Cosmetic Formulation. Pharmaceutics, 16(3), 356. https://doi.org/10.3390/pharmaceutics16030356