Real-Time Monitoring Platform for Ocular Drug Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Pursing Experiments with the Microfluidic System
2.2.2. 3D Printing of PK-Eye™ Prototypes
2.2.3. Real-Time Monitoring Platform of PK-Eye™
Automating Flow with Microfluidics
- Scale up capabilities of the microfluidic system
- 2.
- Circadian rhythm using the microfluidic system
- 3.
- Demonstrating QC with microfluidic setup
Automating Eye Movement with a Novel Eye Movement Platform
- Building the eye movement platform
- 2.
- Programming the eye movements
Automating Drug Concentration Readout with a Concentration Probe Setup
- Demonstrating setup capability of concentration probe
- 2.
- Quantification of a labelled protein with the concentration probe setup
2.3. Data Analysis
3. Results
3.1. Modelling Experiments with the Microfluidic System
3.1.1. Choosing the Right Hyaloid Membrane Part to Separate the Anterior and Posterior Parts of the Posterior Flow Model
3.1.2. Selecting the Right Membrane Diameter Size
3.1.3. Selecting the Right Membrane Pore Size
3.2. General Platform Setup
3.3. Automating Flow with Microfluidics
3.3.1. Scale up Capabilities of the Microfluidic System
3.3.2. Circadian Rhythm Using the Microfluidic System
3.3.3. Demonstrating QC with Model Setup
3.4. Automating Eye Movement with a Novel Eye Movement Platform
3.4.1. Building the Eye Movement Platform
3.4.2. Programming the Eye Movements
3.5. Automating Drug Concentration Readout with a Concentration Probe Setup
3.5.1. Demonstrating Setup Capability of Concentration Probe
3.5.2. Quantification of a Labelled Protein with the Concentration Probe Setup
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranta, V.; Urtti, A. Transscleral drug delivery to the posterior eye: Prospects of pharmacokinetic modeling. Adv. Drug Deliv. Rev. 2006, 58, 1164–1181. [Google Scholar] [CrossRef] [PubMed]
- Jager, R.D.; Aiello, L.P.; Patel, S.C.; Cunningham, E.T. Risks of intravitreous injection: A comprehensive review. Retina 2004, 24, 676–698. [Google Scholar] [CrossRef] [PubMed]
- Thrimawithana, T.; Young, S.; Bunt, C. Drug delivery to the posterior segment of the eye. Drug Discov. Today 2011, 16, 270–277. [Google Scholar] [CrossRef]
- Laude, A.; Tan, L.E.; Wilson, C.G.; Lascaratos, G.; Elashry, M.; Aslam, T.; Patton, N.; Dhillon, B. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog. Retin. Eye Res. 2010, 29, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Awwad, S.; Henein, C.; Ibeanu, N.; Khaw, P.T.; Brocchini, S. Preclinical challenges for developing long acting intravitreal medicines. Eur. J. Pharm. Biopharm. 2020, 153, 130–149. [Google Scholar] [CrossRef] [PubMed]
- Kuentz, M. Analytical technologies for real-time drug dissolution and precipitation testing on a small scale. J. Pharm. Pharmacol. 2015, 67, 143–159. [Google Scholar] [CrossRef]
- Adrianto, M.F.; Annuryanti, F.; Wilson, C.G.; Sheshala, R.; Thakur, R.R.S. In vitro dissolution testing models of ocular implants for posterior segment drug delivery. Drug Deliv. Transl. Res. 2021, 12, 1355–1375. [Google Scholar] [CrossRef]
- Jones, H.M.; Gardner, I.B.; Collard, W.T.; Stanley, P.J.; Oxley, P.; Hosea, N.A.; Plowchalk, D.; Gernhardt, S.; Lin, J.; Dickins, M.; et al. Simulation of human intravenous and oral pharmacokinetics of 21 diverse compounds using physiologically based pharmacokinetic modelling. Clin. Pharmacokinet. 2011, 50, 331–347. [Google Scholar] [CrossRef]
- Lavé, T.; Chapman, K.; Goldsmith, P.; Rowland, M. Human clearance prediction: Shifting the paradigm. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1039–1048. [Google Scholar] [CrossRef]
- Rostami-Hodjegan, A.; Tucker, G.T. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat. Rev. Drug Discov. 2007, 6, 140–148. [Google Scholar] [CrossRef]
- Longest, P.W.; Tian, G.; Walenga, R.L.; Hindle, M. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm. Res. 2012, 29, 1670–1688. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Cun, D.; Yuan, B.; Cui, H.; Xi, H.; Mu, L.; Chen, Y.; Liu, C.; Wang, Z.; Fang, L. Formulation and in vitro/in vivo correlation of a drug-in-adhesive transdermal patch containing azasetron. J. Pharm. Sci. 2012, 101, 4540–4548. [Google Scholar] [CrossRef] [PubMed]
- OhtoriI, A.; ToJo, K. In vivo/in Vitro Correlation of Intravitreal Delivery of Drugs with the Help of Computer Simulation. Biol. Pharm. Bull. 1994, 17, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Barat, A.; Ruskin, H.J.; Crane, M. Probabilistic methods for drug dissolution. Part 2. Modelling a soluble binary drug delivery system dissolving in vitro. Simul. Model. Pract. Theory 2006, 14, 857–873. [Google Scholar] [CrossRef]
- Bonam, M.; Christopher, D.; Cipolla, D.; Donovan, B.; Goodwin, D.; Holmes, S.; Lyapustina, S.; Mitchell, J.; Nichols, S.; Pettersson, G.; et al. Minimizing variability of cascade impaction measurements in inhalers and nebulizers. AAPS PharmSciTech 2008, 9, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Agu, R.U.; Ugwoke, M.I. In vitro and in vivo testing methods for respiratory drug delivery. Expert Opin. Drug Deliv. 2011, 8, 57–69. [Google Scholar] [CrossRef]
- Emami, J. In vitro-in vivo correlation: From theory to applications. J. Pharm. Pharm. Sci. 2006, 9, 169–189. [Google Scholar]
- Choi, S.H.; Lionberger, R.A. Clinical, Pharmacokinetic, and In Vitro Studies to Support Bioequivalence of Ophthalmic Drug Products. AAPS J. 2016, 18, 1032–1038. [Google Scholar] [CrossRef]
- Patel, S.; Müller, G.; Stracke, J.O.; Altenburger, U.; Mahler, H.-C.; Jere, D. Evaluation of protein drug stability with vitreous humor in a novel ex-vivo intraocular model. Eur. J. Pharm. Biopharm. 2015, 95, 407–417. [Google Scholar] [CrossRef]
- Loch, C.; Bogdahn, M.; Stein, S.; Nagel, S.; Guthoff, R.; Weitschies, W.; Seidlitz, A. Simulation of drug distribution in the vitreous body after local drug application into intact vitreous body and in progress of posterior vitreous detachment. J. Pharm. Sci. 2013, 103, 517–526. [Google Scholar] [CrossRef]
- Auel, T.; Großmann, L.; Schulig, L.; Weitschies, W.; Seidlitz, A. The EyeFlowCell: Development of a 3D-Printed Dissolution Test Setup for Intravitreal Dosage Forms. Pharmaceutics 2021, 13, 1394. [Google Scholar] [CrossRef] [PubMed]
- Awwad, S.; Lockwood, A.; Brocchini, S.; Khaw, P.T. The PK-Eye: A Novel in Vitro Ocular Flow Model for Use in Preclinical Drug Development. J. Pharm. Sci. 2015, 104, 3330–3342. [Google Scholar] [CrossRef] [PubMed]
- Awwad, S.; Day, R.M.; Khaw, P.T.; Brocchini, S.; Fadda, H.M. Sustained release ophthalmic dexamethasone: In vitro in vivo correlations derived from the PK-Eye. Int. J. Pharm. 2017, 522, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Awwad, S.; Abubakre, A.; Angkawinitwong, U.; Khaw, P.T.; Brocchini, S. In situ antibody-loaded hydrogel for intravitreal delivery. Eur. J. Pharm. Sci. 2019, 137, 104993. [Google Scholar] [CrossRef]
- Velentza-Almpani, A.; Ibeanu, N.; Liu, T.; Redhead, C.; Khaw, P.T.; Brocchini, S.; Awwad, S.; Bouremel, Y. Effects of Flow Hydrodynamics and Eye Movements on Intraocular Drug Clearance. Pharmaceutics 2022, 14, 1267. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ibeanu, N.; Brocchini, S.; Khaw, P.T.; Bouremel, Y.; Awwad, S. Development of an in vitro model to estimate mass transfer from the anterior cavity. Front. Drug Deliv. 2022, 2. [Google Scholar] [CrossRef]
- Egbu, R.; Brocchini, S.; Khaw, P.T.; Awwad, S. Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur. J. Pharm. Biopharm. 2018, 124, 95–103. [Google Scholar] [CrossRef]
- Awwad, S.; Al-Shohani, A.; Khaw, P.T.; Brocchini, S. Comparative Study of in Situ Loaded Antibody and PEG-Fab NIPAAM Gels. Macromol. Biosci. 2018, 18, 1700255. [Google Scholar] [CrossRef]
- Sapino, S.; Peira, E.; Chirio, D.; Chindamo, G.; Guglielmo, S.; Oliaro-Bosso, S.; Barbero, R.; Vercelli, C.; Re, G.; Brunella, V.; et al. Thermosensitive Nanocomposite Hydrogels for Intravitreal Delivery of Cefuroxime. Nanomaterials 2019, 9, 1461. [Google Scholar] [CrossRef]
- Thakur, S.S.; Shenoy, S.; Suk, J.S.; Hanes, J.S.; Rupenthal, I.D. Validation of hyaluronic acid-agar-based hydrogels as vitreous humor mimetics for in vitro drug and particle migration evaluations. Eur. J. Pharm. Biopharm. 2020, 148, 118–125. [Google Scholar] [CrossRef]
- Chi, Z.; Azhar, I.; Khan, H.; Yang, L.; Feng, Y. Automatic Dissolution Testing with High-Temporal Resolution for Both Immediate-Release and Fixed-Combination Drug Tablets. Sci. Rep. 2019, 9, 17114. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y.; Wang, Y.; Zhao, D.; Zheng, G. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv. Mater. 2013, 25, 6569–6574. [Google Scholar] [CrossRef]
- Zheng, X.T.; Chen, P.; Li, C.M. Anticancer efficacy and subcellular site of action investigated by real-time monitoring of cellular responses to localized drug delivery in single cells. Small 2012, 8, 2670–2674. [Google Scholar] [CrossRef] [PubMed]
- Bouremel, Y.; Madaan, S.; Lee, R.M.; Eames, I.; Wojcik, A.; Khaw, P.T. Pursing of planar elastic pockets. J. Fluids Struct. 2017, 70, 261–275. [Google Scholar] [CrossRef]
- Fluigent. Fluigent ESS L-SWITCH, ESS M-SWITCH, ESS SWITCHBOARD User Manual, Version 10A. ManualZZ. Available online: https://manualzz.com/doc/65737629/fluigent-ess-l-switch--ess-m-switch--ess-switchboard-user (accessed on 1 September 2022).
- Jiang, S.; Choudhry, N. Anterior Hyaloid OCT. Ophthalmol. Retin. 2018, 2, 72. [Google Scholar] [CrossRef]
- Khaw, P.T.; Shah, P.; Elkington, A.R. Glaucoma—1: Diagnosis Primary open angle glaucoma. BMJ 2004, 528, 97–99. [Google Scholar] [CrossRef]
- Pernaut, J.M.; Reynolds, J.R. Use of Conducting Electroactive Polymers for Drug Delivery and Sensing of Bioactive Molecules. A Redox Chemistry Approach. J. Phys. Chem. B 2000, 104, 4080–4090. [Google Scholar] [CrossRef]
- Dhopeshwarkar, R.; Crooks, R.M.; Hlushkou, D.; Tallarek, U. Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane. Anal. Chem. 2008, 80, 1039–1048. [Google Scholar] [CrossRef]
- Song, R.; Stone, H.A.; Jensen, K.H.; Lee, J. Pressure-driven flow across a hyperelastic porous membrane. J. Fluid Mech. 2019, 871, 742–754. [Google Scholar] [CrossRef]
- Baskakova, A.; Awwad, S.; Jimenez, J.Q.; Gill, H.; Novikov, O.; Khaw, P.T.; Brocchini, S.; Zhilyakova, E.; Williams, G.R. Electrospun formulations of acyclovir, ciprofloxacin and cyanocobalamin for ocular drug delivery. Int. J. Pharm. 2016, 502, 208–218. [Google Scholar] [CrossRef]
- Krohne, T.U.; Liu, Z.; Holz, F.G.; Meyer, C.H. Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am. J. Ophthalmol. 2012, 154, 682–686.e2. [Google Scholar] [CrossRef]
- Xu, L.; Lu, T.; Tuomi, L.; Jumbe, N.; Lu, J.; Eppler, S.; Kuebler, P.; Damico-Beyer, L.A.; Joshi, A. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: A population approach. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Krohne, T.U.; Holz, F.G.; Meyer, C.H. Pharmacokinetics of intravitreally administered VEGF inhibitors. Ophthalmologe 2014, 111, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.H.; Krohne, T.U.; Holz, F.G. Intraocular pharmacokinetics after a single intravitreal injection of 1.5 mg versus 3.0 mg of bevacizumab in humans. Retina 2011, 31, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Ziemssen, F.; Henke-Fahle, S.; Tatar, O.; Szurman, P.; Aisenbrey, S.; Schneiderhan-Marra, N.; Xu, X.; Grisanti, S. Vitreous levels of bevacizumab and vascular endothelial growth factor-A in patients with choroidal neovascularization. Ophthalmology 2008, 115, 1750–1755.e1. [Google Scholar] [CrossRef]
- Beer, P.M.; Wong, S.J.; Hammad, A.M.; Falk, N.S.; O’Malley, M.R.; Khan, S. Vitreous levels of unbound bevacizumab and unbound vascular endothelial growth factor in two patients. Retina 2006, 26, 871–876. [Google Scholar] [CrossRef]
- Miller, E.; Rotea, M.; Rothstein, J.P. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets. Lab Chip 2010, 10, 1293–1301. [Google Scholar] [CrossRef]
- Goel, M.; Picciani, R.G.; Lee, R.K.; Bhattacharya, S.K. Aqueous humor dynamics: A review. Open Ophthalmol. J. 2010, 4, 52–59. [Google Scholar] [CrossRef]
- Radenbaugh, P.A.; Goyal, A.; McLaren, N.C.; Reed, D.M.; Musch, D.; Richards, J.E.; Moroi, S.E. Concordance of aqueous humor flow in the morning and at night in normal humans. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4860–4864. [Google Scholar] [CrossRef]
- Otero-Millan, J.; Troncoso, X.G.; Macknik, S.L.; Serrano-Pedraza, I.; Martinez-Conde, S. Saccades and microsaccades during visual fixation, exploration, and search: Foundations for a common saccadic generator. J. Vis. 2008, 8, 21. [Google Scholar] [CrossRef]
- Meyer, C.H.; Lasker, A.G.; Robinson, D.A. The upper limit of human smooth pursuit velocity. Vision Res. 1985, 25, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Erkelens, C.J. Coordination of smooth pursuit and saccades. Vision Res. 2006, 46, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Foulsham, T.; Kingstone, A.; Underwood, G. Turning the world around: Patterns in saccade direction vary with picture orientation. Vision Res. 2008, 48, 1777–1790. [Google Scholar] [CrossRef] [PubMed]
- Higgins, E.; Leinenger, M.; Rayner, K. Eye movements when viewing advertisements. Front. Psychol. 2014, 5, 210. [Google Scholar] [CrossRef]
- Larsby, B.; Thell, J.; Möller, C.; Odkvist, L. The effect of stimulus predictability and age on human tracking eye movements. Acta Otolaryngol. 1988, 105, 21–30. [Google Scholar] [CrossRef]
- Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 1998, 124, 372–422. [Google Scholar] [CrossRef] [PubMed]
- Lubken, R.M.; de Jong, A.M.; Prins, M.W.J. Real-Time Monitoring of Biomolecules: Dynamic Response Limits of Affinity-Based Sensors. ACS Sens. 2022, 7, 286–295. [Google Scholar] [CrossRef]
- Lu, X.; Lozano, R.; Shah, P. In-situ dissolution testing using different UV fiber optic probes and instruments. Dissolution Technol. 2003, 10, 6–15. [Google Scholar] [CrossRef]
- Awwad, S.; Bouremel, Y.; Ibeanu, N.; Brocchini, S.J.; Khaw, P.T. Artificial Eye Assembly for Studying Ocular Pharmacokinetics. Publication Number WO 2021/186191, 23 September 2021. [Google Scholar]
Model-Platform | Models | ||||
---|---|---|---|---|---|
First-Generation PK-Eye™ [22] | Posterior Inflow Model [25] | Ciliary Inflow Model [25] | RCS Model [25] | Intracameral Model [26] | |
Model parts | |||||
Anterior cavity | Simple anterior cavity | Anterior cavity with iris part, lens part and hyaloid membrane | |||
Posterior cavity | Simple posterior cavity with SVF | ||||
Membrane | One Visking membrane in the front | Two Visking membranes (one front and one back) | |||
Inflow | Posterior | Anterior | |||
Outflow | Front only (anterior hyaloid) | Front and back (anterior hyaloid and RCS) | |||
Anterior sampling in real-time | Yes | ||||
Posterior sampling in real-time | No | Yes | |||
Molecules tested | Small and large molecules | Small molecules | |||
Platform | |||||
Flow | Peristaltic pump | Microfluidics | |||
Pressure-flow monitoring | No | Yes (with graph readout) | |||
Simultaneous models testing (n) | 8 | 48 | |||
Circadian rhythm | No | Yes (with graph readout) | |||
SVF leakage monitoring | No | Yes (with graph readout) | |||
Eye movement monitoring | No | Yes, one eye movement shown (with graph readout) | Yes, three eye movements shown (with graph readout) | ||
Temperature monitoring | Thermometer | Temperature sensors | |||
Concentration readout | Manual sampling and HPLC analysis | Manual sampling and HPLC analysis, and use of concentration probe setup |
Smooth pursuit | ||||||
Movement 1 | Movement 2 | Movement 3 | Movement 4 | Movement 5 | Movement 6 | Movement 7 |
+20°/1.5 s | 1 s pause | +20°/1.5 s | 1 s pause | −20°/1.5 s | 1 s pause | 20°/1.5 s |
Scene pursuit saccades | ||||||
Movement 1 | Movement 2 | Movement 3 | Movement 4 | Movement 5 | Movement 6 | Movement 7 |
+4°/50 ms | 330 ms pause | +4°/50 ms | 330 ms pause | +4°/50 ms | 330 ms pause | −12°/1 s |
Micro saccades | ||||||
Movement 1 | Movement 2 | Movement 3 | Movement 4 | Movement 5 | Movement 6 | Movement 7 |
+0.55°/14 ms | 1.25 s pause | −0.55°/14 ms | 1.25 s pause | +10°/500 ms | 1.25 s pause | +0.55°/14 ms |
Movement 8 | Movement 9 | Movement 10 | Movement 11 | Movement 12 | Movement 13 | Movement 14 |
1.25 s pause | −0.55°/14 ms | 1.25 s pause | −20°/500 ms | −0.55°/14 ms | 1.25 s pause | −0.55°/14 ms |
Movement 15 | Movement 16 | Movement 17 | ||||
1.25 s pause | +10°/500 ms | 1.25 s pause |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awwad, S.; Ibeanu, N.; Liu, T.; Velentza-Almpani, A.; Chouhan, N.; Vlatakis, S.; Khaw, P.T.; Brocchini, S.; Bouremel, Y. Real-Time Monitoring Platform for Ocular Drug Delivery. Pharmaceutics 2023, 15, 1444. https://doi.org/10.3390/pharmaceutics15051444
Awwad S, Ibeanu N, Liu T, Velentza-Almpani A, Chouhan N, Vlatakis S, Khaw PT, Brocchini S, Bouremel Y. Real-Time Monitoring Platform for Ocular Drug Delivery. Pharmaceutics. 2023; 15(5):1444. https://doi.org/10.3390/pharmaceutics15051444
Chicago/Turabian StyleAwwad, Sahar, Nkiruka Ibeanu, Tianyang Liu, Angeliki Velentza-Almpani, Nerisha Chouhan, Stavros Vlatakis, Peng Tee Khaw, Steve Brocchini, and Yann Bouremel. 2023. "Real-Time Monitoring Platform for Ocular Drug Delivery" Pharmaceutics 15, no. 5: 1444. https://doi.org/10.3390/pharmaceutics15051444
APA StyleAwwad, S., Ibeanu, N., Liu, T., Velentza-Almpani, A., Chouhan, N., Vlatakis, S., Khaw, P. T., Brocchini, S., & Bouremel, Y. (2023). Real-Time Monitoring Platform for Ocular Drug Delivery. Pharmaceutics, 15(5), 1444. https://doi.org/10.3390/pharmaceutics15051444