Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management
Abstract
1. Introduction
2. Mechanisms of Pharmacokinetic Interactions
3. Guidelines and Medications for Management of Inflammatory Bowel Disease
4. Drug Interactions for the Drugs Used in IBD
4.1. 5-Aminosalicylates
4.2. Corticosteroids
4.3. Immunosuppressants
4.4. JAK Inhibitors
Perpetrator | Victim | Experimental System | Interactions | Potential Mechanisms | Ref. |
---|---|---|---|---|---|
Baohuoside I | Tofacitinib | RLM |
| Cyp3A1/2 inhibition | [98] |
Rat |
| ||||
Bergapten | Tofacitinib | RLM/HLM/rhCYP3A4 |
| Cyp3A1/2 inhibition | [99] |
Rat |
| ||||
Fluconazole | Tofacitinib | Healthy volunteers |
| CYP3A4/2C19 inhibition | [100] |
Isopsolaren | Tofacitinib | RLM/HLM/rhCYP3A4 |
| Cyp3A1/2 or CYP3A4 inhibition | [99] |
Rat |
| Cyp3A1/2 inhibition | |||
Myricetin | Tofacitinib | RLM/HLM/rhCYP3A4 |
| Cyp3A1/2 or CYP3A4 inhibition | [101] |
Naringenin | Tofacitinib | Rat |
| Cyp3A1/2 inhibition | [102] |
Ketoconazole | Tofacitinib | Rat |
| Cyp3A1/2 inhibition | [99] |
Healthy volunteers |
| CYP3A4 inhibition | [100] | ||
Resveratrol | Tofacitinib | RLM/HLM/rhCYP3A4 |
| Cyp3A1/2 or CYP3A4 inhibition | [103] |
Rat |
| Cyp3A1/2 inhibition | |||
Voriconazole | Tofacitinib | RLM/RIM |
| Cyp3A1/2 inhibition | [104] |
Rat |
| ||||
Rifampin | Tofacitinib | Human |
| CYP3A4 induction | [105] |
Tofacitinib | Ethinylestradiol, levonorgestrel | Healthy volunteers |
| - | [106] |
Tofacitinib | Midazolam | HLM |
| CYP450 inhibition | [107] |
Human hepatocytes |
| CYP450 induction | |||
Healthy volunteers |
| - | |||
Tofacitinib | Voriconazole | Rat |
| - | [104] |
4.5. Antibiotics
4.6. Biologics
mAb | Immunosuppressant | Subject | Outcomes | Ref. | ||
---|---|---|---|---|---|---|
Infliximab | AZA | Moderate to severe CD who had not undergone previous immunosuppressive or biologic therapy | Group | IFX trough levels at W30/46 | Patient with steroid-free remission (%) at W30/50 | [130] |
Infliximab | 1.6/1.0 μg/mL | ADA negative: 66.7/70.6% ADA positive: 56.3/57.1% | ||||
Infliximab + AZA (2.5 mg/kg, QD) | 3.5/3.8 μg/mL | |||||
Infliximab | AZA | IBD patients in clinical remission | Group | Infliximab trough levels | Patient% with subtherapeutic levels of infliximab (3 μg/mL) | [129] |
Infliximab | 2.83 μg/mL | 57% | ||||
Infliximab + AZA (<1 mg/kg) | 4.91 μg/mL | 26% | ||||
Infliximab + Aza (1–2 mg/kg) | 5.67 μg/mL | 25% | ||||
Infliximab + AZA (>2 mg/kg) | 7.53 μg/mL | 11% | ||||
Infliximab | AZA | IBD patients with infliximab maintenance therapy | Group | Patient with ADA (%) | [134] | |
6-TGN level between 235 and 450 pmol/8 × 108 RBC | 18.8% | |||||
6-TGN level < 235-pmol/8 × 108 RBC | 63.6% | |||||
Infliximab | MTX | CD patients who had initiated prednisone induction therapy within the preceding 6 weeks | Group | Infliximab level | Patient with ADA (%) | [135] |
Infliximab | 3.75 μg/mL | 20% | ||||
Infliximab + MTX (10 mg QW, escalating to 25 mg QW) | 6.35 μg/mL (p = 0.08) | 4% | ||||
Infliximab | AZA, 6-MP, or MTX | CD patients treated with infliximab in an on-demand schedule | Group | Infliximab level | Patient with ADA (%) | [128] |
Infliximab | 2.42 μg/mL | 73% | ||||
Infliximab + AZA (2–2.5 mg/kg), 6-MP (1–1.25 mg/kg) or MTX (15 mg QW after induction for 12 W at 25 mg) | 6.45 μg/mL | AZA or 6-MP: 48% MTX: 44% | ||||
Infliximab | AZA,6-MP, MTX | CD patients starting infliximab treatment | Group | Infliximab level | [136] | |
Infliximab | >12 μg/mL | |||||
Infliximab + AZA (2–2.5 mg/kg/day), 6-MP (1–1.25 mg/kg/day) or MTX (15 mg, QW) | <5 μg/mL | |||||
Infliximab or adalimumab | MTX | Pediatric CD patients initiating infliximab or adalimumab | Group | Patient with ADA (%) | [137] | |
Infliximab/ adalimumab | 47/21% | |||||
Infliximab/ adalimumab + MTX (10–15 mg depending on body weight, QW) | 34/15% (not statistically significant) |
5. Perspective
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rodrigues, A.D. Drug-Drug Interactions; CRC Press: Boca Raton, FL, USA, 2019; ISBN 0429524307. [Google Scholar]
- Palleria, C.; Di Paolo, A.; Giofrè, C.; Caglioti, C.; Leuzzi, G.; Siniscalchi, A.; De Sarro, G.; Gallelli, L. Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 601. [Google Scholar]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: A systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef]
- Zhou, J.-L.; Bao, J.-C.; Liao, X.-Y.; Chen, Y.-J.; Wang, L.-W.; Fan, Y.-Y.; Xu, Q.-Y.; Hao, L.-X.; Li, K.-J.; Liang, M.-X.; et al. Trends and projections of inflammatory bowel disease at the global, regional and national levels, 1990–2050: A bayesian age-period-cohort modeling study. BMC Public Health 2023, 23, 2507. [Google Scholar] [CrossRef] [PubMed]
- Calkins, B.M.; Lilienfeld, A.M.; Garland, C.F.; Mendeloff, A.I. Trends in incidence rates of ulcerative colitis and Crohn’s disease. Dig. Dis. Sci. 1984, 29, 913–920. [Google Scholar] [CrossRef] [PubMed]
- De Lange, K.M.; Moutsianas, L.; Lee, J.C.; Lamb, C.A.; Luo, Y.; Kennedy, N.A.; Jostins, L.; Rice, D.L.; Gutierrez-Achury, J.; Ji, S.-G. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017, 49, 256–261. [Google Scholar] [CrossRef]
- Graham, D.B.; Xavier, R.J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020, 578, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Philip Schumm, L.; Sharma, Y.; Anderson, C.A. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, H.; Chen, S.; He, J.; Zhou, Y.; Nie, Y. Systematic review and meta-analysis of the role of Faecalibacterium prausnitzii alteration in inflammatory bowel disease. J. Gastroenterol. Hepatol. 2021, 36, 320–328. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhi, F. Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: A meta-analysis. BioMed Res. Int. 2016, 2016, 5828959. [Google Scholar] [CrossRef]
- Baldelli, V.; Scaldaferri, F.; Putignani, L.; Del Chierico, F. The role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms 2021, 9, 697. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, M.; Al Rihani, S.B.; Arwood, M.J.; Darakjian, L.; Dow, P.; Turgeon, J.; Michaud, V. Mechanisms of CYP450 inhibition: Understanding drug-drug interactions due to mechanism-based inhibition in clinical practice. Pharmaceutics 2020, 12, 846. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Galetin, A.; Brouwer, K.L.R.; Tweedie, D.; Yoshida, K.; Sjöstedt, N.; Aleksunes, L.; Chu, X.; Evers, R.; Hafey, M.J.; Lai, Y. Membrane transporters in drug development and as determinants of precision medicine. Nat. Rev. Drug Discov. 2024, 23, 255–280. [Google Scholar] [CrossRef] [PubMed]
- König, J.; Müller, F.; Fromm, M.F. Transporters and Drug-Drug Interactions: Important Determinants of Drug Disposition and Effects. Pharmacol. Rev. 2013, 65, 944–966. [Google Scholar] [CrossRef]
- Gulnaz, A.; Chang, J.-E.; Maeng, H.-J.; Shin, K.-H.; Lee, K.-R.; Chae, Y.-J. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. J. Pharm. Investig. 2023, 53, 73–92. [Google Scholar] [CrossRef]
- Chae, Y.-J.; Chang, J.-E.; Lee, M.-K.; Lim, J.; Shin, K.-H.; Lee, K.-R. Regulation of drug transporters by microRNA and implications in disease treatment. J. Pharm. Investig. 2022, 52, 23–47. [Google Scholar] [CrossRef]
- Bushra, R.; Aslam, N.; Khan, A.Y. Food-drug interactions. Oman Med. J. 2011, 26, 77. [Google Scholar] [CrossRef]
- Raoul, J.L.; Moreau-Bachelard, C.; Gilabert, M.; Edeline, J.; Frénel, J.S. Drug–drug interactions with proton pump inhibitors in cancer patients: An underrecognized cause of treatment failure. ESMO open 2023, 8, 100880. [Google Scholar] [CrossRef]
- Wang, W.; Lu, P.; Fang, Y.; Hamuro, L.; Pittman, T.; Carr, B.; Hochman, J.; Prueksaritanont, T. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab. Dispos. 2011, 39, 1469–1477. [Google Scholar] [CrossRef]
- Ternant, D.; Arnoult, C.; Pugnière, M.; Dhommée, C.; Drocourt, D.; Perouzel, E.; Passot, C.; Baroukh, N.; Mulleman, D.; Tiraby, G. IgG1 allotypes influence the pharmacokinetics of therapeutic monoclonal antibodies through FcRn binding. J. Immunol. 2016, 196, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal Antibody Pharmacokinetics and Pharmacodynamics. Clin. Pharmacol. Ther. 2008, 84, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Gunn, G.R., 3rd; Sealey, D.C.F.; Jamali, F.; Meibohm, B.; Ghosh, S.; Shankar, G. From the bench to clinical practice: Understanding the challenges and uncertainties in immunogenicity testing for biopharmaceuticals. Clin. Exp. Immunol. 2016, 184, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, A.; Chirmule, N.; Nair, P. Immunogenicity of Biotherapeutics: Causes and Association with Posttranslational Modifications. J. Immunol. Res. 2016, 2016, 1298473. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, F.; Jones, N.; Deng, R.; Li, C.; Li, C.C. Assessment of CYP3A-mediated drug interaction via cytokine (IL-6) elevation for mosunetuzumab using physiologically-based pharmacokinetic modeling. CPT Pharmacomet. Syst. Pharmacol. 2024, 13, 234–246. [Google Scholar] [CrossRef]
- Ko, C.W.; Singh, S.; Feuerstein, J.D.; Falck-Ytter, C.; Falck-Ytter, Y.; Cross, R.K.; Crockett, S.; Feuerstein, J.; Flamm, S.; Inadomi, J. AGA clinical practice guidelines on the management of mild-to-moderate ulcerative colitis. Gastroenterology 2019, 156, 748–764. [Google Scholar] [CrossRef]
- Feuerstein, J.D.; Isaacs, K.L.; Schneider, Y.; Siddique, S.M.; Falck-Ytter, Y.; Singh, S.; Chachu, K.; Day, L.; Lebwohl, B.; Muniraj, T. AGA clinical practice guidelines on the management of moderate to severe ulcerative colitis. Gastroenterology 2020, 158, 1450–1461. [Google Scholar] [CrossRef]
- Feuerstein, J.D.; Ho, E.Y.; Shmidt, E.; Singh, H.; Falck-Ytter, Y.; Sultan, S.; Terdiman, J.P. AGA Clinical Practice Guidelines on the Medical Management of Moderate to Severe Luminal and Perianal Fistulizing Crohn’s Disease. Gastroenterology 2021, 160, 2496–2508. [Google Scholar] [CrossRef]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohn’s Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68, s1–s106. [Google Scholar] [CrossRef]
- Quattropani, C.; Ausfeld, B.; Straumann, A.; Heer, P.; Seibold, F. Complementary Alternative Medicine in Patients with Inflammatory Bowel Disease: Use and Attitudes. Scand. J. Gastroenterol. 2003, 38, 277–282. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Young, K.N.; Moniruzzaman, M.; Beyene, A.M.; Do, K.; Kalaiselvi, S.; Min, T. Curcumin and Its Modified Formulations on Inflammatory Bowel Disease (IBD): The Story So Far and Future Outlook. Pharmaceutics 2021, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Beiranvand, M. A review of the biological and pharmacological activities of mesalazine or 5-aminosalicylic acid (5-ASA): An anti-ulcer and anti-oxidant drug. Inflammopharmacology 2021, 29, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Egan, L.; Sandborn, W.; Mays, D.; Pike, M.; Bell, M.; Huntoon, C.; McKean, D.; Lipsky, J. Inhibition of nuclear factor kappa B (NF-kB) by aminosalicylates: Structure activity relationships. Clin. Pharmacol. Ther. 1999, 65, 146. [Google Scholar] [CrossRef]
- Couto, D.; Ribeiro, D.; Freitas, M.; Gomes, A.; Lima, J.L.F.C.; Fernandes, E. Scavenging of reactive oxygen and nitrogen species by the prodrug sulfasalazine and its metabolites 5-aminosalicylic acid and sulfapyridine. Redox Rep. 2010, 15, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Rousseaux, C.; Lefebvre, B.; Dubuquoy, L.; Lefebvre, P.; Romano, O.; Auwerx, J.; Metzger, D.; Wahli, W.; Desvergne, B.; Naccari, G.C. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ. J. Exp. Med. 2005, 201, 1205–1215. [Google Scholar] [CrossRef]
- Svartz, N. Salazopyrin, a new sulfanilamide preparation. A. Therapeutic Results in Rheumatic Polyarthritis. B. Therapeutic Results in Ulcerative Colitis. C. Toxic Manifestations in Treatment with Sulfanilamide Preparations. Acta Medica Scand. 1942, 110, 577–598. [Google Scholar] [CrossRef]
- Das, K.M.; Dubin, R. Clinical pharmacokinetics of sulphasalazine. Clin. Pharmacokinet. 1976, 1, 406–425. [Google Scholar] [CrossRef]
- Rains, C.P.; Noble, S.; Faulds, D. Sulfasalazine: A review of its pharmacological properties and therapeutic efficacy in the treatment of rheumatoid arthritis. Drugs 1995, 50, 137–156. [Google Scholar] [CrossRef]
- Le Berre, C.; Roda, G.; Nedeljkovic Protic, M.; Danese, S.; Peyrin-Biroulet, L. Modern use of 5-aminosalicylic acid compounds for ulcerative colitis. Expert Opin. Biol. Ther. 2020, 20, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.E.S.; Berglindh, T. Pharmacology of olsalazine. Scand. J. Gastroenterol. 1988, 23, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Zaher, H.; Khan, A.A.; Palandra, J.; Brayman, T.G.; Yu, L.; Ware, J.A. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol. Pharm. 2006, 3, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Karibe, T.; Imaoka, T.; Abe, K.; Ando, O. Curcumin as an in vivo selective intestinal breast cancer resistance protein inhibitor in cynomolgus monkeys. Drug Metab. Dispos. 2018, 46, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Kusuhara, H.; Furuie, H.; Inano, A.; Sunagawa, A.; Yamada, S.; Wu, C.; Fukizawa, S.; Morimoto, N.; Ieiri, I.; Morishita, M.; et al. Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Br. J. Pharmacol. 2012, 166, 1793–1803. [Google Scholar] [CrossRef]
- Song, Y.K.; Yoon, J.H.; Woo, J.K.; Kang, J.H.; Lee, K.R.; Oh, S.H.; Chung, S.J.; Maeng, H.J. Quercetin is a flavonoid breast cancer resistance protein inhibitor with an impact on the oral pharmacokinetics of sulfasalazine in rats. Pharmaceutics 2020, 12, 397. [Google Scholar] [CrossRef]
- Oh, J.H.; Kim, D.; Lee, H.; Kim, G.; Park, T.; Kim, M.C.; Lee, Y.J. Negligible effect of quercetin in the pharmacokinetics of sulfasalazine in rats and beagles: Metabolic inactivation of the interaction potential of quercetin with bcrp. Pharmaceutics 2021, 13, 1989. [Google Scholar] [CrossRef]
- Dahan, A.; Amidon, G.L. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G371–G377. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.-Y.; Arora, S.; Hughes, L.; Wang, J.; Powers, D.; Christensen, J.; Lu, S.; Kansra, V. Effects of rolapitant administered intravenously or orally on the pharmacokinetics of digoxin (P-glycoprotein substrate) and sulfasalazine (breast cancer resistance. J. Clin. Pharmacol. 2018, 58, 202–211. [Google Scholar] [CrossRef]
- Dahan, A.; Pharmaceutics, G.A.-I.J. MRP2 Mediated Drug–Drug Interaction: Indomethacin Increases Sulfasalazine Absorption in the Small Intestine, Potentially Decreasing Its Colonic Targeting; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Kim, Y.H.; Bae, Y.J.; Kim, H.S.; Cha, H.J.; Yun, J.S.; Shin, J.S.; Seong, W.K.; Lee, Y.M.; Han, K.M. Measurement of human cytochrome P450 enzyme induction based on mesalazine and mosapride citrate treatments using a luminescent assay. Biomol. Ther. 2015, 23, 486–492. [Google Scholar] [CrossRef]
- König, J.; Glaeser, H.; Keiser, M.; Mandery, K.; Klotz, U.; Fromm, M.F. Role of organic anion-transporting polypeptides for cellular mesalazine (5-aminosalicylic acid) uptake. Drug Metab. Dispos. 2011, 39, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Bruscoli, S.; Febo, M.; Riccardi, C.; Migliorati, G. Glucocorticoid therapy in inflammatory bowel disease: Mechanisms and clinical practice. Front. Immunol. 2021, 12, 691480. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.S.; Stewart, P.M. 11β-Hydroxysteroid Dehydrogenase Type 1 and Its Role in the Hypothalamus-Pituitary-Adrenal Axis, Metabolic Syndrome, and Inflammation. J. Clin. Endocrinol. Metab. 2009, 94, 4645–4654. [Google Scholar] [CrossRef] [PubMed]
- Pickup, M.E. Clinical pharmacokinetics of prednisone and prednisolone. Clin. Pharmacokinet. 1979, 4, 111–128. [Google Scholar] [CrossRef]
- Hossain, M.A.; Tran, T.; Chen, T.; Mikus, G.; Greenblatt, D.J. Inhibition of human cytochromes P450 in vitro by ritonavir and cobicistat. J. Pharm. Pharmacol. 2017, 69, 1786–1793. [Google Scholar] [CrossRef] [PubMed]
- Penzak, S.R.; Formentini, E.; Alfaro, R.M.; Long, M.; Natarajan, V.; Kovacs, J. Prednisolone pharmacokinetics in the presence and absence of ritonavir after oral prednisone administration to healthy volunteers. J. Acquir. Immune Defic. Syndr. 2005, 40, 573–580. [Google Scholar] [CrossRef]
- Diltiazem, S.R.; Imani, S.; Jusko, W.J.; Steiner, R.; Steiner, R.W. Diltiazem retards the metabolism of oral prednisone with effects on T-cell markers. Pediatr. Transplant. 1999, 3, 126–130. [Google Scholar] [CrossRef]
- Marcantonio, E.E.; Ballard, J.; Gibson, C.R.; Kassahun, K.; Palamanda, J.; Tang, C.; Evers, R.; Liu, C.; Zajic, S.; Mahon, C. Prednisone has no effect on the pharmacokinetics of CYP3A4 metabolized drugs–midazolam and odanacatib. J. Clin. Pharmacol. 2014, 54, 1280–1289. [Google Scholar] [CrossRef]
- Lebrun-Vignes, B.; Corbrion Archer, V.; Diquet, B.; Levron, J.C.; Chosidow, O.; Puech, A.J.; Warot, D. Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects. Br. J. Clin. Pharmacol. 2001, 51, 443–450. [Google Scholar] [CrossRef]
- Varis, T.; Kivistö, K.T.; Backman, J.T.; Neuvonen, P.J. Itraconazole decreases the clearance and enhances the effects of intravenously administered methylprednisolone in healthy volunteers. Pharmacol. Toxicol. 1999, 85, 29–32. [Google Scholar] [CrossRef]
- Varis, T.; Kaukonen, K.-M.; Kivistö, K.T.; Neuvonen, P.J. Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole. Clin. Pharmacol. Ther. 1998, 64, 363–368. [Google Scholar] [CrossRef]
- Varis, T.; Kivisto, K.T.; Neuvonen, P.J. Grapefruit juice can increase the plasma concentrations of oral methylprednisolone. Eur. J. Clin. Pharmacol. 2000, 56, 489–493. [Google Scholar] [CrossRef]
- Booker, B.M.; Magee, M.H.; Blum, R.A.; Lates, C.D.; Jusko, W.J. Pharmacokinetic and pharmacodynamic interactions between diltiazem and methylprednisolone in healthy volunteers. Clin. Pharmacol. Ther. 2002, 72, 370–382. [Google Scholar] [CrossRef]
- McCrea, J.B.; Majumdar, A.K.; Goldberg, M.R.; Iwamoto, M.; Gargano, C.; Panebianco, D.L.; Hesney, M.; Lines, C.R.; Petty, K.J.; Deutsch, P.J.; et al. Effects of the neurokinin1 receptor antagonist aprepitant on the pharmacokinetics of dexamethasone and methylprednisolone. Clin. Pharmacol. Ther. 2003, 74, 17–24. [Google Scholar] [CrossRef]
- Kotlyar, M.; Brewer, E.R.; Golding, M.; Carson, S.W. Nefazodone Inhibits Methylprednisolone Disposition and Enhances its Adrenal-Suppressant Effect. J. Clin. Psychopharmacol. 2003, 23, 652–656. [Google Scholar] [CrossRef]
- Seidegård, J. Reduction of the inhibitory effect of ketoconazole on budesonide pharmacokinetics by separation of their time of administration. Clin. Pharmacol. Ther. 2000, 68, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Seidegård, J.; Randvall, G.; Nyberg, L.; Borgå, O. Grapefruit juice interaction with oral budesonide: Equal effect on immediate-release and delayed-release formulations. Pharmazie 2009, 64, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Pichard, L.; Fabre, I.; Daujat, M.; Domergue, J.; Joyeux, H.; Maurel, P. Effect of corticosteroids on the expression of cytochromes P450 and on cyclosporin A oxidase activity in primary cultures of human hepatocytes. Mol. Pharmacol. 1992, 41, 1047–1055. [Google Scholar] [PubMed]
- Cuppen, B.V.J.; Pardali, K.; Kraan, M.C.; Marijnissen, A.C.A.; Yrlid, L.; Olsson, M.; Bijlsma, J.W.J.; Lafeber, F.P.J.G.; Fritsch-Stork, R.D.E. Polymorphisms in the multidrug-resistance 1 gene related to glucocorticoid response in rheumatoid arthritis treatment. Rheumatol. Int. 2017, 37, 531–536. [Google Scholar] [CrossRef]
- Jonsson, G.; Astrom, A.; Andersson, P. Budesonide is metabolized by cytochrome P450 3A (CYP3A) enzymes in human liver. Drug Metab. Dispos. 1995, 23, 137–142. [Google Scholar]
- Chen, N.; Cui, D.; Wang, Q.; Wen, Z.; Finkelman, R.D.; Welty, D. In vitro drug–drug interactions of budesonide: Inhibition and induction of transporters and cytochrome P450 enzymes. Xenobiotica 2018, 48, 637–646. [Google Scholar] [CrossRef]
- Dilger, K.; Cascorbi, I.; Grünhage, F.; Hohenester, S.; Sauerbruch, T.; Beuers, U. Multidrug resistance 1 genotype and disposition of budesonide in early primary biliary cirrhosis. Liver Int. 2006, 26, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mahajan, R.; Kedia, S.; Dutta, A.K.; Anand, A.; Bernstein, C.N.; Desai, D.; Pai, C.G.; Makharia, G.; Tevethia, H.V. Use of thiopurines in inflammatory bowel disease: An update. Intest. Res. 2022, 20, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, J.P.; Gomollón, F. Thiopurine-induced myelotoxicity in patients with inflammatory bowel disease: A review. Off. J. Am. Coll. Gastroenterol. ACG 2008, 103, 1783–1800. [Google Scholar] [CrossRef] [PubMed]
- Dewit, O.; Starkel, P.; Roblin, X. Thiopurine metabolism monitoring: Implications in inflammatory bowel diseases. Eur. J. Clin. Investig. 2010, 40, 1037–1047. [Google Scholar] [CrossRef]
- Kurzawski, M.; Dziewanowski, K.; Ciechanowski, K.; Droździk, M. Severe azathioprine-induced myelotoxicity in a kidney transplant patient with thiopurine S-methyltransferase-deficient genotype (TPMT*3A/*3C). Transpl. Int. 2005, 18, 623–625. [Google Scholar] [CrossRef]
- Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.-H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin. Pharmacol. Ther. 2019, 105, 1095–1105. [Google Scholar] [CrossRef]
- Oselin, K.; Anier, K. Inhibition of Human Thiopurine S-Methyltransferase (TPMT) by Various NSAIDs in vitro: A Mechanism for Possible Drug Interactions. Drug Metab. Dispos. 2007, 35, 1452–1454. [Google Scholar] [CrossRef]
- Achkar, J.-P.; Brzezinski, A.; Lashner, B.; Vogel, D.; Seidner, D.; Shen, B. A double-blind, placebo-controlled randomized clinical trial evaluating the effects of sulfasalazine on 6-mercaptopurine metabolism in patients with crohn’s disease. Off. J. Am. Coll. Gastroenterol. ACG 2004, 99, S264–S265. [Google Scholar] [CrossRef]
- Hande, S.; Wilson-Rich, N.; Bousvaros, A.; Zholudev, A.; Maurer, R.; Banks, P.; Makrauer, F.; Reddy, S.; Burakoff, R.; Friedman, S. 5-Aminosalicylate therapy is associated with higher 6-thioguanine levels in adults and children with inflammatory bowel disease in remission on 6-mercaptopurine or azathioprine. Inflamm. Bowel Dis. 2006, 12, 251–257. [Google Scholar] [CrossRef]
- Looser, R.; Doulberis, M.; Rossel, J.-B.; Franc, Y.; Müller, D.; Biedermann, L.; Rogler, G. Concomitant 5-aminosalicylic acid treatment does not affect 6-thioguanine nucleotide levels in patients with inflammatory bowel disease on thiopurines. Ann. Gastroenterol. 2023, 36, 637–645. [Google Scholar] [CrossRef]
- Lewis, L.D.; Benin, A.; Szumlanski, C.L.; Otterness, D.M.; Lennard, L.; Weinshilboum, R.M.; Nierenberg, D.W. Olsalazine and 6-mercaptopurine-related bone marrow suppression: A possible drug-drug interaction. Clin. Pharmacol. Ther. 1997, 62, 464–475. [Google Scholar] [CrossRef]
- Lowry, P.W.; Franklin, C.L.; Weaver, A.L.; Szumlanski, C.L.; Mays, D.C.; Loftus, E.V.; Tremaine, W.J.; Lipsky, J.J.; Weinshilboum, R.M.; Sandborn, W.J. Leucopenia resulting from a drug interaction between azathioprine or 6-mercaptopurine and mesalamine, sulphasalazine, or balsalazide. Gut 2001, 49, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Zimm, S.; Collins, J.M.; O’Neill, D.; Chabner, B.A.; Poplack, D.G. Inhibition of first-pass metabolism in cancer chemotherapy: Interaction of 6-mercaptopurine and allopurinol. Clin. Pharmacol. Ther. 1983, 34, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, M.P.; Hande, S.A.; Friedman, S.; Lim, W.C.; Reddy, S.I.; Cao, D.; Hanauer, S.B. Allopurinol safely and effectively optimizes tioguanine metabolites in inflammatory bowel disease patients not responding to azathioprine and mercaptopurine. Aliment. Pharmacol. Ther. 2005, 22, 441–446. [Google Scholar] [CrossRef]
- Houwen, J.P.A.; Egberts, A.C.G.; de Boer, A.; van Maarseveen, E.M.; Houwen, R.H.J.; Lalmohamed, A. Influence of allopurinol on thiopurine associated toxicity: A retrospective population-based cohort study. Br. J. Clin. Pharmacol. 2021, 87, 2333–2340. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.B.; Brown, S.J.; Bampton, P.; Barclay, M.L.; Chung, A.; Macrae, F.A.; McKenzie, J.; Reynolds, J.; Gibson, P.R.; Hanauer, S.B.; et al. Randomised clinical trial: Efficacy, safety and dosage of adjunctive allopurinol in azathioprine/mercaptopurine nonresponders (AAA Study). Aliment. Pharmacol. Ther. 2018, 47, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Kiszka-Kanowitz, M.; Theede, K.; Thomsen, S.B.; Bjerrum, J.T.; Brynskov, J.; Gottschalck, I.B.; Akimenko, E.; Hilsted, K.L.; Neumann, A.; Wildt, S.; et al. Low-dose azathioprine and allopurinol versus azathioprine monotherapy in patients with ulcerative colitis (AAUC): An investigator-initiated, open, multicenter, parallel-arm, randomised controlled trial. eClinicalMedicine 2022, 45, 101332. [Google Scholar] [CrossRef]
- Balis, F.M.; Holcenberg, J.S.; Zimm, S.; Tubergen, D.; Collins, J.M.; Murphy, R.F.; Gilchrist, G.S.; Hammond, D.; Poplack, D.G. The effect of methotrexate on the bioavailability of oral 6-mercaptopurine. Clin. Pharmacol. Ther. 1987, 41, 384–387. [Google Scholar] [CrossRef]
- Janke, D.; Mehralivand, S.; Strand, D.; Gödtel-Armbrust, U.; Habermeier, A.; Gradhand, U.; Fischer, C.; Toliat, M.R.; Fritz, P.; Zanger, U.M.; et al. 6-Mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCC4. Hum. Mutat. 2008, 29, 659–669. [Google Scholar] [CrossRef]
- El-Sheikh, A.; Greupink, R.; Wortelboer, H.M.; Van Den Heuvel, J.J.; Schreurs, M.; Koenderink, J.B.; Masereeuw, R.; Russel, F.G. Interaction of Immunosuppressive Drugs with Human Organic Anion Transporter (OAT) 1 and OAT3, and Multidrug Resistance-Associated Protein (MRP) 2 and MRP4; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zou, Y.; Gao, W.; Jin, H.; Mao, C.; Zhang, Y.; Wang, X.; Mei, D.; Zhao, L. Cellular Uptake and Transport Mechanism of 6-Mercaptopurine Nanomedicines for Enhanced Oral Bioavailability. Int. J. Nanomed. 2023, 18, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, P.; Schwab, M.; Takenaka, K.; Nachagari, D.; Morgan, J.; Leslie, M.; Du, W.; Boyd, K.; Cheok, M.; Nakauchi, H.; et al. Transporter-Mediated Protection against Thiopurine-Induced Hematopoietic Toxicity. Cancer Res. 2008, 68, 4983–4989. [Google Scholar] [CrossRef] [PubMed]
- Ban, H.; Andoh, A.; Imaeda, H.; Kobori, A.; Bamba, S.; Tsujikawa, T.; Sasaki, M.; Saito, Y.; Fujiyama, Y. The multidrug-resistance protein 4 polymorphism is a new factor accounting for thiopurine sensitivity in Japanese patients with inflammatory bowel disease. J. Gastroenterol. 2010, 45, 1014–1021. [Google Scholar] [CrossRef]
- Raychaudhuri, S.P.; Raychaudhuri, S.K. JAK inhibitor: Introduction. Indian J. Dermatol. Venereol. Leprol. 2023, 89, 688–690. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, Z.; Song, W.; Wang, Y.; Zhou, Q.; Geng, P.; Zhou, Y.; Wang, S.; Han, A. The Impact of Baohuoside I on the Metabolism of Tofacitinib in Rats. Drug Des. Dev. Ther. 2024, 18, 931–939. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Wang, H.; Song, W.; Wang, J.; Mamun, A.A.; Geng, P.; Zhou, Y.; Wang, S. Effect of P. corylifolia on the pharmacokinetic profile of tofacitinib and the underlying mechanism. Front. Pharmacol. 2024, 15, 1351882. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Chow, V.; Wang, R.; Kaplan, I.; Chan, G.; Alvey, C.; Ni, G.; Ndongo, M.-N.; Labadie, R.R.; Krishnaswami, S. Evaluation of the effect of fluconazole and ketoconazole on the pharmacokinetics of tofacitinib in healthy adult subjects. Clin. Pharmacol. Drug Dev. 2013, 3, 72–77. [Google Scholar] [CrossRef]
- Ye, Z.; Xia, H.; Hu, J.; Liu, Y.; Wang, A.; Cai, J.; Hu, G.; Xu, R. CYP3A4 and CYP2C19 genetic polymorphisms and myricetin interaction on tofacitinib metabolism. Biomed. Pharmacother. 2024, 175, 116421. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shen, J.; Zhou, Q.; Meng, D.; He, Y.; Chen, F.; Wang, S.; Ji, W. Effects of naringenin on the pharmacokinetics of tofacitinib in rats. Pharm. Biol. 2020, 58, 225–230. [Google Scholar] [CrossRef]
- Ye, Z.; Hu, J.; Wang, J.; Liu, Y.-N.; Hu, G.-X.; Xu, R.-A. The effect of Resveratrol on the pharmacokinetic profile of tofacitinib and the underlying mechanism. Chem.-Biol. Interact. 2023, 374, 110398. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kim, H.-S.; Jung, Y.-S.; Choi, H.-G.; Kim, S.-H. Pharmacokinetic drug interaction between tofacitinib and voriconazole in rats. Pharmaceutics 2021, 13, 740. [Google Scholar] [CrossRef] [PubMed]
- Tofacitinib. Clinical Pharmacology and Biopharmaceutics Review. United States Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203214Orig1s000ClinPharmR.pdf (accessed on 13 August 2024).
- Menon, S.; Riese, R.; Wang, R.; Alvey, C.W.; Shi, H.; Petit, W.; Krishnaswami, S. Evaluation of the effect of tofacitinib on the pharmacokinetics of oral contraceptive steroids in healthy female volunteers. Clin. Pharmacol. Drug Dev. 2016, 5, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Alvey, C.; Wang, R.; Dowty, M.E.; Fahmi, O.A.; Walsky, R.L.; Riese, R.J.; Krishnaswami, S. Lack of effect of tofacitinib (CP-690,550) on the pharmacokinetics of the CYP3A4 substrate midazolam in healthy volunteers: Confirmation of in vitro data. Br. J. Clin. Pharmacol. 2012, 74, 109–115. [Google Scholar] [CrossRef]
- Dowty, M.E.; Lin, J.; Ryder, T.F.; Wang, W.; Walker, G.S.; Vaz, A.; Chan, G.L.; Krishnaswami, S.; Prakash, C. The Pharmacokinetics, Metabolism, and Clearance Mechanisms of Tofacitinib, a Janus Kinase Inhibitor, in Humans. Drug Metab. Dispos. 2014, 42, 759–773. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Jungerwirth, S.; Asatryan, A.; Jiang, P.; Othman, A.A. Assessment of effect of CYP3A inhibition, CYP induction, OATP1B inhibition, and high-fat meal on pharmacokinetics of the JAK1 inhibitor upadacitinib. Br. J. Clin. Pharmacol. 2017, 83, 2242–2248. [Google Scholar] [CrossRef]
- Upadacitinib. Clinical Pharmacology and Biopharmaceutics Review. United States Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211675Orig1s000ClinPharmR.pdf (accessed on 13 August 2024).
- Mohamed, M.-E.F.; Minocha, M.; Trueman, S.; Feng, T.; Enejosa, J.; Fisniku, O.; Othman, A.A. Characterization of the Effect of Upadacitinib on the Pharmacokinetics of Bupropion, a Sensitive Cytochrome P450 2B6 Probe Substrate. Clin. Pharmacol. Drug Dev. 2021, 10, 299–306. [Google Scholar] [CrossRef]
- Abraham, B.; Quigley, E.M.M. Antibiotics and probiotics in inflammatory bowel disease: When to use them? Frontline Gastroenterol. 2020, 11, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Vance-Bryan, K.; Guay, D.R.P.; Rotschafer, J.C. Clinical Pharmacokinetics of Ciprofloxacin. Clin. Pharmacokinet. 1990, 19, 434–461. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, M.J.; Zhao, C.Y.; Qi, H.M. Determination of the inhibitory potential of 6 fuoroquinolones on CYP1A2 and CYP2C9 in human liver microsomes. Acta Pharmacol. Sin. 2008, 29, 1507–1514. [Google Scholar] [CrossRef]
- Karjalainen, M.J.; Neuvonen, P.J.; Backman, J.T. In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: Predictability of in vivo interactions. Basic Clin. Pharmacol. Toxicol. 2008, 103, 157–165. [Google Scholar] [CrossRef]
- Granfors, M.T.; Backman, J.T.; Neuvonen, M.; Neuvonen, P.J. Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin. Pharmacol. Ther. 2004, 76, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Raaska, K.; Neuvonen, P.J. Ciprofloxacin increases serum clozapine and N-desmethylclozapine: A study in patients with schizophrenia. Eur. J. Clin. Pharmacol. 2000, 56, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chan, T.; Zhu, L.; Bao, X.; Velkov, T.; Zhou, Q.T.; Li, J.; Chan, H.K.; Zhou, F. The inhibitory effects of eighteen front-line antibiotics on the substrate uptake mediated by human Organic anion/cation transporters, Organic anion transporting polypeptides and Oligopeptide transporters in in vitro models. Eur. J. Pharm. Sci. 2018, 115, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Masud Parvez, M.; Kaisar, N.; Shin, H.J.; Jung, J.A.; Shin, J.G. Inhibitory interaction potential of 22 antituberculosis drugs on organic anion and cation transporters of the SLC22A family. Antimicrob. Agents Chemother. 2016, 60, 6558–6567. [Google Scholar] [CrossRef] [PubMed]
- Hedaya, M.A.; El-Afify, D.R.; El-Maghraby, G.M. The effect of ciprofloxacin and clarithromycin on sildenafil oral bioavailability in human volunteers. Biopharm. Drug Dispos. 2006, 27, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Zemanová, N.; Lněničková, K.; Vavrečková, M.; Anzenbacherová, E.; Anzenbacher, P.; Zapletalová, I.; Hermanová, P.; Hudcovic, T.; Kozáková, H.; Jourová, L. Gut microbiome affects the metabolism of metronidazole in mice through regulation of hepatic cytochromes P450 expression. PLoS ONE 2021, 16, e0259643. [Google Scholar] [CrossRef]
- Wang, J.-S.; Backman, J.T.; Kivistö, K.T.; Neuvonen, P.J. Effects of metronidazole on midazolam metabolism in vitro and in vivo. Eur. J. Clin. Pharmacol. 2000, 56, 555–559. [Google Scholar] [CrossRef]
- Roedler, R.; Neuhauser, M.M.; Penzak, S.R. Does metronidazole interact with CYP3A substrates by inhibiting their metabolism through this metabolic pathway? Or should other mechanisms be considered? Ann. Pharmacother. 2007, 41, 653–658. [Google Scholar] [CrossRef]
- Tamilarasan, A.G.; Cunningham, G.; Irving, P.M.; Samaan, M.A. Recent advances in monoclonal antibody therapy in IBD: Practical issues. Frontline Gastroenterol. 2019, 10, 409–416. [Google Scholar] [CrossRef]
- Van Deventer, S.J. Tumour necrosis factor and Crohn’s disease. Gut 1997, 40, 443. [Google Scholar] [CrossRef]
- Hemperly, A.; Vande Casteele, N. Clinical Pharmacokinetics and Pharmacodynamics of Infliximab in the Treatment of Inflammatory Bowel Disease. Clin. Pharmacokinet. 2018, 57, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Ternant, D.; Aubourg, A.; Magdelaine-Beuzelin, C.; Degenne, D.; Watier, H.; Picon, L.; Paintaud, G. Infliximab pharmacokinetics in inflammatory bowel disease patients. Ther. Drug Monit. 2008, 30, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Noman, M.; Van Assche, G.; Baert, F.; D’Haens, G.; Rutgeerts, P. Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn’s disease. Gut 2007, 56, 1226–1231. [Google Scholar] [CrossRef]
- Polakovicova, V.; Kadleckova, B.; Lucenicova, J.; Otottova, K.; Kinova, S.; Mikus, P.; Zelinkova, Z. Positive pharmacokinetic effect of azathioprine co-medication on infliximab trough levels is dose-dependent. Dig. Liver Dis. 2019, 51, 1112–1116. [Google Scholar] [CrossRef]
- Colombel, J.F.; Sandborn, W.J.; Reinisch, W.; Mantzaris, G.J.; Kornbluth, A.; Rachmilewitz, D.; Lichtiger, S.; D’Haens, G.; Diamond, R.H.; Broussard, D.L.; et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med. 2010, 362, 1383–1395. [Google Scholar] [CrossRef]
- Ducourau, E.; Rispens, T.; Samain, M.; Dernis, E.; Le Guilchard, F.; Andras, L.; Perdriger, A.; Lespessailles, E.; Martin, A.; Cormier, G.; et al. Methotrexate effect on immunogenicity and long-term maintenance of adalimumab in axial spondyloarthritis: A multicentric randomised trial. RMD open 2020, 6, e001047. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.-R.; Kivitz, A.J.; Kupper, H.; Arulmani, U.; Florentinus, S.; Goss, S.L.; Rathmann, S.S.; Fleischmann, R.M. Efficacy and safety of ascending methotrexate dose in combination with adalimumab: The randomised CONCERTO trial. Ann. Rheum. Dis. 2015, 74, 1037–1044. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, L.; Qiang, W.; Hu, L.; Wang, L.; Cheng, Z. Methotrexate Reduces the Clearance of Adalimumab by Increasing the Concentration of Neonatal Fc Receptor in Tissues. Pharm. Res. 2019, 36, 157. [Google Scholar] [CrossRef]
- Phillips, J.; Leary, S.; Tyrrell-Price, J. Association between 6-thioguanine nucleotide levels and preventing production of antibodies to infliximab in patients with inflammatory bowel disease. BMJ open Gastroenterol. 2023, 10, e001149. [Google Scholar] [CrossRef]
- Feagan, B.G.; McDonald, J.W.D.; Panaccione, R.; Enns, R.A.; Bernstein, C.N.; Ponich, T.P.; Bourdages, R.; MacIntosh, D.G.; Dallaire, C.; Cohen, A.; et al. Methotrexate in Combination With Infliximab Is No More Effective Than Infliximab Alone in Patients With Crohn’s Disease. Gastroenterology 2014, 146, 681–688.e1. [Google Scholar] [CrossRef]
- Baert, F.; Noman, M.; Vermeire, S.; Van Assche, G.; D’Haens, G.; Carbonez, A.; Rutgeerts, P. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 2003, 348, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Kappelman, M.D.; Wohl, D.A.; Herfarth, H.H.; Firestine, A.M.; Adler, J.; Ammoury, R.F.; Aronow, J.E.; Bass, D.M.; Bass, J.A.; Benkov, K.; et al. Comparative Effectiveness of Anti-TNF in Combination With Low-Dose Methotrexate vs Anti-TNF Monotherapy in Pediatric Crohn’s Disease: A Pragmatic Randomized Trial. Gastroenterology 2023, 165, 149–161.e7. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Vu, T.; Lee, H.; Hu, C.; Ling, J.; Yan, H.; Baker, D.; Beutler, A.; Pendley, C.; Wagner, C.; et al. Population Pharmacokinetics of Golimumab, an Anti-Tumor Necrosis Factor-α Human Monoclonal Antibody, in Patients With Psoriatic Arthritis. J. Clin. Pharmacol. 2009, 49, 1056–1070. [Google Scholar] [CrossRef]
- Zhuang, Y.; Xu, Z.; Frederick, B.; de Vries, D.E.; Ford, J.A.; Keen, M.; Doyle, M.K.; Petty, K.J.; Davis, H.M.; Zhou, H. Golimumab Pharmacokinetics After Repeated Subcutaneous and Intravenous Administrations in Patients with Rheumatoid Arthritis and the Effect of Concomitant; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Wang, W.; Leu, J.; Watson, R.; Xu, Z.; Zhou, H. Investigation of the Mechanism of Therapeutic Protein-Drug Interaction Between Methotrexate and Golimumab, an Anti-TNFα Monoclonal Antibody. AAPS J. 2018, 20, 63. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Baert, F.; Danese, S.; Krznarić, Ž.; Kobayashi, T.; Yao, X.; Chen, J.; Rosario, M.; Bhatia, S.; Kisfalvi, K.; et al. Efficacy and Safety of Vedolizumab Subcutaneous Formulation in a Randomized Trial of Patients With Ulcerative Colitis. Gastroenterology 2020, 158, 562–572.e12. [Google Scholar] [CrossRef]
- Rosario, M.; Dirks, N.L.; Gastonguay, M.R.; Fasanmade, A.A.; Wyant, T.; Parikh, A.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Fox, I. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment. Pharmacol. Ther. 2015, 42, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Lirio, R.A.; Schneider, J.; Aubrecht, J.; Kadali, H.; Baratta, M.; Gulati, P.; Suri, A.; Lin, T.; Vasudevan, R. Assessment of vedolizumab disease-drug-drug interaction potential in patients with inflammatory bowel diseases. Clin. Pharmacol. Drug Dev. 2021, 10, 734–747. [Google Scholar] [CrossRef]
- Biancone, L.; Ardizzone, S.; Armuzzi, A.; Castiglione, F.; D’Incà, R.; Danese, S.; Daperno, M.; Gionchetti, P.; Rizzello, F.; Scribano, M.L.; et al. Ustekinumab for treating ulcerative colitis: An expert opinion. Expert Opin. Biol. Ther. 2020, 20, 1321–1329. [Google Scholar] [CrossRef]
- Hanauer, S.B.; Sandborn, W.J.; Feagan, B.G.; Gasink, C.; Jacobstein, D.; Zou, B.; Johanns, J.; Adedokun, O.J.; Sands, B.E.; Rutgeerts, P.; et al. IM-UNITI: Three-year Efficacy, Safety, and Immunogenicity of Ustekinumab Treatment of Crohn’s Disease. J. Crohn’s Colitis 2020, 14, 23–32. [Google Scholar] [CrossRef]
- Ustekinuamb. Clinical Pharmacology and Biopharmaceutics Review. United States Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/761044Orig1s000ClinPharmR.pdf (accessed on 13 August 2024).
- Adedokun, O.J.; Xu, Z.; Gasink, C.; Jacobstein, D.; Szapary, P.; Johanns, J.; Gao, L.-L.; Davis, H.M.; Hanauer, S.B.; Feagan, B.G.; et al. Pharmacokinetics and Exposure Response Relationships of Ustekinumab in Patients With Crohn’s Disease. Gastroenterology 2018, 154, 1660–1671. [Google Scholar] [CrossRef]
Category | Classification | Ulcerative Colitis (UC) [27,28,30,32] | Crohn’s Disease (CD) [29,31,32] | Medications |
---|---|---|---|---|
Small molecule | 5-aminosalicylate (5-ASA) | Induction and maintenance of remission for mild to moderate UC | - | Sulfasalazine, mesalazine, olsalazine, balsalazide |
Corticosteroids | Induction of remission in moderate to severe UC when 5-ASA fails to induce remission | Induction of remission in moderate to severe CD | Prednisolone, hydrocortisone, budesonide, prednisone, methylprednisolone | |
Immunosuppressant | Maintenance of remission in steroid-dependent moderate to severe UC patients | Maintenance of remission in moderate to severe CD | Azathioprine, 6-mercaptopurine | |
JAK inhibitor | Induction and maintenance of remission in patients with moderate to severe UC who have inadequate response or intolerance to conventional therapy | - | Tofacitinib | |
Antibiotics | - | Management of complications such as abscesses and fistulas | Metronidazole, ciprofloxacin | |
Monoclonal antibody | Anti-TNF-α | Induction and maintenance of remission in moderate to severe UC | Induction and maintenance of remission in moderate to severe CD | Infliximab, adalimumab, golimumab, certolizumab pegol |
Anti-integrin | Induction and maintenance of remission with moderate to severe UC, particularly useful for patients who do not respond to TNF-α antagonists | Induction and maintenance of remission in patients who do not respond adequately to TNF-α antagonists | Vedolizumab | |
Anti-interleukin | Induction and maintenance of remission in moderate to severe UC when other biologics are ineffective or not tolerated | Induction and maintenance of remission in moderate to severe CD when other biologics are ineffective or not tolerated | Ustekinumab |
Perpetrator | Experimental System | Interactions | Ref. |
---|---|---|---|
Curcumin | Caco-2 |
| [45] |
Membrane vesicle |
| [46] | |
Mouse |
| [46] | |
Monkey |
| [45] | |
Healthy volunteers |
| [46] | |
Quercetin | Rat |
| [47] |
Rat |
| [48] | |
Beagle dog |
| [48] | |
Gefitinib | Mouse |
| [44] |
Pantoprazole | Caco-2 |
| [49] |
Rolapitant | Healthy volunteers |
| [50] |
Potential Mechanisms | Study Design | Alterations of Systemic Exposure to Victim Drugs | Ref. | ||
---|---|---|---|---|---|
Perpetrator | Victim | Subjects | |||
CYP3A4 induction | Prednisone (10 mg, PO, 2 or 4 weeks) | Midazolam (2 mg, PO), odanacatib (50 mg, PO) | Healthy male volunteers (n = 15) | No significance differences in systemic exposure | [60] |
CYP3A4 inhibition | Ritonavir (200 mg, PO, BID, 4 or 14 days) | Prednisolone (20 mg, PO) | Healthy volunteers (n = 10) | 1.4- and 1.3-fold increase in AUCinf after administration of ritonavir for 4 or 14 days | [58] |
Diltiazem (180 mg, PO, BID, 3 days) | Prednisolone (15 mg, PO) | Healthy volunteers (n = 8) | 1.2- and 1.08-fold increase in AUC and Cmax | [59] | |
Itraconazole (400 mg, PO for 1 day and then 200 mg, PO for 3 days) | Prednisolone (60 mg, PO) | Healthy male volunteers (n = 14) | No significance differences in systemic exposure | [61] | |
Itraconazole (200 mg, PO, 4 days) | Methylprednisolone (16 mg, IV) | Healthy volunteers (n = 9) | 2.6-fold increase in AUCinf | [62] | |
Itraconazole (400 mg, PO for 1 day and then 200 mg, PO for 3 days) | Methylprednisolone (48 mg, PO) | Healthy male volunteers (n = 14) | 2.5- and 1.6-fold increase AUC24h and Cmax | [61] | |
Itraconazole (200 mg, PO, 4 days) | Methylprednisolone (16 mg, PO) | Healthy volunteers (n = 10) | 3.9- and 1.9-fold increase AUC24h and Cmax | [63] | |
Grapefruit juice (200 mL, double-strength, PO, TID, 2 days and then 0.5 h and 1.5 h after methylprednisolone administration) | Methylprednisolone (16 mg, PO) | Healthy volunteers (n = 10) | 1.7- and 1.3-fold increase in AUCinf and Cmax | [64] | |
Diltiazem (180 mg, PO, 4 days) | Methylprednisolone (0.3 mg/kg, IV) | Healthy male volunteers (n = 5) | 1.5-fold increase in AUC | [65] | |
Aprepitant (125 mg, PO on day 1, and 80 mg, PO on day 2/3) | Methylprednisolone (120 mg, IV on day 1, and 40 mg, PO on day 2/3) | Healthy volunteers (n = 10) | 1.3- and 2.5-fold increase in AUC24h at day 1 and 3 | [66] | |
Nefazodone (100 mg for 3 days, 150 mg for 2 days, and 200 mg for 5 days, BID, PO) | Methylprednisolone (0.6 mg/kg, IV) | Healthy volunteers (n = 8) | 2.2-fold increase in AUC | [67] | |
Ketoconazole (200 mg, PO, 4 days) | Budesonide (3 mg, PO) | Healthy male volunteers (n = 8) | 6.5-fold increase in AUC24h | [68] | |
Grapefruit juice (200 mL, regular strength, PO, TID, 4 days) | Budesonide (3 mg, PO) | Healthy male volunteers (n = 8) | 1.7-fold increase in AUC and Cmax | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-R.; Gulnaz, A.; Chae, Y.-J. Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management. Pharmaceutics 2024, 16, 1431. https://doi.org/10.3390/pharmaceutics16111431
Lee K-R, Gulnaz A, Chae Y-J. Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management. Pharmaceutics. 2024; 16(11):1431. https://doi.org/10.3390/pharmaceutics16111431
Chicago/Turabian StyleLee, Kyeong-Ryoon, Aneela Gulnaz, and Yoon-Jee Chae. 2024. "Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management" Pharmaceutics 16, no. 11: 1431. https://doi.org/10.3390/pharmaceutics16111431
APA StyleLee, K.-R., Gulnaz, A., & Chae, Y.-J. (2024). Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management. Pharmaceutics, 16(11), 1431. https://doi.org/10.3390/pharmaceutics16111431