Preclinical Bioavailability Assessment of a Poorly Water-Soluble Drug, HGR4113, Using a Stable Isotope Tracer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animals
2.3. Dosing Solution Preparation
2.4. Animal Experiments
2.5. Calibration and Quality Control (QC) Standards
2.6. Plasma Sample Preparation
2.7. In Vitro Microsomal Metabolic Stability
2.8. LC-MS/MS
2.9. Method Validation
2.10. Data Analysis
3. Results
3.1. Bioanalytical Method Validation
3.2. Pharmacokinetic Equivalence of HGR4113 and HGR4113-d7
3.3. Bioavailability of HGR4113
4. Discussion
5. Conclusions
6. Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stahl, W.; van den Berg, H.; Arthur, J.; Bast, A.; Dainty, J.; Faulks, R.M.; Gärtner, C.; Haenen, G.; Hollman, P.; Holst, B.; et al. Bioavailability and metabolism. Mol. Asp. Med. 2002, 23, 39–100. [Google Scholar] [CrossRef]
- Sheiner, L.B.; Rosenberg, B.; Marathe, V.V. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J. Pharmacokinet. Biopharm. 1977, 5, 445–479. [Google Scholar] [CrossRef]
- Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef]
- Fahr, A.; Liu, X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin. Drug Deliv. 2007, 4, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Stella, V.J.; Nti-Addae, K.W. Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev. 2007, 59, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demario, M.D.; Ratain, M.J. Oral chemotherapy: Rationale and future directions. J. Clin. Oncol. 1998, 16, 2557–2567. [Google Scholar] [CrossRef]
- Homayun, B.; Lin, X.; Choi, H.-J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Franssen, E.; Fitch, M.I.; Warner, E. Patient preferences for oral versus intravenous palliative chemotherapy. J. Clin. Oncol. 1997, 15, 110–115. [Google Scholar] [CrossRef]
- Aneja, R.; Dhiman, N.; Idnani, J.; Awasthi, A.; Arora, S.K.; Chandra, R.; Joshi, H.C. Preclinical pharmacokinetics and bioavailability of noscapine, a tubulin-binding anticancer agent. Cancer Chemother. Pharmacol. 2007, 60, 831–839. [Google Scholar] [CrossRef]
- Lachau-Durand, S.; Lammens, L.; Van Der Leede, B.-J.; Van Gompel, J.; Bailey, G.; Engelen, M.; Lampo, A. Preclinical toxicity and pharmacokinetics of a new orally bioavailable flubendazole formulation and the impact for clinical trials and risk/benefit to patients. PLoS Neglected Trop. Dis. 2019, 13, e0007026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, C.E.; Ma, F.; Wang, Y.; Smith, C. Pharmacokinetics and bioavailability of midazolam after intravenous, subcutaneous, intraperitoneal and oral administration under a chronic food-limited regimen: Relating DRL performance to pharmacokinetics. Psychopharmacology 1996, 126, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Biopharmaceutical Evaluation of Carprofen Following Single Intravenous, Oral, and Rectal Doses in Dogs—Schmitt—1990—Biopharmaceutics & Drug Disposition—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/bdd.2510110704 (accessed on 28 April 2023).
- Toutain, P.L.; Bousquet-Melou, A. Bioavailability and its assessment. J. Veter Pharmacol. Ther. 2004, 27, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Lappin, G. Approaches to intravenous clinical pharmacokinetics: Recent developments with isotopic microtracers. J. Clin. Pharmacol. 2016, 56, 11–23. [Google Scholar] [CrossRef]
- Lappin, G.; Rowland, M.; Garner, R.C. The use of isotopes in the determination of absolute bioavailability of drugs in humans. Expert Opin. Drug Metab. Toxicol. 2006, 2, 419–427. [Google Scholar] [CrossRef]
- Li, C.-X.; Li, T.-H.; Zhu, M.; Lai, J.; Wu, Z.-P. Pharmacological properties of glabridin (a flavonoid extracted from licorice): A comprehensive review. J. Funct. Foods 2021, 85, 104638. [Google Scholar] [CrossRef]
- Wu, F.; Jin, Z.; Jin, J. Hypoglycemic effects of glabridin, a polyphenolic flavonoid from licorice, in an animal model of diabetes mellitus. Mol. Med. Rep. 2013, 7, 1278–1282. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Choe, S.S.; Jang, H.; Kim, J.; Jeong, H.W.; Jo, H.; Jeong, K.-H.; Tadi, S.; Park, M.G.; Kwak, T.H.; et al. AMPK activation with glabridin ameliorates adiposity and lipid dysregulation in obesity. J. Lipid Res. 2012, 53, 1277–1286. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Choi, L.S.; Jeon, H.J.; Lee, H.M.; Kim, S.H.; Kim, K.-W.; Ko, W.; Oh, H.; Park, H.S. Synthetic Glabridin Derivatives Inhibit LPS-Induced Inflammation via MAPKs and NF-κB Pathways in RAW264.7 Macrophages. Molecules 2023, 28, 2135. [Google Scholar] [CrossRef]
- Bae, I.Y.; Choi, M.S.; Ji, Y.S.; Yoo, S.-K.; Kim, K.; Yoo, H.H. Species Differences in Stereoselective Pharmacokinetics of HSG4112, A New Anti-Obesity Agent. Pharmaceutics 2020, 12, 127. [Google Scholar] [CrossRef] [Green Version]
- Choi, L.S.; Jo, I.G.; Kang, K.S.; Im, J.H.; Kim, J.; Chung, J.W.; Yoo, S.-K. Discovery and preclinical efficacy of HSG4112, a synthetic structural analog of glabridin, for the treatment of obesity. Int. J. Obes. 2021, 45, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-S.; Jo, B.-W.; Kim, Y.-C. Enhanced paclitaxel bioavailability after oral administration of paclitaxel or prodrug to rats pretreated with quercetin. Eur. J. Pharm. Biopharm. 2004, 57, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Bioavailability and Kinetics of Cibenzoline in Patients with Normal and Impaired Renal Function—Aronoff—1991—The Journal of Clinical Pharmacology—Wiley Online Library. Available online: https://accp1.onlinelibrary.wiley.com/doi/10.1002/j.1552-4604.1991.tb01884.x (accessed on 28 April 2023).
- Dilger, K.; Eckhardt, K.; Hofmann, U.; Kucher, K.; Mikus, G.; Eichelbaum, M. Chronopharmacology of intravenous and oral modified release verapamil. Br. J. Clin. Pharmacol. 1999, 47, 413–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobson, R.L.M.; Kelm, G.R.; Neal, D.M. Automated gas chromatography/tandem mass spectrometry assay for tebufelone and a13C,18O-labeled analog in plasma: Applicability to absolute bioavailability determination. J. Mass Spectrom. 1994, 23, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Heck, H.D.; Buttrill, S.E., Jr.; Flynn, N.W.; Dyer, R.L.; Anbar, M.; Cairns, T.; Dighe, S.; Cabana, B.E. Bioavailability of imipramine tablets relative to a stable isotope-labeled internal standard: Increasing the power of bioavailability tests. J. Pharmacokinet. Biopharm. 1979, 7, 233–248. [Google Scholar] [CrossRef]
- Heikkinen, H.; Saraheimo, M.; Antila, S.; Ottoila, P.; Pentikäinen, P. Pharmacokinetics of entacapone, a peripherally acting catechol-O-methyltransferase inhibitor, in man. Eur. J. Clin. Pharmacol. 2001, 56, 821–826. [Google Scholar] [CrossRef]
- Meresaar, U.; Nilsson, M.-I.; Holmstrand, J. Single dose pharmacokinetics and bioavailability of methadone in man studied with a stable isotope method. Eur. J. Clin. Pharmacol. 1981, 20, 473–478. [Google Scholar] [CrossRef]
- Schellekens, R.C.A.; Stellaard, F.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.W. Applications of stable isotopes in clinical pharmacology. Br. J. Clin. Pharmacol. 2011, 72, 879–897. [Google Scholar] [CrossRef] [Green Version]
- Strong, J.M.; Dutcher, J.S.; Lee, W.-K.; Atkinson, A.J., Jr. Absolute bioavailability in man of N-acetylprocainamide determined by a novel stable isotope method. Clin. Pharmacol. Ther. 1975, 18, 613–622. [Google Scholar] [CrossRef]
- Sun, J.X.; Piraino, A.J.; Morgan, J.M.; Joshi, J.C.; Cipriano, A.; Chan, K.; Redalieu, E. Comparative Pharmacokinetics and Bioavailability of Nitroglycerin and its Metabolites from Transderm-Nitro, Nitrodisc, and Nitro-Dur II Systems Using a Stable-Isotope Technique. J. Clin. Pharmacol. 1995, 35, 390–397. [Google Scholar] [CrossRef]
- Pieniaszek, H.J.; Mayersohn, M.; Adams, M.P.; Reinhart, R.J.; Barrett, J.S. Moricizine Bioavailability via Simultaneous, Dual, Stable Isotope Administration: Bioequivalence Implications. J. Clin. Pharmacol. 1999, 39, 817–825. [Google Scholar] [CrossRef]
- Preston, S.L.; Drusano, G.L.; Glue, P.; Nash, J.; Gupta, S.K.; McNamara, P. Pharmacokinetics and Absolute Bioavailability of Ribavirin in Healthy Volunteers as Determined by Stable-Isotope Methodology. Antimicrob. Agents Chemother. 1999, 43, 2451–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.L.; Jacob, P.; Denaro, C.; Jenkins, R. Stable isotope studies of nicotine kinetics and bioavailability. Clin. Pharmacol. Ther. 1991, 49, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zeng, J.; Li, W.; Bifano, M.; Gu, H.; Titsch, C.; Easter, J.; Burrell, R.; Kandoussi, H.; Aubry, A.-F.; et al. Practical and Efficient Strategy for Evaluating Oral Absolute Bioavailability with an Intravenous Microdose of a Stable Isotopically-Labeled Drug Using a Selected Reaction Monitoring Mass Spectrometry Assay. Anal. Chem. 2012, 84, 10031–10037. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. Calculation of isotope effects from first principles. Biochim. Biophys. Acta (BBA) Bioenerg. 2000, 1458, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Van Langenhove, A. Isotope Effects: Definitions and Consequences for Pharmacologic Studies. J. Clin. Pharmacol. 1986, 26, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Rubin, G.M.; Waschek, J.A.; Pond, S.M.; Effeney, D.J.; Tozer, T.N. Concurrent intravenous administration of a labeled tracer to determine the oral bioavailability of a drug exhibiting Michaelis-Menten metabolism. J. Pharmacokinet. Biopharm. 1987, 15, 615–631. [Google Scholar] [CrossRef]
Compound | Nominal Concentration (ng/mL) | Intra-Run (n = 5) | Inter-Run (n = 5) | ||
---|---|---|---|---|---|
Accuracy (%) | CV (%) | Accuracy (%) | CV (%) | ||
HGR4113 | 10 | 100.6 ± 9.0 | 8.9 | 93.8 ± 11.4 | 12.1 |
30 | 93.3 ± 9.2 | 9.8 | 95.6 ± 9.1 | 9.5 | |
800 | 107.9 ± 2.9 | 2.7 | 110.3 ± 3.4 | 3.1 | |
6000 | 91.6 ± 2.8 | 3.1 | 90.3 ± 2.7 | 3.0 | |
HGR4113-d7 | 5 | 108.0 ± 6.6 | 6.1 | 101.9 ± 11.2 | 11.0 |
15 | 100.5 ± 4.2 | 4.2 | 98.0 ± 6.2 | 6.3 | |
200 | 107.7 ± 2.6 | 2.4 | 100.6 ± 6.2 | 6.1 | |
800 | 107.1 ± 3.4 | 3.2 | 104.6 ± 3.6 | 3.4 |
Compound | Nominal Concentration (ng/mL) | Matrix Effect (%) | Recovery (%) | Process Efficiency (%) |
---|---|---|---|---|
HGR4113 | 30 | 76.3 ± 3.2 | 70.2 ± 7.2 | 87.5 ± 13.9 |
800 | 95.0 ± 3.3 | 97.1 ± 5.9 | 97.5 ± 2.9 | |
6000 | 90.1 ± 2.3 | 82.0 ± 2.3 | 91.7 ± 1.0 | |
HGR4113-d7 | 15 | 109.0 ± 12.1 | 117.9 ± 13.3 | 108.3 ± 7.0 |
200 | 109.9 ± 7.0 | 103.2 ± 8.1 | 94.0 ± 6.3 | |
800 | 114.3 ± 5.4 | 109.2 ± 5.2 | 95.6 ± 2.7 |
PK Parameter | HGR4113 | HGR4113-d7 |
---|---|---|
AUC0-t (μg·h/mL) | 0.18 ± 0.02 | 0.18 ± 0.02 |
T1/2 (h) | 2.39 ± 1.04 | 3.60 ± 1.63 |
AUC0-∞ (μg·h/mL) | 0.19 ± 0.03 | 0.20 ± 0.03 |
MRTlast (h) | 1.41 ± 0.43 | 1.79 ± 0.29 * |
CL (L/h/kg) | 2.64 ± 0.35 | 2.51 ± 0.37 |
Vz (L/kg) | 8.82 ± 3.32 | 12.44 ± 4.05 |
PK Parameter | G1 (n = 5) | G2 (n = 6) | G3 (n = 6) | |||
---|---|---|---|---|---|---|
IV 1 mg/kg | PO 40 mg/kg | IV 1 mg/kg | PO 80 mg/kg | IV 1 mg/kg | PO 160 mg/kg | |
Tmax (h) | - | 4.00 b | - | 5.00 b | - | 6.00 b |
Cmax (μg/mL) | - | 1.29 ± 0.40 | - | 1.79 ± 0.73 | - | 4.90 ± 1.37 |
AUC0−t (μg·h/mL) | 0.46 ± 0.12 | 9.02 ± 2.02 | 0.49 ± 0.14 | 23.73 ± 12.03 | 0.62 ± 0.15 | 68.49 ± 25.25 |
T1/2 (h) | 3.23 ± 0.92 | 9.28 ± 1.06 | 5.40 ± 4.04 | 13.97 ± 8.64 | 7.91 ± 3.38 | 7.75 ± 1.03 |
AUC0-∞ (μg·h/mL) | 0.51 ± 0.13 | 9.23 ± 2.03 | 0.57 ± 0.18 | 26.07 ± 12.39 | 0.69 ± 0.16 | 70.09 ± 25.33 |
MRTlast (h) | 2.32 ± 0.43 | 9.18 ± 2.10 | 3.51 ± 3.25 | 13.11 ± 4.03 | 4.76 ± 1.55 | 12.66 ± 2.02 |
Cl (L/hr/kg) | 2.15 ± 0.71 | - | 1.93 ± 0.62 | - | 1.52 ± 0.37 | - |
Vz (L/kg) | 10.38 ± 5.61 | - | 13.12 ± 9.13 | - | 15.95 ± 6.02 | - |
F (%) a | 53.34 ± 19.46 | 56.88 ± 14.03 | 67.80 ± 16.70 | |||
p-value c | 0.411 (>0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, E.J.; Seo, J.I.; Rehman, S.U.; Park, H.S.; Yoo, S.-K.; Yoo, H.H. Preclinical Bioavailability Assessment of a Poorly Water-Soluble Drug, HGR4113, Using a Stable Isotope Tracer. Pharmaceutics 2023, 15, 1684. https://doi.org/10.3390/pharmaceutics15061684
Ha EJ, Seo JI, Rehman SU, Park HS, Yoo S-K, Yoo HH. Preclinical Bioavailability Assessment of a Poorly Water-Soluble Drug, HGR4113, Using a Stable Isotope Tracer. Pharmaceutics. 2023; 15(6):1684. https://doi.org/10.3390/pharmaceutics15061684
Chicago/Turabian StyleHa, Eun Ji, Jeong In Seo, Shaheed Ur Rehman, Hyung Soon Park, Sang-Ku Yoo, and Hye Hyun Yoo. 2023. "Preclinical Bioavailability Assessment of a Poorly Water-Soluble Drug, HGR4113, Using a Stable Isotope Tracer" Pharmaceutics 15, no. 6: 1684. https://doi.org/10.3390/pharmaceutics15061684
APA StyleHa, E. J., Seo, J. I., Rehman, S. U., Park, H. S., Yoo, S.-K., & Yoo, H. H. (2023). Preclinical Bioavailability Assessment of a Poorly Water-Soluble Drug, HGR4113, Using a Stable Isotope Tracer. Pharmaceutics, 15(6), 1684. https://doi.org/10.3390/pharmaceutics15061684