Improvement of End-of-Synthesis Radiochemical Purity of 177Lu-DOTA-PSMA-Ligands with Alternative Synthesis Approaches: Conversion Upswing and Side-Products Minimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Lutetium-177
2.3. Radiochemical Synthesis
- (1)
- the molar ratio [M(Lu)]:[L(PSMA)] was 1:10 with the lutetium-177 activity in the sample of 200–500 MBq/mL and a PSMA-617 concentration of 20 μg/mL; when modeling samples with clinical activity, the molar ratio M:L was maintained at 1:2 (with a fixed PSMA-617 concentration of 20 μg/mL ≈ 19.2 μmol/L, this corresponds to lutetium-177 activity concentration of ~7.4 GBq/mL);
- (2)
- the concentrations of the buffering agent (sodium acetate) were 0.03, 0.1, 0.25, 0.5 or 1.0 mol/L;
- (3)
- the pH of the final mixture was 4.6 ± 0.1 for all samples, except for the series of experiments studying the effect of acidity level on the radiochemical conversion kinetic (pH 6 and 8 in this series was maintained using Tris at the same concentration as sodium acetate);
- (4)
- the volume fraction of ethanol was 0–80%.
2.4. TLC and HPLC Analysis of Preparations
2.5. Mass Spectrometry for Identification of Side Products
3. Results
3.1. HPLC Analysis of 177Lu-PSMA Preparations and Identification of Side-Products
3.2. Radiochemical Conversion and Kinetics of Lutetium-177 Incorporation into the Structure of PSMA-617
3.3. Microwave-Supported Synthesis
3.4. Synthesis in Ethanol-Containing Medium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burkett, B.J.; Bartlett, D.J.; McGarrah, P.W.; Lewis, A.R.; Johnson, D.R.; Berberoğlu, K.; Pandey, M.K.; Packard, A.T.; Halfdanarson, T.R.; Hruska, C.B.; et al. A Review of Theranostics: Perspectives on Emerging Approaches and Clinical Advancements. Radiol. Imaging Cancer 2023, 5, e220157. [Google Scholar] [CrossRef]
- Chakraborty, K.; Mondal, J.; An, J.M.; Park, J.; Lee, Y.K. Advances in Radionuclides and Radiolabelled Peptides for Cancer Therapeutics. Pharmaceutics 2023, 15, 971. [Google Scholar] [CrossRef] [PubMed]
- Lepareur, N.; Ramée, B.; Mougin-Degraef, M.; Bourgeois, M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023, 15, 1733. [Google Scholar] [CrossRef] [PubMed]
- Jadvar, H. Targeted Radionuclide Therapy: An Evolution toward Precision Cancer Treatment. Am. J. Roentgenol. 2017, 209, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Lapi, S.E.; Scott, P.J.H.; Scott, A.M.; Windhorst, A.D.; Zeglis, B.M.; Abdel-Wahab, M.; Baum, R.P.; Buatti, J.M.; Giammarile, F.; Kiess, A.P.; et al. Recent Advances and Impending Challenges for the Radiopharmaceutical Sciences in Oncology. Lancet Oncol. 2024, 25, e236–e249. [Google Scholar] [CrossRef]
- Furlong, A. Nuclear Medicine Is Big Pharma’s New Target in Cancer Race—Bloomberg. Available online: https://www.bloomberg.com/news/articles/2024-04-12/nuclear-medicine-is-big-pharma-s-new-target-in-cancer-race (accessed on 15 September 2024).
- Dolgin, E. Radioactive Drugs Emerge from the Shadows to Storm the Market. Nat. Biotechnol. 2018, 36, 1125–1127. [Google Scholar] [CrossRef]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical Therapy in Cancer: Clinical Advances and Challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef]
- Herrero Álvarez, N.; Bauer, D.; Hernández-Gil, J.; Lewis, J.S. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021, 16, 2909–2941. [Google Scholar] [CrossRef]
- Banerjee, S.; Pillai, M.R.A.; Knapp, F.F. Lutetium-177 Therapeutic Radiopharmaceuticals: Linking Chemistry, Radiochemistry, and Practical Applications. Chem. Rev. 2015, 115, 2934–2974. [Google Scholar] [CrossRef]
- Chakravarty, R.; Chakraborty, S. A Review of Advances in the Last Decade on Targeted Cancer Therapy Using 177Lu: Focusing on 177Lu Produced by the Direct Neutron Activation Route. Am. J. Nucl. Med. Mol. Imaging 2021, 11, 443. [Google Scholar]
- Hofland, J.; Brabander, T.; Verburg, F.A.; Feelders, R.A.; de Herder, W.W. Peptide Receptor Radionuclide Therapy. J. Clin. Endocrinol. Metab. 2022, 107, 3199–3208. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.; Fan, M.; Lin, B.; Gao, F.; Tan, B.; Du, X. Current Clinical Application of Lutetium-177 in Solid Tumors (Review). Exp. Ther. Med. 2024, 27, 225. [Google Scholar] [CrossRef] [PubMed]
- Hennrich, U.; Kopka, K. Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef] [PubMed]
- Hennrich, U.; Eder, M. [177Lu]Lu-PSMA-617 (PluvictoTM): The First FDA-Approved Radiotherapeutical for Treatment of Prostate Cancer. Pharmaceuticals 2022, 15, 1292. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Wu, F.; Wang, Y.; Liu, Z.; Hu, H.; Xu, K. Global Burden of Prostate Cancer and Association with Socioeconomic Status, 1990–2019: A Systematic Analysis from the Global Burden of Disease Study. J. Epidemiol. Glob. Health 2023, 13, 407–421. [Google Scholar] [CrossRef]
- Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors—A Systematic Review. Eur. Urol. 2023, 84, 191–206. [Google Scholar] [CrossRef]
- Alam, M.R.; Singh, S.B.; Thapaliya, S.; Shrestha, S.; Deo, S.; Khanal, K.; Alam, M.R.; Singh, S.B.; Thapaliya, S.; Shrestha, S.; et al. A Review of 177Lutetium-PSMA and 225Actinium-PSMA as Emerging Theranostic Agents in Prostate Cancer. Cureus 2022, 14, e29369. [Google Scholar] [CrossRef]
- Awang, Z.H.; Essler, M.; Ahmadzadehfar, H. Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Current Approaches. Radiat. Oncol. 2018, 13, 98. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Ling, S.W.; de Blois, E.; Hooijman, E.; van der Veldt, A.; Brabander, T. Advances in 177Lu-PSMA and 225Ac-PSMA Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Pharmaceuticals 2022, 14, 2166. [Google Scholar] [CrossRef]
- Chatalic, K.L.S.; Heskamp, S.; Konijnenberg, M.; Molkenboer-Kuenen, J.D.M.; Franssen, G.M.; Clahsen-van Groningen, M.C.; Schottelius, M.; Wester, H.J.; van Weerden, W.M.; Boerman, O.C.; et al. Towards Personalized Treatment of Prostate Cancer: PSMAI&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent. Theranostics 2016, 6, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Privé, B.M.; Janssen, M.J.R.; Van Oort, I.M.; Muselaers, C.H.J.; Jonker, M.A.; De Groot, M.; Mehra, N.; Verzijlbergen, J.F.; Scheenen, T.W.J.; Zámecnik, P.; et al. Lutetium-177-PSMA-I&T as Metastases Directed Therapy in Oligometastatic Hormone Sensitive Prostate Cancer, a Randomized Controlled Trial. BMC Cancer 2020, 20, 884. [Google Scholar] [CrossRef]
- Parent, E.E.; Savir-Baruch, B.; Gayed, I.W.; Almaguel, F.; Chin, B.B.; Pantel, A.R.; Armstrong, E.; Morley, A.; Ippisch, R.C.; Flavell, R.R. 177Lu-PSMA Therapy. J. Nucl. Med. Technol. 2022, 50, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, C.; Zhang, J.; Kulkarni, H.R.; Chen, X.; Müller, D.; Baum, R.P. Prostate-Specific Membrane Antigen Radioligand Therapy Using 177Lu-PSMA I&T and 177Lu-PSMA-617 in Patients with Metastatic Castration-Resistant Prostate Cancer: Comparison of Safety, Biodistribution, and Dosimetry. J. Nucl. Med. 2022, 63, 1199–1207. [Google Scholar] [CrossRef]
- Kramer, V.; Fernández, R.; Lehnert, W.; Jiménez-Franco, L.D.; Soza-Ried, C.; Eppard, E.; Ceballos, M.; Meckel, M.; Benešová, M.; Umbricht, C.A.; et al. Biodistribution and Dosimetry of a Single Dose of Albumin-Binding Ligand [177Lu]Lu-PSMA-ALB-56 in Patients with MCRPC. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 893–903. [Google Scholar] [CrossRef]
- Neels, O.C.; Kopka, K.; Liolios, C.; Afshar-Oromieh, A. Radiolabeled PSMA Inhibitors. Cancers 2021, 13, 6255. [Google Scholar] [CrossRef]
- dos Santos, J.C.; Schäfer, M.; Bauder-Wüst, U.; Beijer, B.; Eder, M.; Leotta, K.; Kleist, C.; Meyer, J.P.; Dilling, T.R.; Lewis, J.S.; et al. Refined Chelator Spacer Moieties Ameliorate the Pharmacokinetics of PSMA-617. Front. Chem. 2022, 10, 898692. [Google Scholar] [CrossRef]
- Abouzayed, A.; Seitova, K.; Lundmark, F.; Bodenko, V.; Oroujeni, M.; Tolmachev, V.; Rosenström, U.; Orlova, A. 177Lu-Labeled PSMA Targeting Therapeutic with Optimized Linker for Treatment of Disseminated Prostate Cancer; Evaluation of Biodistribution and Dosimetry. Front. Oncol. 2023, 13, 1221103. [Google Scholar] [CrossRef]
- Murce, E.; De Blois, E.; Van Den Berg, S.; De Jong, M.; Seimbille, Y. Synthesis and Radiolabelling of PSMA-Targeted Derivatives Containing GYK/MVK Cleavable Linkers. R. Soc. Open Sci. 2023, 10, 220950. [Google Scholar] [CrossRef]
- Kuo, H.T.; Lin, K.S.; Zhang, Z.; Zhang, C.; Merkens, H.; Tan, R.; Roxin, A.; Uribe, C.F.; Bénard, F. What a Difference a Methylene Makes: Replacing Glu with Asp or Aad in the Lys-Urea-Glu Pharmacophore of PSMA-Targeting Radioligands to Reduce Kidney and Salivary Gland Uptake. Theranostics 2022, 12, 6179–6188. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Duan, X.; Yang, X.; Wang, F.; Zhang, J. Optimized Therapeutic 177Lu-Labeled PSMA-Targeted Ligands with Improved Pharmacokinetic Characteristics for Prostate Cancer. Pharmaceuticals 2022, 15, 1530. [Google Scholar] [CrossRef] [PubMed]
- de Zanger, R.M.S.; Chan, H.S.; Breeman, W.A.P.; de Blois, E. Maintaining Radiochemical Purity of [177Lu]Lu-DOTA-PSMA-617 for PRRT by Reducing Radiolysis. J. Radioanal. Nucl. Chem. 2019, 321, 285–291. [Google Scholar] [CrossRef]
- Larenkov, A.; Mitrofanov, I.; Pavlenko, E.; Rakhimov, M. Radiolysis-Associated Decrease in Radiochemical Purity of 177Lu-Radiopharmaceuticals and Comparison of the Effectiveness of Selected Quenchers against This Process. Molecules 2023, 28, 1884. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Tönnesmann, R.; Hierlmeier, I.; Maus, S.; Rosar, F.; Ruf, J.; Holland, J.P.; Ezziddin, S.; Bartholomä, M.D. Identification, Characterization, and Suppression of Side Products Formed during the Synthesis of [177Lu]Lu-PSMA-617. J. Med. Chem. 2021, 64, 4960–4971. [Google Scholar] [CrossRef]
- Ioppolo, J.A.; Alvarez de Eulate, E.; Cullen, D.R.; Mohamed, S.; Morandeau, L. Development of a High-Performance Liquid Chromatography Method for Rapid Radiochemical Purity Measurement of [18F]PSMA-1007, a PET Radiopharmaceutical for Detection of Prostate Cancer. J. Label. Compd. Radiopharm. 2023, 66, 58–72. [Google Scholar] [CrossRef]
- Schmitl, S.; Raitanen, J.; Witoszynskyj, S.; Patronas, E.M.; Nics, L.; Ozenil, M.; Weissenböck, V.; Mindt, T.L.; Hacker, M.; Wadsak, W.; et al. Quality Assurance Investigations and Impurity Characterization during Upscaling of [177Lu]Lu-PSMAI&T. Molecules 2023, 28, 7696. [Google Scholar] [CrossRef]
- Iannone, M.N.; Valtorta, S.; Stucchi, S.; Altomonte, S.; Turolla, E.A.; Vino, E.; Rainone, P.; Zecca, V.; Lo Dico, A.; Maspero, M.; et al. Automated Radiosynthesis and Preclinical Evaluation of Two New PSMA-617 Derivatives Radiolabelled via [18F]AlF2+ Method. EJNMMI Radiopharm. Chem. 2024, 9, 50. [Google Scholar] [CrossRef]
- Larenkov, A.A.; Mitrofanov, Y.A.; Rakhimov, M.G. Features and Practical Aspects of Radiochemical Purity Determination of Receptor-Specific Lu-177 Radiopharmaceuticals as Exemplified by [177Lu]Lu–PSMA-617. Bull. Sci. Cent. Expert Eval. Med. Prod. Regul. Res. Med. Eval. 2022, 12, 455–467. [Google Scholar] [CrossRef]
- Cankaya, A.; Balzer, M.; Amthauer, H.; Brenner, W.; Spreckelmeyer, S. Optimization of 177Lu-Labelling of DOTA-TOC, PSMA-I&T and FAPI-46 for Clinical Application. EJNMMI Radiopharm. Chem. 2023, 8, 10. [Google Scholar] [CrossRef]
- Eryilmaz, K.; Kilbas, B. Fully-Automated Synthesis of 177Lu Labelled FAPI Derivatives on the Module Modular Lab-Eazy. EJNMMI Radiopharm. Chem. 2021, 6, 16. [Google Scholar] [CrossRef]
- Breeman, W.A.P.; De Jong, M.; Visser, T.J.; Erion, J.L.; Krenning, E.P. Optimising Conditions for Radiolabelling of DOTA-Peptides with 90Y, 111In and 177Lu at High Specific Activities. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Sarbisheh, E.K.; Price, E.W. The Radiopharmaceutical Chemistry of the Radioisotopes of Lutetium and Yttrium. In Radiopharmaceutical Chemistry; Springer: Berlin/Heidelberg, Germany, 2019; pp. 359–370. [Google Scholar] [CrossRef]
- Tóth, E.; Brücher, E. Stability Constants of the Lanthanide(III)-1,4,7,10-Tetraazacyclododecane-N,N′,N″,N‴-Tetraacetate Complexes. Inorganica Chim. Acta 1994, 221, 165–167. [Google Scholar] [CrossRef]
- Brücher, E.; Lázár, I.; Tóth, I. Kinetics of Formation and Dissociation of Lanthanide(III)-DOTA Complexes. Inorg. Chem. 1994, 33, 4070–4076. [Google Scholar] [CrossRef]
- Anderegg, G.; Arnaud-Neu, F.; Delgado, R.; Felcman, J.; Popov, K. Critical Evaluation of Stability Constants of Metal Complexes of Complexones for Biomedical and Environmental Applications (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1445–1495. [Google Scholar] [CrossRef]
- Guleria, M.; Sharma, R.; Amirdhanayagam, J.; Sarma, H.D.; Rangarajan, V.; Dash, A.; Das, T. Formulation and Clinical Translation of [177Lu]Lu-Trastuzumab for Radioimmunotheranostics of Metastatic Breast Cancer. RSC Med. Chem. 2021, 12, 263–277. [Google Scholar] [CrossRef]
- Wojdowska, W.; Karczmarczyk, U.; Maurin, M.; Garnuszek, P.; Mikolajczak, R. Standardization of Procedures for the Preparation of 177Lu- and 90Y-Labeled DOTA-Rituximab Based on the Freeze-Dried Kit Formulation. Curr. Radiopharm. 2015, 8, 62–68. [Google Scholar] [CrossRef]
- Carpanese, D.; Ferro-Flores, G.; Ocampo-Garcia, B.; Santos-Cuevas, C.; Salvarese, N.; Figini, M.; Fracasso, G.; De Nardo, L.; Bolzati, C.; Rosato, A.; et al. Development of 177Lu-ScFvD2B as a Potential Immunotheranostic Agent for Tumors Overexpressing the Prostate Specific Membrane Antigen. Sci. Rep. 2020, 10, 9313. [Google Scholar] [CrossRef]
- Kukis, D.L.; DeNardo, S.J.; DeNardo, G.L.; O’Donnell, R.T.; Meares, C.F. Optimized Conditions for Chelation of Yttrium-90-DOTA Immunoconjugates. J. Nucl. Med. 1998, 39, 2105–2110. [Google Scholar]
- Liu, S.; Ellars, C.E.; Edwards, D.S. Ascorbic Acid: Useful as a Buffer Agent and Radiolytic Stabilizer for Metalloradiopharmaceuticals. Bioconjug. Chem. 2003, 14, 1052–1056. [Google Scholar] [CrossRef]
- Liu, S.; Cheung, E.; Ziegler, M.C.; Rajopadhye, M.; Edwards, D.S. 90Y and 177Lu Labeling of a DOTA-Conjugated Vitronectin Receptor Antagonist Useful for Tumor Therapy. Bioconjug. Chem. 2001, 12, 559–568. [Google Scholar] [CrossRef]
- Suzuki, Y.; Nagayama, T.; Sekine, M.; Mizuno, A.; Yamaguchi, K. Precipitation Incidence of the Lanthanoid(III) Hydroxides. J. Less Common Met. 1986, 126, 351–356. [Google Scholar] [CrossRef]
- Parus, J.; Pawlak, D.; Mikolajczak, R.; Duatti, A. Chemistry and Bifunctional Chelating Agents for Binding 177Lu. Curr. Radiopharm. 2015, 8, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Ekberg, C.; Brown, P.L. Hydrolysis of Metal Ions; Brown, P.L., Ekberg, C., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; ISBN 978-3-527-33010-2. [Google Scholar]
- López-González, H.; Jiménez-Reyes, M.; Solache-Ríos, M.; Rojas-Hernández, A. Solubility and Hydrolysis of Lutetium at Different [Lu3+] Initial. J. Radioanal. Nucl. Chem. 2007, 274, 103–108. [Google Scholar] [CrossRef]
- Stone-Elander, S.; Elander, N. Microwave Cavities: Some Parameters Affecting Their Use in Radiolabelling Reactions. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1991, 42, 885–887. [Google Scholar] [CrossRef]
- Elander, N.; Jones, J.R.; Lu, S.-Y.; Stone-Elander, S. Microwave-Enhanced Radiochemistry. Chem. Soc. Rev. 2000, 29, 239–249. [Google Scholar] [CrossRef]
- Stone-Elander, S.; Elander, N. Microwave Applications in Radiolabelling with Short-Lived Positron-Emitting Radionuclides. J. Label. Compd. Radiopharm. 2002, 45, 715–746. [Google Scholar] [CrossRef]
- Stone-Elander, S.; Elander, N.; Thorell, J.O.; Fredriksson, A. Microwaving in F-18 Chemistry: Quirks and Tweaks. In PET Chemistry; Ernst Schering Research Foundation Workshop; Springer: Berlin/Heidelberg, Germany, 2007; pp. 243–269. [Google Scholar] [CrossRef]
- Jones, J.R.; Lu, S.Y. Microwave-Enhanced Radiochemistry. In Microwaves in Organic Synthesis, 2nd ed.; Loupy, A., Ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2008; pp. 820–859. [Google Scholar] [CrossRef]
- Stone-Elander, S.; Elander, N. The Use of Microwaves for the Automated Production of Radiopharmaceuticals. In Chemists’ Views of Imaging Centers; Springer: Berlin/Heidelberg, Germany, 1995; pp. 445–454. [Google Scholar] [CrossRef]
- Kumar, P.; Wiebe, L.I.; Asikoglu, M.; Tandon, M.; McEwan, A.J.B. Microwave-Assisted (Radio)Halogenation of Nitroimidazole-Based Hypoxia Markers. Appl. Radiat. Isot. 2002, 57, 697–703. [Google Scholar] [CrossRef]
- Kumar, P.; Ortlieb, R.; Gupta, A.K.; Wiebe, L.I. Microwave-Assisted Radiosynthesis of the Hypoxia Marker 1-α-D-(5-Deoxy-5-[18F]Fluoroarabinofuranosyl)-2-Nitroimidazole ([18F]FAZA). Curr. Radiopharm. 2014, 7, 49–56. [Google Scholar] [CrossRef]
- Kimura, H.; Yagi, Y.; Ohneda, N.; Odajima, H.; Ono, M.; Saji, H. Development of a Resonant-Type Microwave Reactor and Its Application to the Synthesis of Positron Emission Tomography Radiopharmaceuticals. J. Label. Compd. Radiopharm. 2014, 57, 680–686. [Google Scholar] [CrossRef]
- Kallmerten, A.E.; Alexander, A.; Wager, K.M.; Jones, G.B. Microwave Accelerated Labeling Methods in the Synthesis of Radioligands for Positron Emission Tomography Imaging. Curr. Radiopharm. 2012, 4, 343–354. [Google Scholar] [CrossRef]
- Taylor, M.D.; Roberts, A.D.; Nickles, R.J. Improving the Yield of 2-[18F]Fluoro-2-Deoxyglucose Using a Microwave Cavity. Nucl. Med. Biol. 1996, 23, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Gattavecchia, E.; Ferri, E.; Esposito, B.; Breccia, A. Role of Microwave Radiation on Radiopharmaceuticals Preparations. In Advances in Microwave and Radio Frequency Processing—Report from the 8th International Conference on Microwave and High-Frequency Heating, Bayreuth, Germany, 3–7 September 2001; Springer: Berlin/Heidelberg, Germany, 2006; pp. 359–369. [Google Scholar] [CrossRef]
- Shahzad, K.; Majid, A.S.A.; Khan, M.; Iqbal, M.A.; Ali, A. Recent Advances in the Synthesis of (99mTechnetium) Based Radio-Pharmaceuticals. Rev. Inorg. Chem. 2021, 41, 151–198. [Google Scholar] [CrossRef]
- Shamsel-Din, H.A.; Gizawy, M.A.; Attaallah, A.; Moustafa, K.A. Microwave-Assisted Synthesis and 99mTc-Radiolabeling of Anti-Inflammatory Active Curcumin Derivatives for Inflammation Diagnosis and Therapy. J. Radioanal. Nucl. Chem. 2024, 333, 1323–1332. [Google Scholar] [CrossRef]
- Garcia, M.F.; Calzada, V.; Camacho, X.; Goicochea, E.; Gambini, J.P.; Quinn, T.P.; Porcal, W.; Cabral, P. Microwave-Assisted Synthesis of HYNIC Protected Analogue for 99mTc Labeled Antibody. Curr. Radiopharm. 2015, 7, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, M.; Mekni, A.; Solanki, C.; Maltby, P.; Saidi, M. New Microwave Assisted Radiolabelling Method and Rat Brain Biodistribution Study of Two New 99mTc-Tricarbonyl Complexes as Potential Brain Imaging Agents. Nukleonika 2008, 53, 97–101. [Google Scholar]
- Benny, P.D.; Moore, A.L. Recent Advances in the Probe Development of Technetium-99m Molecular Imaging Agents. Curr. Org. Synth. 2011, 8, 566–583. [Google Scholar] [CrossRef]
- Hollar, B.S.; Hung, J.C.; Hauser, M.F. Evaluation of the Microwave Heating Technique as an Alternative Method for Preparing Technetium-99m-Sulfur Colloid. J. Nucl. Med. Technol. 1995, 23, 77–81. [Google Scholar]
- Gagnon, A.; Taillefer, R.; Bavaria, G.; Léveillé, J. Fast Labeling of Technetium-99m-Sestamibi with Microwave Oven Heating. J. Nucl. Med. Technol. 1991, 19, 90–93. [Google Scholar]
- Simms, R.W.; Causey, P.W.; Weaver, D.M.; Sundararajan, C.; Stephenson, K.A.; Valliant, J.F. Preparation of Technetium-99m Bifunctional Chelate Complexes Using a Microfluidic Reactor: A Comparative Study with Conventional and Microwave Labeling Methods. J. Label. Compd. Radiopharm. 2012, 55, 18–22. [Google Scholar] [CrossRef]
- Hung, J.C.; Chowdhury, S.; Redfern, M.G.; Mahoney, D.W. Rapid Preparation Method for Technetium-99m Bicisate. Eur. J. Nucl. Med. 1997, 24, 655–659. [Google Scholar] [CrossRef]
- Hung, J.C.; Wilson, M.E.; Brown, M.L. Rapid Preparation and Quality Control of Technetium-99m MAG3TM. J. Nucl. Med. Technol. 1991, 19, 176–179. [Google Scholar]
- Harada, N.; Kimura, H.; Ono, M.; Mori, D.; Ohmomo, Y.; Kajimoto, T.; Kawashima, H.; Saji, H. Effective Synthesis of 99mTc Tricarbonyl Complexes by Microwave Heating. J. Organomet. Chem. 2011, 696, 3745–3749. [Google Scholar] [CrossRef]
- Essa, B.M.; Selim, A.A.; Sayed, G.H.; Anwer, K.E. Conventional and Microwave-Assisted Synthesis, Anticancer Evaluation, 99mTc-Coupling and In-Vivo Study of Some Novel Pyrazolone Derivatives. Bioorg. Chem. 2022, 125, 105846. [Google Scholar] [CrossRef] [PubMed]
- Velikyan, I.; Beyer, G.J.; Långström, B. Microwave-Supported Preparation of 68 Ga Bioconjugates with High Specific Radioactivity. Bioconjug. Chem. 2004, 15, 554–560. [Google Scholar] [CrossRef]
- Yagi, Y.; Shimizu, Y.; Arimitsu, K.; Nakamoto, Y.; Higuchi, T.; Togashi, K.; Kimura, H. Efficient Gallium-68 Radiolabeling Reaction of DOTA Derivatives Using a Resonant-Type Microwave Reactor. J. Label. Compd. Radiopharm. 2019, 62, 132–138. [Google Scholar] [CrossRef]
- Zoller, F.; Riss, P.J.; Montforts, F.P.; Kelleher, D.K.; Eppard, E.; Rösch, F. Radiolabelling and Preliminary Evaluation of 68Ga-Tetrapyrrole Derivatives as Potential Tracers for PET. Nucl. Med. Biol. 2013, 40, 280–288. [Google Scholar] [CrossRef]
- Pan, J.; Harriss, B.I.; Chan, C.F.; Jiang, L.; Tsoi, T.H.; Long, N.J.; Wong, W.T.; Wong, W.K.; Wong, K.L. Gallium and Functionalized-Porphyrins Combine to Form Potential Lysosome-Specific Multimodal Bioprobes. Inorg. Chem. 2016, 55, 6839–6841. [Google Scholar] [CrossRef]
- Alam, I.S.; Arrowsmith, R.L.; Cortezon-Tamarit, F.; Twyman, F.; Kociok-Köhn, G.; Botchway, S.W.; Dilworth, J.R.; Carroll, L.; Aboagye, E.O.; Pascu, S.I. Microwave Gallium-68 Radiochemistry for Kinetically Stable Bis(thiosemicarbazone) Complexes: Structural Investigations and Cellular Uptake under Hypoxia. Dalt. Trans. 2015, 45, 144–155. [Google Scholar] [CrossRef]
- Pruszyński, M.; Majkowska-Pilip, A.; Loktionova, N.S.; Eppard, E.; Roesch, F. Radiolabeling of DOTATOC with the Long-Lived Positron Emitter 44Sc. Appl. Radiat. Isot. 2012, 70, 974–979. [Google Scholar] [CrossRef]
- Larenkov, A.A.; Makichyan, A.G.; Iatsenko, V.N. Separation of 44Sc from 44Ti in the Context of A Generator System for Radiopharmaceutical Purposes with the Example of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T Synthesis. Molecules 2021, 26, 6371. [Google Scholar] [CrossRef]
- Gawne, P.J.; Pinto, S.M.A.; Nielsen, K.M.; Keeling, G.P.; Pereira, M.M.; de Rosales, R.T.M. Microwave-Assisted Synthesis of [52Mn]Mn-Porphyrins: Applications in Cell and Liposome Radiolabelling. Nucl. Med. Biol. 2022, 114–115, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Maurin, M.; Garnuszek, P.; Baran, P.; Pawlak, D.; Mikołajczak, R. The Radiometal Makes a Difference. Synthesis and Preliminary Characterisation of DOTA-Minigastrin Analogue Complexes with Ga, Lu and Y. Nucl. Med. Rev. 2015, 18, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Hooijman, E.L.; Chalashkan, Y.; Ling, S.W.; Kahyargil, F.F.; Segbers, M.; Bruchertseifer, F.; Morgenstern, A.; Seimbille, Y.; Koolen, S.L.W.; Brabander, T.; et al. Development of [225Ac]Ac-PSMA-I&T for Targeted Alpha Therapy According to GMP Guidelines for Treatment of MCRPC. Pharmaceuticals 2021, 13, 715. [Google Scholar] [CrossRef] [PubMed]
- Hooijman, E.L.; Radchenko, V.; Ling, S.W.; Konijnenberg, M.; Brabander, T.; Koolen, S.L.W.; de Blois, E. Implementing Ac-225 Labelled Radiopharmaceuticals: Practical Considerations and (Pre-)Clinical Perspectives. EJNMMI Radiopharm. Chem. 2024, 9, 9. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef]
- Ucar, B. Synthesis and Characterization of Natural Lanthanum Labelled DOTA-Peptides for Simulating Radioactive Ac-225 Labeling. Appl. Radiat. Isot. 2019, 153, 108816. [Google Scholar] [CrossRef]
- Alcalde, B.; Granados, M.; Saurina, J. Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods. Antioxidants 2019, 8, 523. [Google Scholar] [CrossRef]
- Mitrofanov, Y.A.; Bubenshchikov, V.B.; Belousov, A.V.; Lunev, A.A.; Larenkov, A.A. Evaluation of the Applicability of External X-Ray Irradiation to Simulate the Autoradiolysis Processes in Therapeutic Radiopharmaceuticals (Exemplified by [153Sm]Sm-PSMA-617 and [177Lu]Lu-PSMA-617). High Energy Chem. 2023, 57, 36–45. [Google Scholar] [CrossRef]
- Eppard, E.; Pèrez-Malo, M.; Rösch, F. Improved Radiolabeling of DOTATOC with Trivalent Radiometals for Clinical Application by Addition of Ethanol. EJNMMI Radiopharm. Chem. 2017, 1, 6. [Google Scholar] [CrossRef]
- Meisenheimer, M.; Kürpig, S.; Essler, M.; Eppard, E. Ethanol Effects on 68Ga-Radiolabelling Efficacy and Radiolysis in Automated Synthesis Utilizing NaCl Post-Processing. EJNMMI Radiopharm. Chem. 2019, 4, 26. [Google Scholar] [CrossRef]
- Kersemans, K.; De Man, K.; Courtyn, J.; Van Royen, T.; Piron, S.; Moerman, L.; Brans, B.; De Vos, F. Automated Radiosynthesis of Al[18F]PSMA-11 for Large Scale Routine Use. Appl. Radiat. Isot. 2018, 135, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Imura, R.; Ozeki, A.N.; Shida, N.; Kobayashi, M.; Ida, H.; Wada, Y.; Akimitsu, N.; Kumakura, Y. Radiolabeling of PSMA-617 with 89Zr: A Novel Use of DMSO for Radiochemical Yield Enhancement and Preliminary Small-Animal PET Results. bioRxiv 2021. [Google Scholar] [CrossRef]
- Pérez-Malo, M.; Szabó, G.; Eppard, E.; Vagner, A.; Brücher, E.; Tóth, I.; Maiocchi, A.; Suh, E.H.; Kovács, Z.; Baranyai, Z.; et al. Improved Efficacy of Synthesizing∗MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study. Inorg. Chem. 2018, 57, 6107–6117. [Google Scholar] [CrossRef] [PubMed]
- Helm, L.; Merbach, A.E. Inorganic and Bioinorganic Solvent Exchange Mechanisms. Chem. Rev. 2005, 105, 1923–1960. [Google Scholar] [CrossRef]
- Monajjemi, M.; Moniri, E.; Panahi, H.A. Thermodynamic Studies on Complexation of Glutamic Acid with Dioxovanadium(V) in Mixed Solvent Systems. J. Chem. Eng. Data 2001, 46, 1249–1254. [Google Scholar] [CrossRef]
- Bagheri Gh, A. Thermodynamic Studies on Complexation of Dopamine with Gadolinium(III) in Water–Ethanol System. J. Mol. Liq. 2010, 156, 141–145. [Google Scholar] [CrossRef]
- Bagheri Gh, A. Thermodynamic Complexation of Dopamine with Zinc(II) in Media with Different Dielectric Constants. Chin. J. Chem. 2009, 27, 1073–1078. [Google Scholar] [CrossRef]
- Felmy, H.M.; Bennett, K.T.; Clark, S.B. The Impact of Mixed Solvents on the Complexation Thermodynamics of Eu (III) by Simple Carboxylate and Amino Carboxylate Ligands. J. Chem. Thermodyn. 2017, 114, 83–92. [Google Scholar] [CrossRef]
- Buslaev, Y.A.; Tarasov, V.P.; Petrosyants, S.P.; Kirakosyan, G.A. Formation of Contact and Solvate-Separated Ion Pairs in Solutions of Aluminum and Gallium Halides in Alcohols. Coord. Chem. 1978, 4, 1346–1355. (In Russian) [Google Scholar]
- Helm, L.; Merbach, A.E. Water Exchange on Metal Ions: Experiments and Simulations. Coord. Chem. Rev. 1999, 187, 151–181. [Google Scholar] [CrossRef]
- Dunand, F.A.; Helm, L.; Merbach, A.E. Solvent exchange on metal ions. In Advances in Inorganic Chemistry: Inorganic Reaction Mechanisms; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–69. [Google Scholar]
- Schneider, H. Ion solvation in mixed solvents. In Theory; Springer: Berlin/Heidelberg, Germany, 2007; pp. 103–148. [Google Scholar]
- Larenkov, A.A.; Bruskin, A.B.; Kodina, G.E. Preparation of High-Purity 68Ga Solutions by Ion Exchange in Mixed Acetone-Hydrochloric Acid Medium. Radiochemistry 2014, 56, 57–65. [Google Scholar] [CrossRef]
- Larenkov, A.A.; Bruskin, A.B.; Kodina, G.E. Preparation of Highly Purified 68Ga Solutions via Ion Exchange in Hydrochloric Acid–Ethanol Mixtures. J. Radioanal. Nucl. Chem. 2015, 305, 147–160. [Google Scholar] [CrossRef]
- Fonrodona, G.; Ràfols, C.; Bosch, E.; Rosés, M. Autoprotolysis in Aqueous Organic Solvent Mixtures. Water/Alcohol Binary Systems. Anal. Chim. Acta 1996, 335, 291–302. [Google Scholar] [CrossRef]
- Deleebeeck, L.; Snedden, A.; Nagy, D.; Szilágyi Nagyné, Z.; Roziková, M.; Vičarová, M.; Heering, A.; Bastkowski, F.; Leito, I.; Quendera, R.; et al. Unified PH Measurements of Ethanol, Methanol, and Acetonitrile, and Their Mixtures with Water. Sensors 2021, 21, 3935. [Google Scholar] [CrossRef]
- Bastkowski, F.; Heering, A.; Uysal, E.; Liv, L.; Leito, I.; Quendera, R.; Ribeiro, L.; Deleebeeck, L.; Snedden, A.; Nagy, D.; et al. Rigorous PH Measurement in Non-Aqueous Solution: Measurement Method and Reference Values in Ethanol. Anal. Bioanal. Chem. 2024, 416, 461–465. [Google Scholar] [CrossRef]
- Kozakova, E.; Majersky, P.; Palka, J. PH* Values of Etalon Acetate and Oxalate Buffer Solution in the Acetone-Water Solution with Mass Fraction W(Acetone) = 50%. Chem. Pap. 1986, 40, 543–550. [Google Scholar]
- Cséfalvayová, B.; Kozáková, E.; Thurzo, A. Etalon Buffer Solutions in the Mixed Ethanol—Water Solvent. Chem. Pap. 1986, 40, 537–541. [Google Scholar]
- Kozáková, E.; Cséfalvayová, B.; Zajacová, J. PH* Values of the Standard Succinate Buffer Solution in the 50 Mass % Ethanol—Water Solvent. Chem. Zvesti 1982, 36, 345–351. [Google Scholar]
- Kozákova, E.; Kozák, J.; Groidlová, A. Standard Potential of the Silver/Silver Chloride Electrode in 50 Mass % Mixed Solvent Acetone-Water. Pressure of Saturated Vapour of Water-Acetone Mixtures and Potentiometric Measurements with the Cell without Liquid Junction in 50 Mass % Acetone. Chem. Zvesti. 1982, 36, 507–513. [Google Scholar]
- Hiver, Q.; Henry, H.; Vasseur, M.; Cuvelier, E.; Le Rhun, É.; Turpin, A.; Décaudin, B.; Odou, P.; Simon, N. Ethanol Exposure During the Intravenous Administration of Chemotherapeutic Drugs: An Analysis of Clinical Practice and a Literature Review. JCO Oncol. Pract. 2022, 18, e710–e720. [Google Scholar] [CrossRef]
- European Medicine Agency. Annex to the European Commission Guideline on “Excipients in the Labelling and Package Leaflet of Medicinal Products for Human Use” (SANTE-2017-11668); European Medicine Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Serdons, K.; Verbruggen, A.; Bormans, G. The Presence of Ethanol in Radiopharmaceutical Injections. J. Nucl. Med. 2008, 49, 2071. [Google Scholar] [CrossRef] [PubMed]
- European Directorate for the Quality of Medicines & HealthCare. Guide for the Elaboration of Monographs on Radiopharmaceutical Preparations; EDQM: Strasbourg, France, 2018. [Google Scholar]
- Machulkin, A.E.; Petrov, S.A.; Bodenko, V.; Larkina, M.S.; Plotnikov, E.; Yuldasheva, F.; Tretyakova, M.; Bezverkhniaia, E.; Zyk, N.Y.; Stasyuk, E.; et al. Synthesis and Preclinical Evaluation of Urea-Based Prostate-Specific Membrane Antigen-Targeted Conjugates Labeled with 177 Lu. ACS Pharmacol. Transl. Sci. 2024, 7, 1457–1473. [Google Scholar] [CrossRef] [PubMed]
- Privé, B.M.; Derks, Y.H.W.; Rosar, F.; Franssen, G.M.; Peters, S.M.B.; Khreish, F.; Bartholomä, M.; Maus, S.; Gotthardt, M.; Laverman, P.; et al. 89Zr-Labeled PSMA Ligands for Pharmacokinetic PET Imaging and Dosimetry of PSMA-617 and PSMA-I&T: A Preclinical Evaluation and First in Man. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2064–2076. [Google Scholar] [CrossRef] [PubMed]
- Lyashchenko, S.K.; Tran, T.; Happel, S.; Park, H.; Bauer, D.; Jones, K.; Esposito, T.V.; Pillarsetty, N.; Lewis, J.S. [89Zr]ZrCl4 for Direct Radiolabeling of DOTA-Based Precursors. Nucl. Med. Biol. 2024, 136–137, 108943. [Google Scholar] [CrossRef]
- Dumond, A.R.S.; Rodnick, M.E.; Piert, M.R.; Scott, P.J.H. Synthesis of 225Ac-PSMA-617 for Preclinical Use. Curr. Radiopharm. 2021, 15, 96–103. [Google Scholar] [CrossRef]
# | Stationary Phase | Solvent | Rf of 177Lu Species 1 | |
---|---|---|---|---|
Unbound [177Lu]Lu3+ | [177Lu]Lu-PSMA-617 | |||
1 | TLC Silica gel 60 sheets with aluminum support (5553, Merck, Darmstadt, Germany) | MeCN–H2O (1:1) | 0–0.05 | 0.85 ± 0.05 |
2 | iTLC-SG glass microfiber chromatography paper impregnated with a silica gel (Agilent, Santa Clara, CA, USA) | 0.05 M H3Citraq | 0.95 ± 0.05 | 0.15 ± 0.05 |
3 | NH3–Ethanol–H2O (1:5:10) | 0–0.05 | 0.95 ± 0.05 | |
4 | 1 M CH3COONH4aq–CH3OH (1:1) | 0.95 ± 0.05 2 | 0.95 ± 0.05 |
# | HPLC Column | Gradient Profile, Flow Rate | Rt of 177Lu Species, min | Based on Method from | ||
---|---|---|---|---|---|---|
Unbound [177Lu]Lu3+ | [177Lu]Lu-PSMA-617 | [177Lu]Lu-PSMA-617 Thermodegradation Products | ||||
1 | Phenomenex Luna® 250 × ⌀4 mm, 5 μm, 100 Å | 0-1-25-27-29-32 min = 5-5-95-95-5-5% B, 1 mL/min | 2.45 ± 0.05 | 10.85 ± 0.05 | 11.0–11.5 | [35] |
2 | Phenomenex Luna® 150 × ⌀4 mm, 5 μm, 100 Å | 0-5-15-20 min = 17-25-25-17% B, 0.75 mL/min | 1.6 ± 0.1 | 8.41 ± 0.02 | 7.0 ± 0.1 9.05 ± 0.05 9.47 ± 0.03 10.13 ± 0.6 | [34,39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larenkov, A.; Mitrofanov, I.; Rakhimov, M. Improvement of End-of-Synthesis Radiochemical Purity of 177Lu-DOTA-PSMA-Ligands with Alternative Synthesis Approaches: Conversion Upswing and Side-Products Minimization. Pharmaceutics 2024, 16, 1535. https://doi.org/10.3390/pharmaceutics16121535
Larenkov A, Mitrofanov I, Rakhimov M. Improvement of End-of-Synthesis Radiochemical Purity of 177Lu-DOTA-PSMA-Ligands with Alternative Synthesis Approaches: Conversion Upswing and Side-Products Minimization. Pharmaceutics. 2024; 16(12):1535. https://doi.org/10.3390/pharmaceutics16121535
Chicago/Turabian StyleLarenkov, Anton, Iurii Mitrofanov, and Marat Rakhimov. 2024. "Improvement of End-of-Synthesis Radiochemical Purity of 177Lu-DOTA-PSMA-Ligands with Alternative Synthesis Approaches: Conversion Upswing and Side-Products Minimization" Pharmaceutics 16, no. 12: 1535. https://doi.org/10.3390/pharmaceutics16121535
APA StyleLarenkov, A., Mitrofanov, I., & Rakhimov, M. (2024). Improvement of End-of-Synthesis Radiochemical Purity of 177Lu-DOTA-PSMA-Ligands with Alternative Synthesis Approaches: Conversion Upswing and Side-Products Minimization. Pharmaceutics, 16(12), 1535. https://doi.org/10.3390/pharmaceutics16121535