Topical Insulin in Neurotrophic Keratopathy: A Review of Current Understanding of the Mechanism of Action and Therapeutic Approach
Abstract
:1. Introduction
1.1. Staging Proposed by Mackie et al. (1995) [8,17]
- Stage I of neurotrophic keratopathy is characterized by punctate epithelial staining and punctate keratopathy, indicating localized areas of epithelial cell damage. There is also evidence of hyperplasia and irregularity in the corneal epithelium, along with superficial neovascularization. This stage is further defined by a decreased tear film break-up time and Rose Bengal staining of the inferior palpebral conjunctiva, highlighting areas of cellular damage or dryness. Gaule spots are noted, representing scattered areas of dried epithelium. Additionally, there is an increase in mucous tear viscosity.
- Stage II is characterized by a persistent epithelial defect, typically located on the superior half of the cornea, surrounded by a rim of loose epithelium. The edges of the defect may smoothen and can become loose or roll, leading to further deterioration. There may also be stromal edema present, indicating swelling within the corneal stroma. An anterior chamber inflammatory reaction is rare but may occur.
1.2. Staging Proposed by Dua et al. (2018) [14]
- Stage I (mild) is characterized by superficial epithelial punctate lesions, alterations in the tear film, and reduced or absent sensitivity in isolated or multiple regions of the cornea.
- Stage II (moderate) presents with persistent epithelial defects and may include partial to complete loss of corneal sensation.
- Stage III (severe) manifests with stromal involvement, potentially progressing to ulcerations or full-thickness perforations, alongside diminished to entirely absent corneal sensation [14].
1.3. Staging Proposed by Mastropasqua et al. (2019) [11]
- Stage I
- Stage IA of neurotrophic keratopathy is identified by a punctate epithelial fluorescein stain, which may occur with or without corneal hypoesthesia. Diagnostic imaging shows that sub-basal nerve fiber density is equal to or greater than 5 μm/mm2, and total nerve fibers are equal to or greater than 1 μm/mm2. Anterior-segment optical coherence tomography reveals an irregular epithelial surface, increased epithelial and anterior stromal reflectivity, while stromal thickness and Bowman’s layer are preserved.
- Stage IB is distinguished by a sub-basal nerve fiber density of less than or equal to 5 μm/mm2 and total nerve fibers of less than or equal to 1 μm/mm2.
- Stage II
- In Stage IIA, there is an epithelial defect with smooth or rolled edges and corneal hypoesthesia or anesthesia. The sub-basal nerve fiber density is equal to or greater than 3 μm/mm2. Optical coherence tomography findings include an interrupted epithelial layer and increased anterior stromal reflectivity, without corneal stroma thinning or ulceration.
- Stage IIB is characterized by a sub-basal nerve fiber density of less than or equal to 3 μm/mm2.
- Stage III
- Stage IIIA presents corneal ulceration with stromal thinning, where the thickness depth is equal to or less than 50%.
- Stage IIIB is marked by stromal thinning and/or ulceration with a thickness depth of 50% or greater [11].
2. Cellular and Molecular Mechanisms of Neurotrophic Keratopahy
- Polymodal nociceptors are the most abundant type, responding to a variety of noxious stimuli including mechanical, thermal, and chemical insults. They play a key role in the sensation of pain and triggering reflexive protective responses such as blinking and tearing.
- Mechanonociceptors, which comprise a smaller percentage of corneal neurons, are specialized to respond exclusively to mechanical forces that are potentially harmful enough to damage the corneal surface. These neurons are responsible for the initial pain sensation in response to mechanical stimulation.
- Cold thermoreceptors, the least numerous, are activated by a decrease in corneal temperature, typically due to tear evaporation. These receptors contribute to the sensation of ocular surface dryness and discomfort and can initiate reflex tearing to restore corneal hydration.
3. Dosage and Treatment Efficacy
4. Solvent and Storage
5. Prescription Proposal
6. Alternative Therapeutic Options in Corneal Ulcers due to Neutrophic Keratopathy
7. Mechanism of Action
7.1. Receptors
7.2. WNT/β-Catenin Pathway
7.3. PI3K/AKT Pathway
7.4. Na/K-ATPase Pump and Insulin
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aynsley, T.R. The Use of Insulin in the Treatment of Corneal Ulcers. Br. J. Ophthalmol. 1945, 29, 361–363. [Google Scholar] [CrossRef]
- Sims, E.K.; Carr, A.L.J.; Oram, R.A.; DiMeglio, L.A.; Evans-Molina, C. 100 Years of Insulin: Celebrating the Past, Present and Future of Diabetes Therapy. Nat. Med. 2021, 27, 1154–1164. [Google Scholar] [CrossRef]
- Tokarz, V.L.; MacDonald, P.E.; Klip, A. The Cell Biology of Systemic Insulin Function. J. Cell Biol. 2018, 217, 2273–2289. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Tanasova, M. Importance of GLUT Transporters in Disease Diagnosis and Treatment. Int. J. Mol. Sci. 2022, 23, 8698. [Google Scholar] [CrossRef] [PubMed]
- Stuard, W.L.; Titone, R.; Robertson, D.M. The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. Front. Endocrinol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Nakatsu, M.N.; Ding, Z.; Ng, M.Y.; Truong, T.T.; Yu, F.; Deng, S.X. Wnt/β-Catenin Signaling Regulates Proliferation of Human Cornea Epithelial Stem/Progenitor Cells. Investig. Ophthalmol Vis. Sci. 2011, 52, 4734–4741. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.M.; Iovieno, A.; Yeung, S.N. Topical Insulin for Neurotrophic Corneal Ulcers. Can. J. Ophthalmol. 2020, 55, e170–e172. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, M.; Lambiase, A. Diagnosis and Management of Neurotrophic Keratitis. Clin. Ophthalmol. 2014, 8, 571–579. [Google Scholar]
- Ruiz-Lozano, R.E.; Hernandez-Camarena, J.C.; Loya-Garcia, D.; Merayo-Lloves, J.; Rodriguez-Garcia, A. The Molecular Basis of Neurotrophic Keratopathy: Diagnostic and Therapeutic Implications: A Review. Ocul. Surf. 2021, 19, 224–240. [Google Scholar] [CrossRef]
- Bonini, S.; Rama, P.; Olzi, D.; Lambiase, A. Neurotrophic Keratitis. Eye 2003, 17, 989–995. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Massaro-Giordano, G.; Nubile, M.; Sacchetti, M. Understanding the Pathogenesis of Neurotrophic Keratitis: The Role of Corneal Nerves. J. Cell. Physiol. 2017, 232, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Mertsch, S.; Alder, J.; Dua, H.S.; Geerling, G. Pathogenesis and Epidemiology of Neurotrophic Keratopathy. Ophthalmologe 2019, 116, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Saad, S.; Abdelmassih, Y.; Saad, R.; Guindolet, D.; Khoury, S.; Doan, S.; Cochereau, I.; Gabison, E.E. Neurotrophic Keratitis: Frequency, Etiologies, Clinical Management and Outcomes. Ocul. Surf. 2020, 18, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Dua, H.S.; Said, D.G.; Messmer, E.M.; Rolando, M.; Benitez-del-Castillo, J.M.; Hossain, P.N.; Shortt, A.J.; Geerling, G.; Nubile, M.; Figueiredo, F.C.; et al. Neurotrophic Keratopathy. Prog. Retin. Eye Res. 2018, 66, 107–131. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, H.; Tan, H.C.; Lin, M.T.-Y.; Mehta, J.S.; Liu, Y.-C. Diabetic Corneal Neuropathy. J. Clin. Med. 2020, 9, 3956. [Google Scholar] [CrossRef]
- Yeung, A.; Dwarakanathan, S. Diabetic Keratopathy. Dis. Mon. 2021, 67, 101135. [Google Scholar] [CrossRef] [PubMed]
- Mackie, I.; Fraunfelder, F.; Roy, F. Current Ocular Therapy. In Current Ocular Therapy, 4th ed.; WB Saunders: Philadelphia, PA, USA, 1995; pp. 506–508. [Google Scholar]
- Rocha, E.M.; Cunha, D.A.; Carneiro, E.M.; Boschero, A.C.; Saad, M.J.A.; Velloso, L.A. Identification of Insulin in the Tear Film and Insulin Receptor and IGF-I Receptor on the Human Ocular Surface Human Tissues and Tear Film Collection. Investig. Ophthalmol. Vis. Sci. 2002, 43, 963–967. [Google Scholar]
- Dasrilsyah, A.M.; Halim, W.H.W.A.; Mustapha, M.; Tang, S.F.; Kaur, B.; Ong, E.Y.; Bastion, M.L.C. Randomized Clinical Trial of Topical Insulin Versus Artificial Tears for Healing Rates of Iatrogenic Corneal Epithelial Defects Induced during Vitreoretinal Surgery in Diabetics. Cornea 2023, 42, 1395–1403. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Slusser, T.G.; Turner-Henson, A.; Singh, K.P.; Atchison, J.A.; Pillion, D.J. Toxicity of Insulin Administered Chronically to Human Eye In Vivo. J. Ocul. Pharmacol. Ther. 1994, 10, 101–107. [Google Scholar] [CrossRef]
- Wang, A.L.; Weinlander, E.; Metcalf, B.M.; Barney, N.P.; Gamm, D.M.; Nehls, S.M.; Struck, M.C. Use of Topical Insulin to Treat Refractory Neurotrophic Corneal Ulcers. Cornea 2017, 36, 1426–1428. [Google Scholar] [CrossRef]
- Balal, S.; Din, N.; Ashton, C.; Ahmad, S. Healing of Chemical Injury–Related Persistent Corneal Epithelial Defects with Topical Insulin. Cornea 2023, 42, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Bastion, M.L.C.; Ling, K.P. Topical Insulin for Healing of Diabetic Epithelial Defects?: A Retrospective Review of Corneal Debridement during Vitreoretinal Surgery in Malaysian Patients. Med. J. Malays. 2013, 68, 208–216. [Google Scholar]
- Fai, S.; Ahem, A.; Mustapha, M.; Noh, U.K.M.; Bastion, M.-L.C. Randomized Controlled Trial of Topical Insulin for Healing Corneal Epithelial Defects Induced During Vitreoretinal Surgery in Diabetics. Asia-Pac. J. Ophthalmol. 2017, 6, 418–424. [Google Scholar]
- Moreker, M.R.; Thakre, N.; Gogoi, A.; Bhandari, R.P.; Patel, R.C. Insulin Eye Drops for Neurotrophic Keratitis. Indian J. Ophthalmol. 2023, 71, 2911–2912. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Valle, D.; Burgos-Blasco, B.; Rego-Lorca, D.; Puebla-Garcia, V.; Perez-Garcia, P.; Benitez-del-Castillo, J.M.; Herrero-Vanrell, R.; Vicario-de-la-Torre, M.; Gegundez-Fernandez, J.A. Comparison of the Efficacy of Topical Insulin with Autologous Serum Eye Drops in Persistent Epithelial Defects of the Cornea. Acta Ophthalmol. 2022, 100, E912–E919. [Google Scholar] [CrossRef] [PubMed]
- Zagon, I.S.; Klocek, M.S.; Sassani, J.W.; McLaughlin, P.J. Use of Topical Insulin to Normalize Corneal Epithelial Healing in Diabetes Mellitus. Arch. Ophthalmol. 2007, 125, 1082–1088. [Google Scholar] [CrossRef]
- Jowett, N.; II, R.P. Corneal Neurotisation by Great Auricular Nerve Transfer and Scleral-Corneal Tunnel Incisions for Neurotrophic Keratopathy. Br. J. Ophthalmol. 2019, 103, 1235–1238. [Google Scholar] [CrossRef]
- Catapano, J.; Fung, S.S.M.; Halliday, W.; Jobst, C.; Cheyne, D.; Ho, E.S.; Zuker, R.M.; Borschel, G.H.; Ali, A. Treatment of Neurotrophic Keratopathy with Minimally Invasive Corneal Neurotisation: Long-Term Clinical Outcomes and Evidence of Corneal Reinnervation. Br. J. Ophthalmol. 2019, 103, 1724–1731. [Google Scholar] [CrossRef]
- Diaz-Valle, D.; Burgos-Blasco, B.; Gegundez-Fernandez, J.A.; Garcia-Caride, S.; Puebla-Garcia, V.; Peña-Urbina, P.; Benitez-del-Castillo, J.M. Topical Insulin for Refractory Persistent Corneal Epithelial Defects. Eur. J. Ophthalmol. 2021, 31, 2280–2286. [Google Scholar] [CrossRef]
- Eli Lilly and Company. Prescribing Information Humulin R—Insulin Human Injection, Solution; Eli Lilly and Company: Indianopolis, IN, USA, 2019. [Google Scholar]
- Soares, R.J.D.S.M.; Arêde, C.; Neves, F.S.; da Silva Fernandes, J.; Ferreira, C.C.; Sequeira, J. Topical Insulin—Utility and Results in Refractory Neurotrophic Keratopathy in Stages 2 and 3. Cornea 2022, 41, 990–994. [Google Scholar] [CrossRef]
- Jünemann, A.G.M.; Chorągiewicz, T.; Ozimek, M.; Grieb, P.; Rejdak, R. Drug Bioavailability from Topically Applied Ocular Drops. Does Drop Size Matter? Ophthalmol. J. 2016, 1, 29–35. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Turner-Henson, A.; Atchison, J.A.; Woolley, T.W.; Pillion, D.J. Insulin Administration to the Eyes of Normoglycemic Human Volunteers. J. Ocul. Pharmacol. Ther. 1994, 10, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Hinds, K.D.; Kim, S.W. Effects of PEG Conjugation on Insulin Properties. Adv. Drug Deliv. Rev. 2002, 54, 505–530. [Google Scholar] [CrossRef] [PubMed]
- Tessmar, J.; Kellner, K.; Schulz, M.B.; Blunk, T.; Göpferich, A.; Jung, H.-D.; Jang, T.-S.; Wang, L.; Kim, H.-E.; Koh, Y.-H.; et al. Toward the Development of Biomimetic Polymers by Protein Immobilization: PEGylation of Insulin as a Model Reaction. Tissue Eng. 2004, 10, 441–453. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.Y.; Hu, R.J.; Fan, F.L.; Jin, X.M. Evaluation of Artificial Tears on Cornea Epithelium Healing. Int. J. Ophthalmol. 2018, 11, 1096–1101. [Google Scholar] [CrossRef]
- Juhl, C.R.; Burgdorf, J.; Knudsen, C.; Lubberding, A.F.; Veedfald, S.; Isaksen, J.L.; Hartmann, B.; Frikke-Schmidt, R.; Mandrup-Poulsen, T.; Holst, J.J.; et al. A Randomized, Double-Blind, Crossover Study of the Effect of the Fluoroquinolone Moxifloxacin on Glucose Levels and Insulin Sensitivity in Young Men and Women. Diabetes Obes. Metab. 2023, 25, 98–109. [Google Scholar] [CrossRef]
- Pflugfelder, S.C.; Massaro-Giordano, M.; Perez, V.L.; Hamrah, P.; Deng, S.X.; Espandar, L.; Foster, C.S.; Affeldt, J.; Seedor, J.A.; Afshari, N.A.; et al. Topical Recombinant Human Nerve Growth Factor (Cenegermin) for Neurotrophic Keratopathy: A Multicenter Randomized Vehicle-Controlled Pivotal Trial. Ophthalmology 2020, 127, 14–26. [Google Scholar] [CrossRef]
- Bonini, S.; Lambiase, A.; Rama, P.; Sinigaglia, F.; Allegretti, M.; Chao, W.; Mantelli, F.; Bonini, S.; Messmer, E.; Aragona, P.; et al. Phase II Randomized, Double-Masked, Vehicle-Controlled Trial of Recombinant Human Nerve Growth Factor for Neurotrophic Keratitis. Ophthalmology 2018, 125, 1332–1343. [Google Scholar] [CrossRef]
- Chase, L. The 20 Most Expensive Prescription Drugs in the USA. Available online: https://assets.ctfassets.net/4f3rgqwzdznj/6IwNDHjJZrLL1037KPmACg/01e44028bfe30f58f414a12dfeeb0e0c/20-Most-Expensive-Drugs-Q1-2021.pdf (accessed on 21 September 2023).
- Peterson, C.; Chandler, H.L. Insulin Facilitates Corneal Wound Healing in the Diabetic Environment through the RTK-PI3K/Akt/MTOR Axis In Vitro. Mol. Cell. Endocrinol. 2022, 548, 111611. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Y.; Zhang, Z.; Dan, J.; Zhou, Q.; Wang, X.; Li, W.; Zhou, L.; Yang, L.; Xie, L. Insulin Promotes Corneal Nerve Repair and Wound Healing in Type 1 Diabetic Mice by Enhancing Wnt/β-Catenin Signaling. Am. J. Pathol. 2020, 190, 2237–2250. [Google Scholar] [CrossRef]
- Hatou, S.; Yamada, M.; Akune, Y.; Mochizuki, H.; Shiraishi, A.; Joko, T.; Nishida, T.; Tsubota, K. Role of Insulin in Regulation of Na +−/K +−Dependent ATPase Activity and Pump Function in Corneal Endothelial Cells. Investig. Opthalmology Vis. Sci. 2010, 51, 3935. [Google Scholar] [CrossRef] [PubMed]
Causes of Neurotrophic Keratopathy |
---|
(1) Genetic Causes: |
(a) Riley–Day syndrome (hereditary sensory neuropathy type III, familial dysautonomia) |
(b) Möbius syndrome |
(c) Familial corneal hypoesthesia (familial trigeminal anesthesia) |
(2) Systemic Diseases: |
(a) Diabetes mellitus |
(b) Leprosy |
(c) Vitamin A deficiency |
(d) Amyloidosis |
(e) Multiple sclerosis |
(3) Central Nervous System Diseases: |
(a) Intracerebral tumors |
(b) Postoperative, particularly after brainstem surgery |
(c) Aneurysm |
(d) Cerebrovascular diseases of the brainstem |
(e) Stroke (brainstem) |
(f) Degenerative CNS diseases (Alzheimer’s disease, Parkinson’s disease) |
(g) Acoustic neuroma |
(h) Trigeminal neuralgia |
(i) Other surgical injuries to the trigeminal nerve |
(4) Ocular Causes: |
(a) Corneal infections: |
(i) Herpes infections (Herpes simplex and Herpes zoster) |
(ii) Other infections, e.g., Acanthamoeba |
(b) Chemical burns |
(c) Side effects of topical medications and their conversants: |
(i) Benzalkonium chloride (BAK), Timolol, Betaxolol, Sulfacetamid 30%, Trifluridine, Diclofenac |
(ii) Abuse of local anesthetics |
(d) Diseases comprising ocular surface disorders: |
(i) Ocular surface Chronic severe blepharitis and/or rosacea |
(ii) Entropion |
(iii) Ocular injuries or chemical burns Graft-versus-host disease |
(iv) Sjögren’s syndrome |
(v) Ocular cicatricial pemphigoid |
(vi) Trachoma |
(e) Eye surgeries: |
(i) Cataract surgery |
i. Photorefractive keratectomy (PRK) and Laser in situ keratomileusis (LASIK) |
ii. Penetrating keratoplasty and deep anterior lamellar keratoplasty (DALK) |
iii. Collagen cross-linking for the treatment of keratoconus |
iv. Following excessive laser coagulation of the retina or ciliary body as Pan-retinal photocoagulation or during vitrectomy |
v. Multiple ocular surgeries |
(f) Other ocular causes: |
i. Contact lens use |
ii. Orbital tumors |
iii. Corneal dystrophies |
iv. Radiotherapy sequelae |
Causes of Neurotrophic Keratopathy (In Order of Highest Frequency) |
---|
(1) Iatrogenic, pars-plana vitrectomy |
(2) Chronic ocular surface disease |
(3) Ocular infections, especially herpetic |
(4) Diabetes mellitus |
(5) Central nervous system disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworski, M.; Lorenc, A.; Leszczyński, R.; Mrukwa-Kominek, E. Topical Insulin in Neurotrophic Keratopathy: A Review of Current Understanding of the Mechanism of Action and Therapeutic Approach. Pharmaceutics 2024, 16, 15. https://doi.org/10.3390/pharmaceutics16010015
Jaworski M, Lorenc A, Leszczyński R, Mrukwa-Kominek E. Topical Insulin in Neurotrophic Keratopathy: A Review of Current Understanding of the Mechanism of Action and Therapeutic Approach. Pharmaceutics. 2024; 16(1):15. https://doi.org/10.3390/pharmaceutics16010015
Chicago/Turabian StyleJaworski, Marcin, Anna Lorenc, Rafał Leszczyński, and Ewa Mrukwa-Kominek. 2024. "Topical Insulin in Neurotrophic Keratopathy: A Review of Current Understanding of the Mechanism of Action and Therapeutic Approach" Pharmaceutics 16, no. 1: 15. https://doi.org/10.3390/pharmaceutics16010015
APA StyleJaworski, M., Lorenc, A., Leszczyński, R., & Mrukwa-Kominek, E. (2024). Topical Insulin in Neurotrophic Keratopathy: A Review of Current Understanding of the Mechanism of Action and Therapeutic Approach. Pharmaceutics, 16(1), 15. https://doi.org/10.3390/pharmaceutics16010015