Provinols™, a Polyphenolic Extract of Red Wine, Inhibits In-Stent Neointimal Growth in Cholesterol-Fed Rabbit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stent Procedure and Tissue Harvest
2.2. Biochemical Parameters and Blood Pressure Measurements
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Biochemical and Physiological Measurements
3.2. Histological Qualitative Analysis
3.3. Histomorphometric Quantitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schatz, R.A.; Baim, D.S.; Leon, M.; Ellis, S.G.; Goldberg, S.; Hirshfeld, J.W.; Cleman, M.W.; Cabin, H.S.; Walker, C.; Stagg, J. Clinical experience with the Palmaz-Schatz coronary stent: Initial results of a multicenter study. Circulation 1991, 83, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Fischmann, D.L.; Leon, M.B.; Baim, D.S.; For the Stent Restenosis Study Investigators. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N. Engl. J. Med. 1994, 331, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Post, M.J.; de Smet, B.J.; van der Helm Borst, C.; Kuntz, R.E. Arterial remodeling after balloon angioplasty or stenting in an atherosclerotic experimental model. Circulation 1997, 96, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.S.; Henry, T.D. Pathophysiology of coronary restenosis. Rev. Cardiovasc. Med. 2002, 3 (Suppl. 5), S4–S9. [Google Scholar]
- Shaikh, S.; Hamza, M.; Upreti, P.; Akkawi, M.; Rajak, K.; Haider, M.Z.; Kumar, N.; Turkmani, M.; Kathawa, F.; Basit, S.A.; et al. Meta-analysis comparing drug-coated balloon versus plain old balloon angioplasty for in-stent restenosis of coronary arteries. Am. J. Cardiol. 2024, 229, 22–27. [Google Scholar] [CrossRef]
- Udriște, A.S.; Burdușel, A.C.; Niculescu, A.G.; Rădulescu, M.; Grumezescu, A.M. Coatings for cardiovascular stents-an up-to-date review. Int. J. Mol. Sci. 2024, 25, 1078. [Google Scholar] [CrossRef]
- Moses, J.W.; Leon, M.B.; Popma, J.J.; Fitzgerald, P.J.; Holmes, D.R.; O’Shaughnessy, C.; Caputo, R.P.; Kereiakes, D.J.; Williams, D.O.; Teirstein, P.S.; et al. SIRIUS Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 2003, 349, 1315–1323. [Google Scholar] [CrossRef]
- Scheller, B.; Speck, U.; Abramjuk, C.; Nickenig, G. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 2004, 110, 810–814. [Google Scholar] [CrossRef]
- Babapulle, M.N.; Joseph, L.; Belisle, P.; Brophy, J.M.; Eisenberg, M.J. A hierachical Bayesian meta-analysis of randomised clinical trials of drug-eluted stents. Lancet 2004, 364, 583–591. [Google Scholar] [CrossRef]
- Van der Giessen, W.J.; Linoff, A.M.; Schwartz, R.S.; Van Beusekom, H.M.; Serruys, P.W.; Holmes, D.R.; SEllis, G.; Topol, E.J. Marked inflammatory sequelae to implantation of biodegradable and non biodegradable polymers in porcine coronary arteries. Circulation 1996, 94, 1690–1697. [Google Scholar] [CrossRef]
- Lafont, A. The cypher stent: No longer efficacious at three months in the porcine model? Cardiovasc. Res. 2004, 63, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Kitano, D.; Migita, S.; Ly, Y.; Takahashi, R.; Taniguchi, Y.; Kurosawa, T.; Sudo, M.; Haruta, H.; Hiro, T.; Takayama, T.; et al. Effect of rivaroxaban and clopidogrel combination therapy on in-stent responses after everolimus-eluting stent implantation in a oprcine coronary model. J. Atheroscler. Thromb. 2022, 29, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Ialenti, A.; Grassia, G.; Gordon, P.; Maddaluno, M.; Di Lauro, M.V.; Baker, A.H.; Guglielmotti, A.; Colombo, A.; Biondi, G.; Kennedy, S.; et al. Inhibition of in-stent stenosis by oral administration of bindarit in porcine coronary arteries. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2448–2454. [Google Scholar] [CrossRef] [PubMed]
- Ribichini, F.; Joner, M.; Ferrero, V.; Finn, A.V.; Crimins, J.; Nakazawa, G.; Acampado, E.; Kolodgie, F.D.; Vassanelli, C.; Virmani, R. Effects of oral prednisone after stenting in a rabbit model of established atherosclerosis. J. Am. Coll. Cardiol. 2007, 50, 176–185. [Google Scholar] [CrossRef]
- Lau, A.K.; Leichtweis, S.B.; Hume, P.; Hume, P.; Mashima, R.; Hou, J.Y.; Chaufour, X.; Wilkinson, B.; Hunt, N.H.; Celermajer, D.S.; et al. Probucol promotes functional reendothelialisation in balloon-injured rabbit aortas. Circulation 2003, 107, 2031–2036. [Google Scholar] [CrossRef]
- Hausleiter, J.; Kastrati, A.; Mehilli, J.; Vogeser, M.; Zohlnhofer, D.; Schuhlen, H.; Goos, C.; Pache, J.; Dotzer, F.; Pogatsa-Murray, G.; et al. for the OSIRIS Investigators. Randomized, double-blind, placebo-controlled trial of oral sirolimus for restenosis prevention in patients with in-stent restenosis. The oral sirolimus to inhibit recurrent in-stent stenosis (OSIRIS) trial. Circulation 2004, 110, 790–795. [Google Scholar] [CrossRef]
- Godos, J.; Romano, G.L.; Laudani, S.; Gozzo, L.; Guerrera, I.; Dominguez Azpíroz, I.; Diaz, R.M.; Quiles, J.L.; Battino, M.; Drago, F.; et al. Flavan-3-ols and vascular health: Clinical evidence and mechanisms of action. Nutrients 2024, 16, 2471. [Google Scholar] [CrossRef]
- Godyla-Jabłoński, M.; Raczkowska, E.; Jodkowska, A.; Kucharska, A.Z.; Sozański, T.; Bronkowska, M. Effects of anthocyanins on components of metabolic syndrome—A review. Nutrients 2024, 16, 1103. [Google Scholar] [CrossRef]
- Andriambeloson, E.; Kleschyov, A.L.; Muller, B.; Beretz, A.; Stoclet, J.C. Andriantsitohaina R Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br. J. Pharmacol. 1997, 120, 1053–1058. [Google Scholar] [CrossRef]
- Diebolt, M.; Bucher, B.; Andriantsitohaina, R. Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension 2001, 38, 159–165. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Edelman, E.R.; For the Consensus Committee; Carter, A.; Chronos, N.; Rogers, C.; Robinson, K.A.; Waksman, R.; Weinberger, J.; Wilensky, R.L.; et al. Drug-eluting stents in preclinical studies. Recommended evaluation from a consensus group. Circulation 2002, 106, 1867. [Google Scholar] [CrossRef] [PubMed]
- Donath, K.; Brunner, G. A method for the study of undecalcified bone and teeth with attached soft tissues. J. Oral. Pathol. 1982, 11, 318–326. [Google Scholar] [CrossRef] [PubMed]
- ANSI/AAMI/ISO 10993-6; Biological Evaluation of Medical Devices—Part 6: Tests for Local Effects after Implantation. Association for the Advancement of Medical Instrumentation: Arlington, VA, USA, 2016.
- Farb, A.; John, M.; Acampado, E.; Kolodgie, F.D.; Prescott, M.F.; Virmani, R. Oral everolimus inhibit in-stent neointimal growth. Circulation 2002, 106, 2379–2384. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Kopia, G.; Hayashi, S.; Bailey, L.R.; Llanos, G.; Wilensky, R.; Klugherz, B.D.; Papandreou, G.; Narayan, P.; Leon, M.B.; et al. Stent-based delivery of sirolimus reduces neoinitimal formation in a porcine coronary model. Circulation 2001, 104, 1188–1193. [Google Scholar] [CrossRef]
- Andriantsitohaina, R.; Auger, C.; Chataigneau, T.; Étienne-Selloum, N.; Li, H.; Martínez, M.C.; Schini-Kerth, V.B.; Laher, I. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br. J. Nutr. 2012, 108, 1532–1549. [Google Scholar] [CrossRef]
- Andriambeloson, E.; Magnier, C.; Haan-Archipoff, G.; Lobstein, A.; Anton, R.; Beretz, A.; Stoclet, J.C.; Andriantsitohaina, R. Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J. Nutr. 1998, 128, 2324–2333. [Google Scholar] [CrossRef]
- Bernatova, I.; Pechanova, O.; Babal, P.; Kysela, S.; Stvrtina, S.; Andriantsitohaina, R. Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am. J. Physiol Heart Circ. Physiol. 2002, 282, 942–948. [Google Scholar] [CrossRef]
- Pechánová, O.; Bernátová, I.; Babál, P.; Martínez, M.C.; Kyselá, S.; Stvrtina, S.; Andriantsitohaina, R. Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. J. Hypertens. 2004, 22, 1551–1559. [Google Scholar] [CrossRef]
- Andrés, N.L.; Tesse, A.; Regnault, V.; Louis, H.; Cattan, V.; Thornton, S.N.; Labat, C.; Kakou, A.; Tual-Chalot, S.; Faure, S.; et al. Increased microparticle production and impaired microvascular endothelial function in aldosterone-salt-treated rats: Protective effects of polyphenols. PLoS ONE 2012, 7, e39235. [Google Scholar]
- Chalopin, M.; Tesse, A.; Martínez, M.C.; Rognan, D.; Arnal, J.F.; Andriantsitohaina, R. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS ONE 2010, 5, e8554. [Google Scholar] [CrossRef]
- Lafont, A.; Chai, Y.C.; Cornhill, J.F.; Whitlow, P.L.; Howe, P.H.; Chisolm, G.M. Effect of alpha-tocopherol on restenosis after angioplasty in a model of experimental atherosclerosis. J. Clin. Investig. 1995, 95, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Kitamoto, S.; Egashira, K.; Kataoka, C.; Koyanagi, M.; Katoh, M.; Shimokawa, H.; Morishita, R.; Kaneda, Y.; Sueishi, K.; Takeshita, A. Increased activity of nuclear factor-kB participates in cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis in rats. Circulation 2000, 102, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Egashira, K.; Ohara, Y.; Takemoto, M.; Koyanagi, M.; Katoh, M.; Yamamoto, H.; Tamaki, K.; Shimokawa, H.; Takeshita, A. Early induction of transforming growth factor via angiotensin II type1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 1998, 32, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Iijima, K.; Yoshizumi, M.; Hashimoto, M.; Akishita, M.; Kozaki, K.; Ako, J.; Watanabe, T.; Ohike, Y.; Son, B.; Yu, J.; et al. Red wine polyphenols inhibit vascular smooth muscle cell migration through two distinct signalling pathways. Circulation 2002, 105, 2404–2410. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, S.; Knirel, D.; Dietrich, H.; Flesch, M.; Erdmann, E.; Bohm, M. Inhibition of the PDGF receptor by red wine flavonoids provides a molecular explanation for the “French paradox”. FASEB J. 2002, 16, 1958–1960. [Google Scholar] [CrossRef]
- Oak, M.-H.; Chataigneau, M.; Keravis, T.; Chataigneau, T.; Beretz, A.; Andriantsitohaina, R.; Stoclet, J.-C.; Chang, S.-J.; Schini-Kerth, V.B. Red wine polyphenolic compounds inhibit vascular endothelial growth factor expression in vascular smooth muscle cells by preventing the activation of the p38 mitogen-activated protein kinase pathway. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1001–1007. [Google Scholar] [CrossRef]
Baseline | Before Stenting | Before Euthanasia | |||
---|---|---|---|---|---|
Provinols™ | Control | Provinols™ | Control | ||
Creatinine (µmol/L) | 90 ± 20 | 107 ± 52 | 107 ± 64 | 122 ± 42 | 111 ± 26 |
AP (UI) | 115 ± 35 | 131 ± 47 | 140 ± 46 | 113 ± 27 | 115 ± 50 |
GGT (UI) | 12 ± 15 | 17 v 16 | 13.5 v 12 | 42 ± 36 | 80 ± 51 |
ASAT (UI) | 15 ± 10 | 29 ± 9 | 19 ± 6.5 | 23 ± 3 | 26 ± 9 |
ALAT (UI) | 33 ± 15 | 17 ± 16 | 13.5 ± 12 | 27 ± 6 | 41 ± 16 |
Bilirubin (µmol/L) | 3 ± 1 | 4 ± 1.7 | 3 ± 0.6 | 5.1 ± 3 | 4.1 ± 1.2 |
Chol (mmol/L) | 2.2 ± 1.2 | 50 ± 14 | 47 ± 10 | 32 ± 9 | 31 ± 5 |
TG (mmol/L) | 0.87 ± 0.4 | 2.3 ± 2 | 1.35 ± 0.7 | 1.3 ± 0.3 | 2.1 ± 0.6 |
HDL-c (mmol/L) | 0.55 ± 0.15 | 11 ± 1.6 | 10.6 ± 2.4 | 8.6 ± 3 | 8.5 ± 3.5 |
Glycemia (mmol/L) | 11.1 ± 2.1 | 8.9 ± 1.4 | 10.4 ± 2.1 | 8.5 ± 1.9 | 9.7 ± 2.2 |
BP (mmHg) | ---- | 111 ± 8 | 116 ± 6 | 110 ± 16 | 114 ± 10 |
Body weight (Kg) | 3.31 ± 0.12 | 3.06 ± 0.45 | 3.03 ± 0.21 | 3.49 ± 0.15 | 3.27 ± 0.12 |
Provinols™ | Control | p | |
---|---|---|---|
Stenosis (%) | 28.1 | 42.2 | 0.0022 |
Neointima thickness (μm) | 179 ± 62 | 315 ± 153 | 0.0014 |
Neointima surface (mm2) | 1.07 ± 0.37 | 1.8 ± 0.67 | 0.0004 |
Residual lumen surface (mm2) | 3.45 ± 1 | 2.87 ± 1 | 0.05 |
Medial area (mm2) | 0.22 ± 0.10 | 0.27 ± 0.13 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbaz, M.; Roul, G.; Andriantsitohaina, R. Provinols™, a Polyphenolic Extract of Red Wine, Inhibits In-Stent Neointimal Growth in Cholesterol-Fed Rabbit. Pharmaceutics 2024, 16, 1311. https://doi.org/10.3390/pharmaceutics16101311
Elbaz M, Roul G, Andriantsitohaina R. Provinols™, a Polyphenolic Extract of Red Wine, Inhibits In-Stent Neointimal Growth in Cholesterol-Fed Rabbit. Pharmaceutics. 2024; 16(10):1311. https://doi.org/10.3390/pharmaceutics16101311
Chicago/Turabian StyleElbaz, Meyer, Gérald Roul, and Ramaroson Andriantsitohaina. 2024. "Provinols™, a Polyphenolic Extract of Red Wine, Inhibits In-Stent Neointimal Growth in Cholesterol-Fed Rabbit" Pharmaceutics 16, no. 10: 1311. https://doi.org/10.3390/pharmaceutics16101311
APA StyleElbaz, M., Roul, G., & Andriantsitohaina, R. (2024). Provinols™, a Polyphenolic Extract of Red Wine, Inhibits In-Stent Neointimal Growth in Cholesterol-Fed Rabbit. Pharmaceutics, 16(10), 1311. https://doi.org/10.3390/pharmaceutics16101311