Ways to Assess and Regulate the Performance of a Bi-Mechanism-Induced Borneol-Based In Situ Forming Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Formulation
2.3. Evaluations of Physical Properties of Liquid State ISM: Density, Apparent Viscosity, and Surface Tension
2.4. Matrix Forming Behavior of Borneol-ISM
2.5. Interfacial Behavior of Borneol-ISM
2.6. In Vitro Drug Release
2.7. Computer Dynamics Modelling of Mechanistic Phase Inversion
2.7.1. MD Simulation of ISM Formulation
2.7.2. MD Simulation of Interfacial Behavior of ISM with Water
2.7.3. Simulation Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Density
3.2. Viscosity
3.3. Surface Tension
3.4. Self-Formation Ability of ISMs
3.5. Interfacial Network Formation of ISMs
3.6. In Vitro Drug Release
3.7. Computational Results of MD Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J.A. In situ forming polymeric drug delivery systems. Indian J. Pharm. Sci. 2009, 71, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lertsuphotvanit, N.; Tuntarawongsa, S.; Mahadlek, J.; Phaechamud, T. Surface tension/contact angle characters of aprotic binary borneol-dimethyl sulphoxide mixture. Key Eng. Mater. 2020, 859, 74–80. [Google Scholar] [CrossRef]
- Lertsuphotvanit, N.; Santimaleeworagun, W.; Narakornwit, W.; Chuenbarn, T.; Mahadlek, J.; Chantadee, T.; Phaechamud, T. Borneol-based antisolvent-induced in situ forming matrix for crevicular pocket delivery of vancomycin hydrochloride. Int. J. Pharm. 2022, 617, 121603. [Google Scholar] [CrossRef] [PubMed]
- Khaing, E.M.; Intaraphairot, T.; Chuenbarn, T.; Chantadee, T.; Phaechamud, T. Natural resin-based solvent exchange induced in-situ forming gel for vancomycin HCl delivery to periodontal pocket. Mater. Today Proc. 2021, 47, 3585–3593. [Google Scholar] [CrossRef]
- Chuenbarn, T.; Chantadee, T.; Phaechamud, T. Doxycycline hyclate-loaded Eudragit® RS PO in situ-forming microparticles for periodontitis treatment. J. Drug Deliv. Sci. Technol. 2022, 71, 103294. [Google Scholar] [CrossRef]
- Puyathorn, N.; Sirirak, J.; Chantadee, T.; Phaechamud, T. Phase separation and intermolecular binding energy of ibuprofen in some organic solvents. Mater. Today Proc. 2022, 65, 2303–2308. [Google Scholar] [CrossRef]
- Chantadee, T.; Santimaleeworagun, W.; Phorom, Y.; Phaechamud, T. Saturated fatty acid-based in situ forming matrices for localized antimicrobial delivery. Pharmaceutics 2020, 12, 808. [Google Scholar] [CrossRef] [PubMed]
- Phaechamud, T.; Thurein, S.M.; Chantadee, T. Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded eudragit Rs in situ forming gel. Asian J. Pharm. Sci. 2018, 13, 131–142. [Google Scholar] [CrossRef]
- Phaechamud, T.; Setthajindalert, O. Cholesterol in situ forming gel loaded with doxycycline hyclate for intra-periodontal pocket delivery. Eur. J. Pharm. Sci. 2017, 99, 258–265. [Google Scholar] [CrossRef]
- Li, H.; Liu, T.; Zhu, Y.; Fu, Q.; Wu, W.; Deng, J.; Lan, L.; Shi, S. An in situ-forming phospholipid-based phase transition gel prolongs the duration of local anesthesia for ropivacaine with minimal toxicity. Acta Biomater. 2017, 58, 136–145. [Google Scholar] [CrossRef]
- Chantadee, T.; Santimaleeworagun, W.; Phorom, Y.; Chuenbarn, T.; Phaechamud, T. Vancomycin HCl-loaded lauric acid in situ-forming gel with phase inversion for periodontitis treatment. J. Drug Deliv. Sci. Technol. 2020, 57, 101615. [Google Scholar] [CrossRef]
- Chantadee, T.; Sawangsri, P.; Santimaleeworagun, W.; Phaechamud, T. Vancomycin hydrochloride-loaded stearic acid/lauric acid in situ forming matrix for antimicrobial inhibition in patients with joint infection after total knee arthroplasty. Mater. Sci. Eng. C 2020, 115, 110761. [Google Scholar] [CrossRef] [PubMed]
- PubChem. PubChem Compound Summary for CID 64685, Borneol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Borneol (accessed on 14 November 2020).
- Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance material review on borneol. Food Chem. Toxicol. 2008, 46, S77–S80. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zou, M.; Gao, P.; Wang, Y.; Cheng, G. Tissue distribution of borneol-modified ganciclovir-loaded solid lipid nanoparticles in mice after intravenous administration. Eur. J. Pharm. Biopharm. 2013, 83, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Cherneva, E.; Pavlovic, V.; Smelcerovic, A.; Yancheva, D. The effect of camphor and borneol on rat thymocyte viability and oxidative stress. Molecules 2012, 17, 10258–10266. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.-P.; Chen, J.; Bei, Y.-F.; Han, B.-X.; Wang, S. Influence of borneol on primary mice oral fibroblasts: A penetration enhancer may be used in oral submucous fibrosis. J. Oral Pathol. Med. 2009, 38, 276–281. [Google Scholar] [CrossRef]
- Takorn, C.; Wichai, S.; Yaowaruk, P.; Thawatchai, P. Mixed solvent-lauric acid solvent-exchange induced in situ forming gel. Key Eng. Mater. 2019, 819, 195–201. [Google Scholar] [CrossRef]
- Kong, P.S.; Aroua, M.K.; Daud, W.M.A.W.; Lee, H.V.; Cognet, P.; Peres, Y. Catalytic role of solid acid catalysts in glycerol acetylation for the production of bio-additives: A review. RSC Adv. 2016, 6, 68885–68905. [Google Scholar] [CrossRef]
- Fiume, M.Z. Final report on the safety assessment of triacetin. Int. J. Toxicol. 2003, 22 (Suppl. S2), 1–10. [Google Scholar]
- Kranz, H.; Bodmeier, R. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Int. J. Pharm. 2007, 332, 107–114. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Ibrahim, H.M.; Samy, A.M.; Kaseem, A.; Nutan, M.T.H.; Hussain, M.D. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: In vitro release, pharmacokinetics, and stability. Am. Assoc. Pharm. Sci. J. 2014, 15, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.A.; Rhodes, C.T.; Railkar, A.M.; Malick, A.W.; Shah, N.H. Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: Effect of various formulation variables. Eur. J. Pharm. Biopharm. 2000, 50, 257–262. [Google Scholar] [CrossRef]
- Liu, H.; Venkatraman, S.S. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. J. Pharm. Sci. 2012, 101, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Chantadee, T.; Sirirak, J.; Hoshino, T.; Phaechamud, T. Augmentative molecular aspect for phase inversion of vancomycin hydrochloride-loaded fatty acid in situ forming matrices. Mater. Des. 2021, 199, 109429. [Google Scholar] [CrossRef]
- Fogueri, L.R.; Singh, S. Smart polymers for controlled delivery of proteins and peptides: A review of patents. Recent Pat. Drug Deliv. Formul. 2009, 3, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Thomas, N.L.; Windle, A.H. A theory of case II diffusion. Polymer 1982, 23, 529–542. [Google Scholar] [CrossRef]
- Paarakh, M.P.; Jose, P.A.; Setty, C.M.; Christoper, G.V.P. Release kinetics—Concepts and applications. Int. J. Pharm. Res. Technol. 2018, 8, 12–20. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham Iii, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Vahed, M.; Neya, S.; Matsuzaki, K.; Hoshino, T. Analysis of physicochemical interaction of Aβ(40) with a GM1 ganglioside-containing lipid membrane. J. Phys. Chem. B 2018, 122, 3771–3781. [Google Scholar] [CrossRef] [PubMed]
- Eiteman, M.A.; Goodrum, J.W. Density and viscosity of low-molecular weight triglycerides and their mixtures. J. Am. Oil Chem. Soc. 1994, 71, 1261. [Google Scholar] [CrossRef]
- Xuan, J.-J.; Yan, Y.-D.; Oh, D.H.; Choi, Y.K.; Yong, C.S.; Choi, H.-G. Development of thermo-sensitive injectable hydrogel with sustained release of doxorubicin: Rheological characterization and in vivo evaluation in rats. Drug Deliv. 2011, 18, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasra, M.M.A.; Khiri, H.M.; Hazzah, H.A.; Abdallah, O.Y. Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis. Drug Deliv. 2017, 24, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Altuntaş, E.; Yener, G. Formulation and evaluation of thermoreversible in situ nasal gels containing mometasone furoate for allergic rhinitis. AAPS PharmSciTech 2017, 18, 2673–2682. [Google Scholar] [CrossRef]
- Lertsuphotvanit, N.; Tuntarawongsa, S.; Sirirak, J.; Phaechamud, T. Morphological and physicochemical behaviors of borneol precipitates. Mater. Today Proc. 2022, 65, 2315–2321. [Google Scholar] [CrossRef]
- Srichan, T.; Phaechamud, T. Designing solvent exchange-induced in situ forming gel from aqueous insoluble polymers as matrix base for periodontitis treatment. AAPS PharmSciTech 2017, 18, 194–201. [Google Scholar] [CrossRef]
- Brodbeck, K.J.; DesNoyer, J.R.; McHugh, A.J. Phase inversion dynamics of PLGA solutions related to drug delivery: Part II. The role of solution thermodynamics and bath-side mass transfer. J. Control. Release 1999, 62, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Brodbeck Kevin, J.; Gaynor-Duarte Ann, T.; Shen Theodore, T.-I. Gel Composition and Methods. U.S. Patent 6130200A, 18 December 1997. [Google Scholar]
- Yamamoto, S.; Saeki, T.; Inoshita, T. Drying of gelled sugar solutions—Water diffusion behavior. Chem. Eng. J. 2002, 86, 179–184. [Google Scholar] [CrossRef]
- Ovrutsky, A.M.; Prokhoda, A.S.; Rasshchupkyna, M.S. 2—Basic concepts of theory of phase transformations. In Computational Materials Science; Ovrutsky, A.M., Prokhoda, A.S., Rasshchupkyna, M.S., Eds.; Elsevier: Oxford, UK, 2014; pp. 35–69. [Google Scholar] [CrossRef]
- Himawan, C.; Starov, V.M.; Stapley, A.G.F. Thermodynamic and kinetic aspects of fat crystallization. Adv. Colloid Interface Sci. 2006, 122, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Phaechamud, T.; Mahadlek, J.; Tuntarawongsa, S. Peppermint oil/doxycycline hyclate-loaded Eudragit RS in situ forming gel for periodontitis treatment. J. Pharm. Investig. 2018, 48, 451–464. [Google Scholar] [CrossRef]
- Parent, M.; Nouvel, C.; Koerber, M.; Sapin, A.; Maincent, P.; Boudier, A. PLGA in situ implants formed by phase inversion: Critical physicochemical parameters to modulate drug release. J. Control. Release 2013, 172, 292–304. [Google Scholar] [CrossRef]
- Bruschi, M.L. Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 63–86. [Google Scholar]
- Ganesh, S.; Radhakrishnan, M.; Ravi, M.; Prasannakumar, B.; Kalyani, J. In vitro evaluation of the effect of combination of hydrophilic and hydrophobic polymers on controlled release zidovudine matrix tablets. Indian J. Pharm. Sci. 2008, 70, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Phaechamud, T.; Mahadlek, J.; Chuenbarn, T. In situ forming gel comprising bleached shellac loaded with antimicrobial drugs for periodontitis treatment. Mater. Des. 2016, 89, 294–303. [Google Scholar] [CrossRef]
Formulation | Amount (% w/w) | |||
---|---|---|---|---|
Doxycycline Hyclate | Borneol | Triacetin | NMP | |
F1 | 5 | - | - | 95 |
F2 | 5 | 40 | - | 55 |
F3 | 5 | 40 | 5 | 50 |
F4 | 5 | 40 | 25 | 30 |
(A) Box design of formulation before contact with water box | ||||
Details | F1 | F2 | F3 | F4 |
Amount of Dox molecules | 80 | 80 | 80 | 80 |
Amount of Bor molecules | 0 | 1840 | 1840 | 1840 |
Amount of Tri molecules | 0 | 0 | 160 | 800 |
Amount of NMP molecules | 6800 | 4000 | 3600 | 2160 |
Mole ratio of Dox:Bor:Tri:NMP | 1:0:0:85 | 1:23:0:50 | 1:23:2:45 | 1:23:10:27 |
Total amount of molecules in system | 6880 | 5920 | 5680 | 4880 |
Total amount of atom in system | 113,280 | 121,840 | 120,080 | 115,600 |
Box size (x, y, z) | 112, 104, 120 | 140, 116, 132 | 140, 132, 140 | 140, 116, 124 |
(B) Box design of formulation after contact with water box | ||||
Details | F1 | F2 | F3 | F4 |
Amount of Dox molecules | 80 | 80 | 80 | 80 |
Amount of Bor molecules | 0 | 1840 | 1840 | 1840 |
Amount of Tri molecules | 0 | 0 | 160 | 800 |
Amount of NMP molecules | 6800 | 4000 | 3600 | 2160 |
Amount of Wat molecules | 7920 | 7920 | 7920 | 7920 |
Mole ratio of Dox:Bor:Tri:NMP:Wat | 1:0:0:85:99 | 1:23:0:50:99 | 1:23:2:45:99 | 1:23:10:27:99 |
Total amount of molecule in system | 14,800 | 13,840 | 13,600 | 12,800 |
Total amount of molecule in system | 137,040 | 145,600 | 143,840 | 139,360 |
Box size (x, y, z) | 112, 104, 147 | 140, 116, 159 | 140, 132, 167 | 140, 116, 151 |
Formulation | Density (g/cm3) | Viscosity (cPs) | Surface Tension (mN/m) |
---|---|---|---|
Triacetin | 1.1472 ± 0.0002 | 25.53 ± 0.52 | 38.87 ± 0.55 |
NMP | 1.0283 ± 0.0004 | 1.88 ± 0.03 | 39.62 ± 0.02 |
F1 | 1.0425 ± 0.0009 | 2.59 ± 0.16 | 40.33 ± 0.42 |
F2 | 1.0204 ± 0.0014 a,b | 5.38 ± 0.09 c,d | 35.18 ± 0.16 |
F3 | 1.0268 ± 0.0017 a | 6.16 ± 0.07 c | 34.61 ± 0.22 |
F4 | 1.0435 ± 0.0013 b | 9.67 ± 0.04 d | 33.14 ± 0.09 |
Substance | Diffusion Constant (m2/s) | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
Doxycycline | 0.52 | 0.32 | 0.24 | 0.18 |
Borneol | - | 0.60 | 0.51 | 0.41 |
Triacetin | - | - | 0.63 | 0.61 |
NMP | 2.24 | 1.72 | 1.40 | 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lertsuphotvanit, N.; Sirirak, J.; Tamdee, P.; Tuntarawongsa, S.; Phaechamud, T.; Chantadee, T. Ways to Assess and Regulate the Performance of a Bi-Mechanism-Induced Borneol-Based In Situ Forming Matrix. Pharmaceutics 2023, 15, 2053. https://doi.org/10.3390/pharmaceutics15082053
Lertsuphotvanit N, Sirirak J, Tamdee P, Tuntarawongsa S, Phaechamud T, Chantadee T. Ways to Assess and Regulate the Performance of a Bi-Mechanism-Induced Borneol-Based In Situ Forming Matrix. Pharmaceutics. 2023; 15(8):2053. https://doi.org/10.3390/pharmaceutics15082053
Chicago/Turabian StyleLertsuphotvanit, Nutdanai, Jitnapa Sirirak, Poomipat Tamdee, Sarun Tuntarawongsa, Thawatchai Phaechamud, and Takron Chantadee. 2023. "Ways to Assess and Regulate the Performance of a Bi-Mechanism-Induced Borneol-Based In Situ Forming Matrix" Pharmaceutics 15, no. 8: 2053. https://doi.org/10.3390/pharmaceutics15082053
APA StyleLertsuphotvanit, N., Sirirak, J., Tamdee, P., Tuntarawongsa, S., Phaechamud, T., & Chantadee, T. (2023). Ways to Assess and Regulate the Performance of a Bi-Mechanism-Induced Borneol-Based In Situ Forming Matrix. Pharmaceutics, 15(8), 2053. https://doi.org/10.3390/pharmaceutics15082053