Model-Informed Precision Dosing for Personalized Ustekinumab Treatment in Plaque Psoriasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Blood Sampling and Analytical Quantification of Samples
2.3. Psoriasis Area and Severity Index Score Measurement
2.4. Modeling Data Analysis
2.5. Individual Dosing Regimen Strategy
- 5th cycle: individual simulations of dosing regimens were generated considering 5 cycles of UTK (steady-state conditions) administration with the administered dosage regimen of each patient.
- 10th cycle: following the 5th cycle, we simulated the combination of alternative dose levels (45 and 90 mg) with different posology (q8w, q12w, q16w, and q20w) for each patient during 5 more cycles of treatment with UTK.
3. Results
3.1. Study Population
3.2. Population PK Model
3.3. Population PK/PD Model
3.4. Individual Dosing Regimen Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHT | Arterial hypertension |
BMI | Body mass index |
Ctrough-ss | Trough concentration at steady state |
CL | Clearance |
EDrug | Effect of the drug |
F | Bioavailability |
IC50 | Concentration of the drug needed to inhibit 50% of the response |
Imax | Maximum inhibition drug effect |
IIV | Interindividual variability |
IL | Interleukin |
ka | Absorption rate constant |
kin | Zero-order progression constant rate of psoriatic skin lesion |
kout | First-order remission constant rate of psoriatic skin lesion |
mAb | monoclonal antibody |
MCMC | Markov Chain Monte Carlo |
MIPD | Model-informed precision dosing |
Amount of simulated PASI score values that reach the response target (PASI score ≤ 1) | |
ηi,RV | Estimated individual random component accounting for the difference between PASIi and PASIi,o |
PASI | Psoriasis Area and Severity Index |
PASIi | Estimated baseline levels of PASI response |
PASIi,o | Individual observed baseline levels of PASI response |
pcVPC | Prediction-corrected visual predictive check |
PD | Pharmacodynamic |
PK | Pharmacokinetic |
PK/PD | Pharmacokinetic/pharmacodynamic |
Q | Intercompartmental transfer clearance |
q8w | Once every 8 weeks |
q10w | Once every 10 weeks |
q12w | Once every 12 weeks |
q14w | Once every 14 weeks |
q15w | Once every 15 weeks |
q16w | Once every 16 weeks |
q18w | Once every 18 weeks |
q20w | Once every 20 weeks |
RUV | Residual unexplained variability |
SD | Standard deviation |
SmPC | Summary of product characteristics |
TDM | Therapeutic drug monitoring |
Total amount of simulated PASI score values (100 clones) | |
UTK | Ustekinumab |
V2 | Central volume of distribution |
V3 | Peripheral volume of distribution |
References
- Schadler, E.D.; Ortel, B.; Mehlis, S.L. Biologics for the primary care physician: Review and treatment of psoriasis. Disease-a-Month 2018, 65, 51–90. [Google Scholar] [CrossRef] [PubMed]
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef] [PubMed]
- Koutruba, N.; Emer, J.; Lebwohl, M. Review of ustekinumab, an interleukin-12 and interleukin-23 inhibitor used for the treatment of plaque psoriasis. Ther. Clin. Risk Manag. 2010, 6, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Keam, S.J. Ustekinumab. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2009, 23, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Mahil, S.K.; Capon, F.; Barker, J.N. Update on psoriasis immunopathogenesis and targeted immunotherapy. Semin. Immunopathol. 2016, 38, 11–27. [Google Scholar] [CrossRef]
- Murphy, K.M.; Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2002, 2, 933–944. [Google Scholar] [CrossRef]
- Tesmer, L.A.; Lundy, S.K.; Sarkar, S.; Fox, D.A. Th17 cells in human disease. Immunol. Rev. 2008, 223, 87–113. [Google Scholar] [CrossRef]
- FDA. Approved Drug Products: STELARA (Ustekinumab) Injection, for Subcutaneous or Intravenous Use. March 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761044s013lbl.pdf (accessed on 6 August 2024).
- Leonardi, C.L.; Kimball, A.B.; Papp, K.A.; Yeilding, N.; Guzzo, C.; Wang, Y.; Li, S.; Dooley, L.T.; Gordon, K.B. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008, 371, 1665–1674. [Google Scholar] [CrossRef]
- Papp, K.A.; Langley, R.G.; Lebwohl, M.; Krueger, G.G.; Szapary, P.; Yeilding, N.; Guzzo, C.; Hsu, M.C.; Wang, Y.; Li, S.; et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008, 371, 1675–1684. [Google Scholar] [CrossRef]
- Thein, D.; Rosenø, N.A.L.; Maul, J.T.; Wu, J.J.; Skov, L.; Bryld, L.E.; Rasmussen, M.K.; Ajgeiy, K.K.; Thomsen, S.F.; Thyssen, J.P.; et al. Drug Survival of Adalimumab, Secukinumab, and Ustekinumab in Psoriasis as Determined by Either Dose Escalation or Drug Discontinuation during the First 3 Years of Treatment–a Nationwide Cohort Study. J. Investig. Dermatol. 2023, 143, 2211–2218. [Google Scholar] [CrossRef]
- Yiu, Z.Z.N.; Mason, K.J.; Hampton, P.J.; Reynolds, N.J.; Smith, C.H.; Lunt, M.; Griffiths, C.E.M.; Warren, R.B. Drug survival of adalimumab, ustekinumab and secukinumab in patients with psoriasis: A prospective cohort study from the British Association of Dermatologists Biologics and Immunomodulators Register (BADBIR). Br. J. Dermatol. 2020, 183, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Young, M.S.; Horn, E.J.; Cather, J.C. The ACCEPT study: Ustekinumab versus etanercept in moderate-to-severe psoriasis patients. Expert Rev. Clin. Immunol. 2011, 7, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hu, C.; Lu, M.; Liao, S.; Marini, J.C.; Yohrling, J.; Yeilding, N.; Davis, H.M.; Zhou, H. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J. Clin. Pharmacol. 2009, 49, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.W.; Mendelsohn, A.; Pendley, C.; Davis, H.M.; Zhou, H. Population pharmacokinetics of ustekinumab in patients with active psoriatic arthritis. Int. J. Clin. Pharmacol. Ther. 2010, 48, 830–846. [Google Scholar] [CrossRef]
- Pan, S.; Tsakok, T.; Dand, N.; Lonsdale, D.O.; Loeff, F.C.; Bloem, K.; de Vries, A.; Baudry, D.; Duckworth, M.; Mahil, S.; et al. Using Real-World Data to Guide Ustekinumab Dosing Strategies for Psoriasis: A Prospective Pharmacokinetic-Pharmacodynamic Study. Clin. Transl. Sci. 2020, 13, 400–409. [Google Scholar] [CrossRef]
- Zhou, W.; Hu, C.; Zhu, Y.; Randazzo, B.; Song, M.; Sharma, A.; Xu, Z.; Zhou, H. Extrapolating Pharmacodynamic Effects from Adults to Pediatrics: A Case Study of Ustekinumab in Pediatric Patients With Moderate to Severe Plaque Psoriasis. Clin. Pharmacol. Ther. 2020, 109, 131–139. [Google Scholar] [CrossRef]
- Shao, J.; Xu, Z.; Xu, Y. Integrated Population Pharmacokinetic Analysis of Ustekinumab Across Multiple Immune-Mediated Inflammatory Disease Populations and Healthy Subjects. Eur. J. Drug Metab. Pharmacokinet. 2022, 47, 537–548. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, C.; Zhu, Y.; Lu, M.; Liao, S.; Yeilding, N.; Davis, H.M. Population-based exposure-efficacy modeling of ustekinumab in patients with moderate to severe plaque psoriasis. J. Clin. Pharmacol. 2010, 50, 257–267. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, K.; Mangas-Sanjuán, V.; Merino-Sanjuán, M.; Martorell-Calatayud, A.; Mateu-Puchades, A.; Climente-Martí, M.; Gras-Colomer, E. Impact of Pharmacokinetic and Pharmacodynamic Properties of Monoclonal Antibodies in the Management of Psoriasis. Pharmaceutics 2022, 14, 654. [Google Scholar] [CrossRef]
- Felmlee, M.A.; Morris, M.E.; Mager, D.E. Mechanism-based pharmacodynamic modeling. Methods Mol. Biol. 2012, 929, 583–600. [Google Scholar] [CrossRef]
- Notario, J.; Bordas, X. Practical management of ustekinumab in moderate-severe psoriasis. Actas Dermo-Sifiliográficas 2012, 103, 52–58. [Google Scholar] [CrossRef]
- Tyson, R.J.; Park, C.C.; Powell, J.R.; Patterson, J.H.; Weiner, D.; Watkins, P.B.; Gonzalez, D. Precision Dosing Priority Criteria: Drug, Disease, and Patient Population Variables. Front. Pharmacol. 2020, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Syversen, S.W.; Goll, G.L.; Jørgensen, K.K.; Sandanger, Ø.; Sexton, J.; Olsen, I.C.; Gehin, J.E.; Warren, D.J.; Brun, M.K.; Klaasen, R.A.; et al. Effect of Therapeutic Drug Monitoring vs Standard Therapy During Infliximab Induction on Disease Remission in Patients With Chronic Immune-Mediated Inflammatory Diseases: A Randomized Clinical Trial. JAMA 2021, 325, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Albader, F.; Golovics, P.A.; Gonczi, L.; Bessissow, T.; Afif, W.; Lakatos, P.L. Therapeutic drug monitoring in inflammatory bowel disease: The dawn of reactive monitoring. World J. Gastroenterol. 2021, 27, 6231–6247. [Google Scholar] [CrossRef] [PubMed]
- D’Haens, G.R.; Sandborn, W.J.; Loftus, E.V., Jr.; Hanauer, S.B.; Schreiber, S.; Peyrin-Biroulet, L.; Panaccione, R.; Panés, J.; Baert, F.; Colombel, J.F.; et al. Higher vs Standard Adalimumab Induction Dosing Regimens and Two Maintenance Strategies: Randomized SERENE CD Trial Results. Gastroenterology 2022, 162, 1876–1890. [Google Scholar] [CrossRef]
- Minichmayr, I.K.; Dreesen, E.; Centanni, M.; Wang, Z.; Hoffert, Y.; Friberg, L.E.; Wicha, S.G. Model-informed precision dosing: State of the art and future perspectives. Adv. Drug Deliv. Rev. 2024, 2024, 115421. [Google Scholar] [CrossRef]
- Olivier, B.G.; Swat, M.J.; Moné, M.J. Modeling and Simulation Tools: From Systems Biology to Systems Medicine. Methods Mol. Biol. 2016, 1386, 441–463. [Google Scholar] [CrossRef]
- Darwich, A.S.; Polasek, T.M.; Aronson, J.K.; Ogungbenro, K.; Wright, D.F.B.; Achour, B.; Reny, J.L.; Daali, Y.; Eiermann, B.; Cook, J.; et al. Model-Informed Precision Dosing: Background, Requirements, Validation, Implementation, and Forward Trajectory of Individualizing Drug Therapy. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 225–245. [Google Scholar] [CrossRef]
- Minichmayr, I.K.; Mizuno, T.; Goswami, S.; Peck, R.W.; Polasek, T.M.; Pharmacology, t.A.S.o.C.; Community, T.P.D. Recent Advances Addressing the Challenges of Precision Dosing. Clin. Pharmacol. Ther. 2024, 116, 527–530. [Google Scholar] [CrossRef]
- Bandín-Vilar, E.; Toja-Camba, F.J.; Vidal-Millares, M.; Durán-Maseda, M.J.; Pou-Álvarez, M.; Castro-Balado, A.; Maroñas, O.; Gil-Rodríguez, A.; Carracedo, Á.; Zarra-Ferro, I.; et al. Towards precision medicine of long-acting aripiprazole through population pharmacokinetic modelling. Psychiatry Res. 2024, 333, 115721. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, K.; Reynaldo-Fernández, G.; Reyes-González, S.; de Las Barreras, C.; Rodríguez-Vera, L.; Vlaar, C.; Monbaliu, J.M.; Stelzer, T.; Duconge, J.; Mangas-Sanjuan, V. New insights into the role of VKORC1 polymorphisms for optimal warfarin dose selection in Caribbean Hispanic patients through an external validation of a population PK/PD model. Biomed. Pharmacother. Biomed. Pharmacother. 2024, 170, 115977. [Google Scholar] [CrossRef] [PubMed]
- Polasek, T.M.; Peck, R.W. Beyond Population-Level Targets for Drug Concentrations: Precision Dosing Needs Individual-Level Targets that Include Superior Biomarkers of Drug Responses. Clin. Pharmacol. Ther. 2024, 116, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Szapary, P.O.; Mendelsohn, A.M.; Zhou, H. Latent variable indirect response joint modeling of a continuous and a categorical clinical endpoint. J. Pharmacokinet. Pharmacodyn. 2014, 41, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Salinger, D.H.; Endres, C.J.; Martin, D.A.; Gibbs, M.A. A semi-mechanistic model to characterize the pharmacokinetics and pharmacodynamics of brodalumab in healthy volunteers and subjects with psoriasis in a first-in-human single ascending dose study. Clin. Pharmacol. Drug Dev. 2014, 3, 276–283. [Google Scholar] [CrossRef]
- Chigutsa, E.; Velez de Mendizabal, N.; Chua, L.; Heathman, M.; Friedrich, S.; Jackson, K.; Reich, K. Exposure-Response Modeling to Characterize the Relationship Between Ixekizumab Serum Drug Concentrations and Efficacy Responses at Week 12 in Patients with Moderate to Severe Plaque Psoriasis. J. Clin. Pharmacol. 2018, 58, 1489–1500. [Google Scholar] [CrossRef]
- Hu, C.; Yao, Z.; Chen, Y.; Randazzo, B.; Zhang, L.; Xu, Z.; Sharma, A.; Zhou, H. A comprehensive evaluation of exposure-response relationships in clinical trials: Application to support guselkumab dose selection for patients with psoriasis. J. Pharmacokinet. Pharmacodyn. 2018, 45, 523–535. [Google Scholar] [CrossRef]
- van Huizen, A.; Bank, P.; van der Kraaij, G.; Musters, A.; Busard, C.; Menting, S.; Rispens, T.; de Vries, A.; van Doorn, M.; Prens, E.; et al. Quantifying the Effect of Methotrexate on Adalimumab Response in Psoriasis by Pharmacokinetic-Pharmacodynamic Modeling. J. Investig. Dermatol. 2024, 144, 794–801. [Google Scholar] [CrossRef]
- Dansirikul, C.; Silber, H.E.; Karlsson, M.O. Approaches to handling pharmacodynamic baseline responses. J. Pharmacokinet. Pharmacodyn. 2008, 35, 269–283. [Google Scholar] [CrossRef]
- Bergstrand, M.; Hooker, A.C.; Wallin, J.E.; Karlsson, M.O. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011, 13, 143–151. [Google Scholar] [CrossRef]
- Upton, R.N.; Mould, D.R. Basic concepts in population modeling, simulation, and model-based drug development: Part 3-introduction to pharmacodynamic modeling methods. CPT Pharmacomet. Syst. Pharmacol. 2014, 3, e88. [Google Scholar] [CrossRef]
- Lixoft. Monolix Suite 2024R1. 2024. Available online: https://lixoft.com/products/monolix/ (accessed on 25 July 2024).
- Ito, K.; Murphy, D. Application of ggplot2 to Pharmacometric Graphics. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e79. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: http://www.R-project.org/ (accessed on 30 July 2024).
- Monolix 2024R1 User Guide. Available online: https://monolix.lixoft.com/single-page/ (accessed on 25 January 2024).
- Kümmel, A.; Bonate, P.L.; Dingemanse, J.; Krause, A. Confidence and Prediction Intervals for Pharmacometric Models. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Lixoft. Simulx 2024R1. 2024. Available online: https://simulx.lixoft.com/ (accessed on 25 July 2024).
- Dayneka, N.L.; Garg, V.; Jusko, W.J. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokinet. Biopharm. 1993, 21, 457–478. [Google Scholar] [CrossRef] [PubMed]
- BOT PLUS. Available online: https://botplusweb.farmaceuticos.com/ (accessed on 29 August 2024).
- Torres, T.; Puig, L. Treatment goals for psoriasis: Should PASI 90 become the standard of care? Actas Dermo-Sifiliográficas 2015, 106, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Nast, A.; Smith, C.; Spuls, P.I.; Avila Valle, G.; Bata-Csörgö, Z.; Boonen, H.; De Jong, E.; Garcia-Doval, I.; Gisondi, P.; Kaur-Knudsen, D.; et al. EuroGuiDerm Guideline on the systemic treatment of Psoriasis vulgaris–Part 1: Treatment and monitoring recommendations. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2461–2498. [Google Scholar] [CrossRef]
- Kamal, M.A.; Ganguly, S.; Kadambi, A.; Smith, P.F. Extended Model-Informed Drug Development: Beyond Clinical Trials and Regulatory Approval. Clin. Pharmacol. Ther. 2024, 116, 518–521. [Google Scholar] [CrossRef]
- Darwich, A.S.; Ogungbenro, K.; Vinks, A.A.; Powell, J.R.; Reny, J.L.; Marsousi, N.; Daali, Y.; Fairman, D.; Cook, J.; Lesko, L.J.; et al. Why has model-informed precision dosing not yet become common clinical reality? lessons from the past and a roadmap for the future. Clin. Pharmacol. Ther. 2017, 101, 646–656. [Google Scholar] [CrossRef]
- Dolan, J.G.; Veazie, P.J.; Russ, A.J. Development and initial evaluation of a treatment decision dashboard. BMC Med. Inform. Decis. Mak. 2013, 13, 51. [Google Scholar] [CrossRef]
- Mould, D.R.; Upton, R.N.; Wojciechowski, J. Dashboard systems: Implementing pharmacometrics from bench to bedside. AAPS J. 2014, 16, 925–937. [Google Scholar] [CrossRef]
- Mould, D.R.; Upton, R.N. “Getting the Dose Right”-Revisiting the Topic with Focus on Biologic Agents. Clin. Pharmacol. Ther. 2024, 116, 613–618. [Google Scholar] [CrossRef]
Mean ± SD | Range | n (%) | |||||
---|---|---|---|---|---|---|---|
Demographic data | |||||||
Age (years) | 62 ± 8.19 | 45–76 | |||||
Body weight (kg) | 92 ± 18.4 | 70–135 | |||||
Height (m) | 1.67 ± 0.06 | 1.54–1.83 | |||||
BMI (kg/m2) | 32.3 ± 6.8 | 24–50.19 | |||||
Gender (male) | 14 (64) | ||||||
Treatment period (years) | 5.43 ± 3.3 | 0.304–11.4 | |||||
Biological “naive” | 20 (87) | ||||||
Comorbidities | |||||||
AHT | 2 (9) | ||||||
Dyslipidemia | 2 (9) | ||||||
Diabetes | 1 (4) | ||||||
Obesity | 4 (16) | ||||||
Psoriatic arthropathy | 2 (9) | ||||||
Non-alcoholic fatty liver | 2 (9) | ||||||
Anxious–depressive disorder | 2 (9) | ||||||
Others | 4 (16) | ||||||
TDM data | |||||||
Total of patients | 23 | ||||||
UTK concentration (mg/L) | 4.1 ± 3.06 | 0.27–12.7 | |||||
Total of UTK concentrations | 75 | ||||||
PASI (no units) | 1.096 ± 2.13 | 0–12 | |||||
Total of PASIs | 117 | ||||||
14.4 ± 6.23 | 5–31.9 | ||||||
Current treatment characteristics | |||||||
SmPC | Optimized | Intensified | Summary | ||||
45 mg q12w | 1 | 45 mg q14w | 1 | 90 mg q10w | 1 | SmPC | 9 (40%) |
90 mg q12w | 8 | 45 mg q16w | 3 | 90 mg q8w | 2 | Optimized | 11 (48%) |
45 mg q18w | 1 | Intensified | 3 (12%) | ||||
90 mg q14w | 1 | ||||||
90 mg q15w | 2 | ||||||
90 mg q16w | 3 |
Parameter (Units) | Value | RSE (%) |
---|---|---|
Fixed effect | ||
kout (d−1) | 0.016 | 22 |
Imax | 0.97 | 0.7 |
IC50 (mg/L) | 0.07 FIX | |
Inter-individual variability | ||
kout (%) | 55.87 | 38.9 |
Residual unexplained variability | ||
Error (%) | 0.86 | 9.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Fernández, K.; Zarzoso-Foj, J.; Saez-Bello, M.; Mateu-Puchades, A.; Martorell-Calatayud, A.; Merino-Sanjuan, M.; Gras-Colomer, E.; Climente-Martí, M.; Mangas-Sanjuan, V. Model-Informed Precision Dosing for Personalized Ustekinumab Treatment in Plaque Psoriasis. Pharmaceutics 2024, 16, 1295. https://doi.org/10.3390/pharmaceutics16101295
Rodríguez-Fernández K, Zarzoso-Foj J, Saez-Bello M, Mateu-Puchades A, Martorell-Calatayud A, Merino-Sanjuan M, Gras-Colomer E, Climente-Martí M, Mangas-Sanjuan V. Model-Informed Precision Dosing for Personalized Ustekinumab Treatment in Plaque Psoriasis. Pharmaceutics. 2024; 16(10):1295. https://doi.org/10.3390/pharmaceutics16101295
Chicago/Turabian StyleRodríguez-Fernández, Karine, Javier Zarzoso-Foj, Marina Saez-Bello, Almudena Mateu-Puchades, Antonio Martorell-Calatayud, Matilde Merino-Sanjuan, Elena Gras-Colomer, Monica Climente-Martí, and Victor Mangas-Sanjuan. 2024. "Model-Informed Precision Dosing for Personalized Ustekinumab Treatment in Plaque Psoriasis" Pharmaceutics 16, no. 10: 1295. https://doi.org/10.3390/pharmaceutics16101295
APA StyleRodríguez-Fernández, K., Zarzoso-Foj, J., Saez-Bello, M., Mateu-Puchades, A., Martorell-Calatayud, A., Merino-Sanjuan, M., Gras-Colomer, E., Climente-Martí, M., & Mangas-Sanjuan, V. (2024). Model-Informed Precision Dosing for Personalized Ustekinumab Treatment in Plaque Psoriasis. Pharmaceutics, 16(10), 1295. https://doi.org/10.3390/pharmaceutics16101295