Piezoelectric Nanomaterials Activated by Ultrasound in Disease Treatment
Abstract
:1. Introduction
2. Piezoelectric Materials, Piezoelectric Nanomaterials, and Their Bioeffects
2.1. Piezoelectric Materials
2.2. Piezoelectric Nanomaterials
2.3. Piezoelectric Nanomaterials Bioeffects
2.3.1. Direct Electrical Stimulation
2.3.2. Free Radicals Based on the Piezoelectric Effect
3. Ultrasound in Piezoelectric Effects
4. Application of Piezoelectric Nanomaterials Activated by Ultrasound in Medicine
4.1. Nerve System
4.2. Musculoskeletal Tissues
4.2.1. Muscle
4.2.2. Bone
4.2.3. Cartilage
4.3. Anticancer
4.3.1. Transmission of Electrical Signals
4.3.2. Catalyzing ROS Production
4.4. Antibacterial Therapy
4.5. Others
5. Perspectives and Conclusions
5.1. How to Measure Piezoelectric Properties
5.2. How to Determine the US Dose That Can Generate Piezoelectric Effect In Vitro and In Vivo
5.3. How to Ensure the Related Bioeffects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eisenstein, M. Seven technologies to watch in 2022. Nature 2022, 601, 658–661. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Park, O.K.; Kim, J.; Han, S.I.; Yoo, T.Y.; Lee, N.; Kim, Y.G.; Kim, H.; Lim, C.; Bae, J.S.; et al. Enhanced Chemodynamic Therapy by Cu-Fe Peroxide Nanoparticles: Tumor Microenvironment-Mediated Synergistic Fenton Reaction. ACS Nano 2022, 16, 2535–2545. [Google Scholar] [CrossRef]
- Bai, S.; Yang, N.; Wang, X.; Gong, F.; Dong, Z.; Gong, Y.; Liu, Z.; Cheng, L. Ultrasmall Iron-Doped Titanium Oxide Nanodots for Enhanced Sonodynamic and Chemodynamic Cancer Therapy. ACS Nano 2020, 14, 15119–15130. [Google Scholar] [CrossRef] [PubMed]
- Yougbaré, S.; Mutalik, C.; Okoro, G.; Lin, I.H.; Krisnawati, D.I.; Jazidie, A.; Nuh, M.; Chang, C.C.; Kuo, T.R. Emerging Trends in Nanomaterials for Antibacterial Applications. Int. J. Nanomed. 2021, 16, 5831–5867. [Google Scholar] [CrossRef]
- Curie, J.; Curie, P. Development par compression de l’etricite polaire das les cristaux hemledres a faces inclines. In De la Societee Minearalogique de France; Bulletin No. 4; La Société: Paris, France, 1880; Volume 3. [Google Scholar]
- Deng, W.; Zhou, Y.; Libanori, A.; Chen, G.; Yang, W.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Han, C.; Li, J.; Qiu, J.; Sunarso, J.; Liu, S. The Mechanism of Piezocatalysis: Energy Band Theory or Screening Charge Effect? Angew Chem. Int. Ed. Engl. 2022, 61, e202110429. [Google Scholar] [CrossRef]
- Zhou, L.; Yuan, T.; Jin, F.; Li, T.; Qian, L.; Wei, Z.; Zheng, W.; Ma, X.; Wang, F.; Feng, Z.Q. Advances in applications of piezoelectronic electrons in cell regulation and tissue regeneration. J. Mater. Chem. B 2022, 10, 8797–8823. [Google Scholar] [CrossRef]
- Qian, W.; Yang, W.; Zhang, Y.; Bowen, C.R.; Yang, Y. Piezoelectric Materials for Controlling Electro-Chemical Processes. Nanomicro. Lett. 2020, 12, 149. [Google Scholar] [CrossRef]
- Montoya, C.; Du, Y.; Gianforcaro, A.L.; Orrego, S.; Yang, M.; Lelkes, P.I. On the road to smart biomaterials for bone research: Definitions, concepts, advances, and outlook. Bone Res. 2021, 9, 12. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Liu, H.; Ge, S. Advancing Versatile Ferroelectric Materials toward Biomedical Applications. Adv. Sci. 2020, 8, 2003074. [Google Scholar] [CrossRef]
- Lei, J.; Wang, C.; Feng, X.; Ma, L.; Liu, X.; Luo, Y.; Tan, L.; Wu, S.; Yang, C. Sulfur-regulated defect engineering for enhanced ultrasonic piezocatalytic therapy of bacteria-infected bone defects. Chem. Eng. J. 2022, 435, 134624. [Google Scholar] [CrossRef]
- Wang, P.; Tang, Q.; Zhang, L.; Xu, M.; Sun, L.; Sun, S.; Zhang, J.; Wang, S.; Liang, X. Ultrasmall Barium Titanate Nanoparticles for Highly Efficient Hypoxic Tumor Therapy via Ultrasound Triggered Piezocatalysis and Water Splitting. ACS Nano 2021, 15, 11326–11340. [Google Scholar] [CrossRef]
- Meng, F.; Ma, W.; Wang, Y.; Zhu, Z.; Chen, Z.; Lu, G. A tribo-positive Fe@MoS2 piezocatalyst for the durable degradation of tetracycline: Degradation mechanism and toxicity assessment. Environ. Sci. Nano 2020, 7, 1704–1718. [Google Scholar] [CrossRef]
- Zhu, P.; Peng, H.; Mao, L.; Tian, J. Piezoelectric Single Crystal Ultrasonic Transducer for Endoscopic Drug Release in Gastric Mucosa. IEEE Trans. Ultrason Ferroelectr. Freq. Control 2021, 68, 952–960. [Google Scholar] [CrossRef]
- Kim, T.; Kim, H.J.; Choi, W.; Lee, Y.M.; Pyo, J.H.; Lee, J.; Kim, J.; Kim, J.; Kim, J.H.; Kim, C.; et al. Deep brain stimulation by blood-brain-barrier-crossing piezoelectric nanoparticles generating current and nitric oxide under focused ultrasound. Nat. Biomed. Eng. 2022, 7, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Song, B.; Fang, J. Electrical Stimulation Enabled via Electrospun Piezoelectric Polymeric Nanofibers for Tissue Regeneration. Research 2022, 2022, 9896274. [Google Scholar] [CrossRef]
- Cafarelli, A.; Marino, A.; Vannozzi, L.; Puigmartí-Luis, J.; Pané, S.; Ciofani, G.; Ricotti, L. Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS Nano 2021, 15, 11066–11086. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, Y.; Lv, H.; Shi, H.; Zhou, W.; Liu, Y.; Yu, D.G. Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications. Polymers 2022, 14, 4311. [Google Scholar] [CrossRef] [PubMed]
- Park, I.W.; Kim, K.W.; Hong, Y.; Yoon, H.J.; Lee, Y.; Gwak, D.; Heo, K. Recent Developments and Prospects of M13- Bacteriophage Based Piezoelectric Energy Harvesting Devices. Nanomaterials 2020, 10, 93. [Google Scholar] [CrossRef]
- Starr, M.B.; Wang, X. Coupling of piezoelectric effect with electrochemical processes. Nano Energy 2015, 14, 296–311. [Google Scholar] [CrossRef]
- Kamel, N.A. Bio-piezoelectricity: Fundamentals and applications in tissue engineering and regenerative medicine. Biophys. Rev. 2022, 14, 717–733. [Google Scholar] [CrossRef]
- Mahapatra, S.D.; Mohapatra, P.C.; Aria, A.I.; Christie, G.; Mishra, Y.K.; Hofmann, S.; Thakur, V.K. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Adv. Sci. 2021, 8, e2100864. [Google Scholar] [CrossRef]
- Su, J.; Zhang, J. Preparation and properties of Barium titanate (BaTiO3) reinforced high density polyethylene (HDPE) composites for electronic application. J. Mater. Sci. Mater. Electron. 2016, 27, 4344–4350. [Google Scholar] [CrossRef]
- Sobolev, K.; Kolesnikova, V.; Omelyanchik, A.; Alekhina, Y.; Antipova, V.; Makarova, L.; Peddis, D.; Raikher, Y.L.; Levada, K.; Amirov, A.; et al. Effect of Piezoelectric BaTiO3 Filler on Mechanical and Magnetoelectric Properties of Zn0.25Co0.75Fe2O4/PVDF-TrFE Composites. Polymers 2022, 14, 4807. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, Z.; Zhao, J.; Zhang, Z.; Li, X.; Zhang, J. Recent Advances of Ferro-, Piezo-, and Pyroelectric Nanomaterials for Catalytic Applications. ACS Appl. Nano Mater. 2020, 3, 1063–1079. [Google Scholar] [CrossRef]
- Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric Biomaterials for Sensors and Actuators. Adv. Mater. 2019, 31, e1802084. [Google Scholar] [CrossRef]
- Sakai, T.; Hoshiai, S.; Nakamachi, E. Biochemical compatibility of PZT piezoelectric ceramics covered with titanium thin film. J. Optoelectron. Adv. Mater. 2006, 8, 1435–1437. [Google Scholar]
- Dutra, G.V.S.; Neto, W.S.; Dutra, J.P.S.; Machado, F. Implantable Medical Devices and Tissue Engineering: An Overview of Manufacturing Processes and the Use of Polymeric Matrices for Manufacturing and Coating their Surfaces. Curr. Med. Chem. 2020, 27, 1580–1599. [Google Scholar] [CrossRef]
- Ji, J.; Yang, C.; Shan, Y.; Sun, M.; Cui, X.; Xu, L.; Liang, S.; Li, T.; Fan, Y.; Luo, D.; et al. Research Trends of Piezoelectric Nanomaterials in Biomedical Engineering. Adv. NanoBiomed Res. 2023, 3, 2200088. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, L.; Zheng, Q.; Kang, Y.; Shi, B.; Jiang, D.; Li, H.; Qu, X.; Fan, Y.; Wang, Z.L.; et al. Human Motion Driven Self-Powered Photodynamic System for Long-Term Autonomous Cancer Therapy. ACS Nano 2020, 14, 8074–8083. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Zheng, Y.; Chen, Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Adv. Mater. 2016, 28, 8097–8129. [Google Scholar] [CrossRef]
- Marino, A.; Arai, S.; Hou, Y.; Sinibaldi, E.; Pellegrino, M.; Chang, Y.T.; Mazzolai, B.; Mattoli, V.; Suzuki, M.; Ciofani, G. Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS Nano 2015, 9, 7678–7689. [Google Scholar] [CrossRef]
- Shan, Y.; Cui, X.; Chen, X.; Li, Z. Recent progress of electroactive interface in neural engineering. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e01827. [Google Scholar] [CrossRef] [PubMed]
- Perlmutter, J.S.; Mink, J.W. Deep brain stimulation. Annu. Rev. Neurosci. 2006, 29, 229–257. [Google Scholar] [CrossRef]
- Bornstein, N.M.; Saver, J.L.; Diener, H.C.; Gorelick, P.B.; Shuaib, A.; Solberg, Y.; Thackeray, L.; Savic, M.; Janelidze, T.; Zarqua, N.; et al. An injectable implant to stimulate the sphenopalatine ganglion for treatment of acute ischaemic stroke up to 24 h from onset (ImpACT-24B): An international, randomised, double-blind, sham-controlled, pivotal trial. Lancet 2019, 394, 219–229. [Google Scholar] [CrossRef]
- Qian, Y.; Yuan, W.E.; Cheng, Y.; Yang, Y.; Qu, X.; Fan, C. Concentrically Integrative Bioassembly of a Three-Dimensional Black Phosphorus Nanoscaffold for Restoring Neurogenesis, Angiogenesis, and Immune Homeostasis. Nano Lett. 2019, 19, 8990–9001. [Google Scholar] [CrossRef]
- Ciofani, G.; Danti, S.; D’Alessandro, D.; Ricotti, L.; Moscato, S.; Bertoni, G.; Falqui, A.; Berrettini, S.; Petrini, M.; Mattoli, V.; et al. Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 2010, 4, 6267–6277. [Google Scholar] [CrossRef] [PubMed]
- Rojas, C.; Tedesco, M.; Massobrio, P.; Marino, A.; Ciofani, G.; Martinoia, S.; Raiteri, R. Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. J. Neural. Eng. 2018, 15, 036016. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Li, X.; Zhu, H.; Weng, W.-H.; Tan, X.; Chen, Q.; Wang, X.; Fan, X. Laser Recording of Subcellular Neuron Activities. bioRxiv 2019. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, P.J.; Liu, J.H.; Dong, M.; Shen, X.Q.; Chen, Y.X.; Shen, Q.D. Electromagnetized-Nanoparticle-Modulated Neural Plasticity and Recovery of Degenerative Dopaminergic Neurons in the Mid-Brain. Adv. Mater. 2020, 32, e2003800. [Google Scholar] [CrossRef]
- Liu, L.; Chen, B.; Liu, K.; Gao, J.; Ye, Y.; Wang, Z.; Qin, N.; Wilson, D.A.; Tu, Y.; Peng, F. Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem-Like Cell Stimulation. Adv. Funct. Mater. 2020, 30, 1910108. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Y.; Wang, X.; Zhang, G.; Yu, Z.; Wang, C.; Xu, T.; Zhou, Z.; Yang, X.; Jin, X.; et al. Ultrasound-mediated piezoelectric nanoparticle modulation of intrinsic cardiac autonomic nervous system for rate control in atrial fibrillation. Biomater. Sci. 2023, 11, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.G.; Ceseracciu, L.; Marino, A.; Labardi, M.; Marras, S.; Pignatelli, F.; Bruschini, L.; Mattoli, V.; Ciofani, G. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells. Adv. Healthc. Mater. 2016, 5, 1808–1820. [Google Scholar] [CrossRef] [PubMed]
- Hoop, M.; Chen, X.Z.; Ferrari, A.; Mushtaq, F.; Ghazaryan, G.; Tervoort, T.; Poulikakos, D.; Nelson, B.; Pané, S. Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci. Rep. 2017, 7, 4028. [Google Scholar] [CrossRef]
- Zhang, R.; Han, S.; Liang, L.; Chen, Y.; Sun, B.; Liang, N.; Feng, Z.; Zhou, H.; Sun, C.; Liu, H.; et al. Ultrasonic-driven electrical signal-iron ion synergistic stimulation based on piezotronics induced neural differentiation of mesenchymal stem cells on FeOOH/PVDF nanofibrous hybrid membrane. Nano Energy 2021, 87, 106192. [Google Scholar] [CrossRef]
- Lu, X.; Sun, C.; Chen, L.; Feng, Z.; Gao, H.; Hu, S.; Dong, M.; Wang, J.; Zhou, W.; Ren, N.; et al. Stemness Maintenance and Massproduction of Neural Stem Cells on Poly L-Lactic Acid Nanofibrous Membrane Based on Piezoelectriceffect. Small 2022, 18, e2107236. [Google Scholar] [CrossRef]
- Jang, J.; Kim, K.; Yoon, J.; Park, C.B. Piezoelectric materials for ultrasound-driven dissociation of Alzheimer’s β-amyloid aggregate structure. Biomaterials 2020, 255, 120165. [Google Scholar] [CrossRef]
- Qian, Y.; Xu, Y.; Yan, Z.; Jin, Y.; Chen, X.; Yuan, W.-E.; Fan, C. Boron nitride nanosheets functionalized channel scaffold favors microenvironment rebalance cocktail therapy for piezocatalytic neuronal repair. Nano Energy 2021, 83, 105779. [Google Scholar] [CrossRef]
- Rajabi, A.H.; Jaffe, M.; Arinzeh, T.L. Piezoelectric materials for tissue regeneration: A review. Acta Biomater. 2015, 24, 12–23. [Google Scholar] [CrossRef]
- Ribeiro, C.; Sencadas, V.; Correia, D.M.; Lanceros-Méndez, S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf. B Biointerfaces 2015, 136, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Huang, Y.; Zhang, X.; Cai, Q.; Deng, X.; Yang, X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J. Mater. Chem. B 2020, 8, 10221–10256. [Google Scholar] [CrossRef] [PubMed]
- Tandon, B.; Blaker, J.J.; Cartmell, S.H. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 2018, 73, 1–20. [Google Scholar] [CrossRef]
- Ricotti, L.; Fujie, T.; Vazao, H.; Ciofani, G.; Marotta, R.; Brescia, R.; Filippeschi, C.; Corradini, I.; Matteoli, M.; Mattoli, V.; et al. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PLoS ONE 2013, 8, e71707. [Google Scholar] [CrossRef]
- Danti, S.; Ciofani, G.; Pertici, G.; Moscato, S.; D’Alessandro, D.; Ciabatti, E.; Chiellini, F.; D’Acunto, M.; Mattoli, V.; Berrettini, S. Boron nitride nanotube-functionalised myoblast/microfibre constructs: A nanotech-assisted tissue-engineered platform for muscle stimulation. J. Tissue Eng. Regen Med. 2015, 9, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Paci, C.; Iberite, F.; Arrico, L.; Vannozzi, L.; Parlanti, P.; Gemmi, M.; Ricotti, L. Piezoelectric nanocomposite bioink and ultrasound stimulation modulate early skeletal myogenesis. Biomater. Sci. 2022, 10, 5265–5283. [Google Scholar] [CrossRef]
- Danti, S.; Ciofani, G.; Moscato, S.; D’Alessandro, D.; Ciabatti, E.; Nesti, C.; Brescia, R.; Bertoni, G.; Pietrabissa, A.; Lisanti, M.; et al. Boron nitride nanotubes and primary human osteoblasts: In vitro compatibility and biological interactions under low frequency ultrasound stimulation. Nanotechnology 2013, 24, 465102. [Google Scholar] [CrossRef]
- Ma, B.; Liu, F.; Li, Z.; Duan, J.; Kong, Y.; Hao, M.; Ge, S.; Jiang, H.; Liu, H. Piezoelectric nylon-11 nanoparticles with ultrasound assistance for high-efficiency promotion of stem cell osteogenic differentiation. J. Mater. Chem. B 2019, 7, 1847–1854. [Google Scholar] [CrossRef]
- Das, R.; Curry, E.J.; Le, T.T.; Awale, G.; Liu, Y.; Li, S.; Contreras, J.; Bednarz, C.; Millender, J.; Xin, X.; et al. Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator. Nano Energy 2020, 76, 105028. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, S.; Qi, F.; Zan, J.; Liu, G.; Zhao, Z.; Shuai, C. Graphene-assisted barium titanate improves piezoelectric performance of biopolymer scaffold. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 116, 111195. [Google Scholar] [CrossRef]
- Genchi, G.G.; Sinibaldi, E.; Ceseracciu, L.; Labardi, M.; Marino, A.; Marras, S.; De Simoni, G.; Mattoli, V.; Ciofani, G. Ultrasound-activated piezoelectric P(VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells. Nanomedicine 2018, 14, 2421–2432. [Google Scholar] [CrossRef]
- Shuai, C.; Liu, G.; Yang, Y.; Yang, W.; He, C.; Wang, G.; Liu, Z.; Qi, F.; Peng, S. Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids Surf. B Biointerfaces 2020, 185, 110587. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Huang, B.Y.; Huang, S.M.; Liu, S.M.; Chang, K.C.; Ko, C.L.; Lin, C.L. In vitro evaluation of electrospun polyvinylidene fluoride hybrid nanoparticles as direct piezoelectric membranes for guided bone regeneration. Biomater. Adv. 2023, 144, 213228. [Google Scholar] [CrossRef]
- Cai, K.; Jiao, Y.; Quan, Q.; Hao, Y.; Liu, J.; Wu, L. Improved activity of MC3T3-E1 cells by the exciting piezoelectric BaTiO3/TC4 using low-intensity pulsed ultrasound. Bioact. Mater. 2021, 6, 4073–4082. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, S.; Jiao, Y.; Li, J.; Li, Y.; Hao, Y.L.; Zuo, Y. In Vitro Study on the Piezodynamic Therapy with a BaTiO3-Coating Titanium Scaffold under Low-Intensity Pulsed Ultrasound Stimulation. ACS Appl. Mater. Interfaces 2021, 13, 49542–49555. [Google Scholar] [CrossRef]
- Liu, W.; Yang, D.; Wei, X.; Guo, S.; Wang, N.; Tang, Z.; Lu, Y.; Shen, S.; Shi, L.; Li, X.; et al. Fabrication of piezoelectric porous BaTiO3 scaffold to repair large segmental bone defect in sheep. J. Biomater. Appl. 2020, 35, 544–552. [Google Scholar] [CrossRef]
- Wu, H.; Dong, H.; Tang, Z.; Chen, Y.; Liu, Y.; Wang, M.; Wei, X.; Wang, N.; Bao, S.; Yu, D.; et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials 2022, 293, 121990. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.C.; Lim, J.; Hwang, W.H.; Lin, Y.X.; Wang, J.L. Piezoelectric stimulation by ultrasound facilitates chondrogenesis of mesenchymal stem cells. J. Acoust. Soc. Am. 2020, 148, El58. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Trujillo-Miranda, M.; Maier, M.; Heath, D.E.; O’Connor, A.J.; Salehi, S. Effects of External Stimulators on Engineered Skeletal Muscle Tissue Maturation. Adv. Mater. Interfaces 2021, 8, 2001167. [Google Scholar] [CrossRef]
- Azuma, Y.; Ito, M.; Harada, Y.; Takagi, H.; Ohta, T.; Jingushi, S. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J. Bone Miner. Res. 2001, 16, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Zhang, S.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China, 2016. J. Natl. Cancer Cent. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Ding, B.; Zheng, P.; Jiang, F.; Zhao, Y.; Wang, M.; Chang, M.; Ma, P.; Lin, J. MnO(x) Nanospikes as Nanoadjuvants and Immunogenic Cell Death Drugs with Enhanced Antitumor Immunity and Antimetastatic Effect. Angew Chem. Int. Ed. Engl. 2020, 59, 16381–16384. [Google Scholar] [CrossRef]
- Marino, A.; Battaglini, M.; De Pasquale, D.; Degl’Innocenti, A.; Ciofani, G. Ultrasound-Activated Piezoelectric Nanoparticles Inhibit Proliferation of Breast Cancer Cells. Sci. Rep. 2018, 8, 6257. [Google Scholar] [CrossRef]
- Marino, A.; Almici, E.; Migliorin, S.; Tapeinos, C.; Battaglini, M.; Cappello, V.; Marchetti, M.; de Vito, G.; Cicchi, R.; Pavone, F.S.; et al. Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. J. Colloid. Interface Sci. 2019, 538, 449–461. [Google Scholar] [CrossRef]
- Pucci, C.; Marino, A.; Şen, Ö.; De Pasquale, D.; Bartolucci, M.; Iturrioz-Rodríguez, N.; di Leo, N.; de Vito, G.; Debellis, D.; Petretto, A.; et al. Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomater. 2022, 139, 218–236. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Xiao, C.; Li, C.; Zhai, J.; Yang, F.; Piao, J.; Ning, C.; Zhou, Z.; Yu, P.; Qi, S. Internal Wireless Electrical Stimulation from Piezoelectric Barium Titanate Nanoparticles as a New Strategy for the Treatment of Triple-Negative Breast Cancer. ACS Appl. Mater. Interfaces 2022, 14, 45032–45041. [Google Scholar] [CrossRef]
- Li, C.; Xiao, C.; Zhan, L.; Zhang, Z.; Xing, J.; Zhai, J.; Zhou, Z.; Tan, G.; Piao, J.; Zhou, Y.; et al. Wireless electrical stimulation at the nanoscale interface induces tumor vascular normalization. Bioact. Mater. 2022, 18, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Şen, Ö.; Marino, A.; Pucci, C.; Ciofani, G. Modulation of anti-angiogenic activity using ultrasound-activated nutlin-loaded piezoelectric nanovectors. Mater. Today Bio 2022, 13, 100196. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Liu, F.; Ma, B.; Duan, J.; Yuan, W.; Sang, Y.; Han, L.; Wang, S.; Liu, H. Wireless Localized Electrical Stimulation Generated by an Ultrasound-Driven Piezoelectric Discharge Regulates Proinflammatory Macrophage Polarization. Adv. Sci. 2021, 8, 2100962. [Google Scholar] [CrossRef]
- Zhu, P.; Chen, Y.; Shi, J. Piezocatalytic Tumor Therapy by Ultrasound-Triggered and BaTiO3-Mediated Piezoelectricity. Adv. Mater. 2020, 32, e2001976. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Lei, L.; Zhu, C.; Zhang, H.; Mei, L.; Ji, X. Piezo-photocatalytic effect mediating reactive oxygen species burst for cancer catalytic therapy. Mater. Horiz. 2021, 8, 2273–2285. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Dong, S.; Liu, B.; Yu, C.; Liu, J.; Yang, D.; Yang, P.; Lin, J. 2D Piezoelectric Bi2 MoO6 Nanoribbons for GSH-Enhanced Sonodynamic Therapy. Adv. Mater. 2021, 33, e2106838. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, X.; You, Z.; Yang, Z.; Guo, M.; Guo, J.; Liu, H.; Zhang, X.; Wang, Z.; Wang, A.; et al. A Molybdenum Disulfide Nanozyme with Charge-Enhanced Activity for Ultrasound-Mediated Cascade-Catalytic Tumor Ferroptosis. Angew Chem. Int. Ed. Engl. 2023, 62, e202217448. [Google Scholar] [CrossRef]
- Hoang, Q.T.; Huynh, K.A.; Cao, T.G.N.; Kang, J.H.; Nghia, D.X.; Ravichandran, V.; Kang, H.C.; Lee, M.; Kim, J.E.; Ko, Y.T.; et al. Piezocatalytic 2D WS2 Nanosheets for Ultrasound-Triggered and Mitochondria-Targeted Piezodynamic Cancer Therapy Synergized with Energy Metabolism-Targeted Chemotherapy. Adv. Mater. 2023, e2300437. [Google Scholar] [CrossRef]
- He, Y.; Xu, Z.; He, Y.; Cao, G.; Ni, S.; Tang, Y.; Wang, J.; Yuan, Y.; Ma, Z.; Wang, D.; et al. MoS(2) nanoflower-mediated enhanced intratumoral penetration and piezoelectric catalytic therapy. Biomaterials 2022, 290, 121816. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, Q.; Wu, R.; Sun, S.; Zhang, J.; Chen, J.; Gong, M.; Chen, C.; Liang, X. Ultrasound-Triggered Piezocatalysis for Selectively Controlled NO Gas and Chemodrug Release to Enhance Drug Penetration in Pancreatic Cancer. ACS Nano 2023, 17, 3557–3573. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, D.; Zhu, S.; Zhou, R.; Rahbarizadeh, F.; Gu, Z. Piezoelectric materials for synergistic piezo- and radio-catalytic tumor therapy. Nano Today 2022, 44, 101510. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Ding, Y.; Zhang, Z.; Huang, T.; Zhang, Y.; Wan, X.; Wang, Z.L.; Li, L. Piezotronic Effect-Augmented Cu2-xO-BaTiO3 Sonosensitizers for Multifunctional Cancer Dynamic Therapy. ACS Nano 2022, 16, 9304–9316. [Google Scholar] [CrossRef] [PubMed]
- Ramedani, A.; Sabzevari, O.; Simchi, A. Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment. Int. J. Pharm. 2022, 629, 122373. [Google Scholar] [CrossRef]
- Cucullo, L.; Dini, G.; Hallene, K.L.; Fazio, V.; Ilkanich, E.V.; Igboechi, C.; Kight, K.M.; Agarwal, M.K.; Garrity-Moses, M.; Janigro, D. Very low intensity alternating current decreases cell proliferation. Glia 2005, 51, 65–72. [Google Scholar] [CrossRef]
- Janigro, D.; Perju, C.; Fazio, V.; Hallene, K.; Dini, G.; Agarwal, M.K.; Cucullo, L. Alternating current electrical stimulation enhanced chemotherapy: A novel strategy to bypass multidrug resistance in tumor cells. BMC Cancer 2006, 6, 72. [Google Scholar] [CrossRef]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs. Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma: A Randomized Clinical Trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [PubMed]
- Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-Treating Fields: A Fourth Modality in Cancer Treatment. Clin. Cancer Res. 2018, 24, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Bois, A.D.; Vergote, I.; Ferron, G.; Reuss, A.; Meier, W.; Greggi, S.; Jensen, P.T.; Selle, F.; Guyon, F.; Pomel, C.; et al. Randomized controlled phase III study evaluating the impact of secondary cytoreductive surgery in recurrent ovarian cancer: AGO DESKTOP III/ENGOT ov20. J. Clin. Oncol. 2017, 35, 5501. [Google Scholar] [CrossRef]
- Racca, L.; Limongi, T.; Vighetto, V.; Dumontel, B.; Ancona, A.; Canta, M.; Canavese, G.; Garino, N.; Cauda, V. Zinc Oxide Nanocrystals and High-Energy Shock Waves: A New Synergy for the Treatment of Cancer Cells. Front. Bioeng. Biotechnol. 2020, 8, 577. [Google Scholar] [CrossRef]
- Pelicano, H.; Carney, D.; Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 2004, 7, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhao, X.; Wan, X.; Wang, X.; Huang, T.; Zhang, J.; Li, L. π-π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework. Mater. Horiz. 2021, 8, 3457–3467. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597–6626. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Dong, S.; Wang, P.; Chen, W.; Lu, Z.; Ye, D.; Pan, B.; Wu, D.; Vecitis, C.D.; et al. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nat. Commun. 2021, 12, 3508. [Google Scholar] [CrossRef]
- Biswas, A.; Saha, S.; Pal, S.; Jana, N.R. TiO2-Templated BaTiO3 Nanorod as a Piezocatalyst for Generating Wireless Cellular Stress. ACS Appl. Mater. Interfaces 2020, 12, 48363–48370. [Google Scholar] [CrossRef]
- Truong Hoang, Q.; Ravichandran, V.; Nguyen Cao, T.G.; Kang, J.H.; Ko, Y.T.; Lee, T.I.; Shim, M.S. Piezoelectric Au-decorated ZnO nanorods: Ultrasound-triggered generation of ROS for piezocatalytic cancer therapy. Chem. Eng. J. 2022, 435, 135039. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, M.; Frömling, T.; Vaish, R. Antibacterial ferroelectric materials: Advancements and future directions. J. Ind. Eng. Chem. 2021, 97, 95–110. [Google Scholar] [CrossRef]
- Dharmaraja, A.T. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J. Med. Chem. 2017, 60, 3221–3240. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Zhang, J.; Yu, Y.; Zhang, C.; Jiang, Y.; Yang, D.; Liu, M.; Wang, L.; Du, F.; Sui, N.; et al. Piezoelectric Activatable Nanozyme-Based Skin Patch for Rapid Wound Disinfection. ACS Appl. Mater. Interfaces 2022, 14, 26455–26468. [Google Scholar] [CrossRef]
- Van Acker, H.; Coenye, T. The Role of Reactive Oxygen Species in Antibiotic-Mediated Killing of Bacteria. Trends Microbiol. 2017, 25, 456–466. [Google Scholar] [CrossRef]
- Vatlin, I.S.; Chernozem, R.V.; Timin, A.S.; Chernova, A.P.; Plotnikov, E.V.; Mukhortova, Y.R.; Surmeneva, M.A.; Surmenev, R.A. Bacteriostatic Effect of Piezoelectric Poly-3-Hydroxybutyrate and Polyvinylidene Fluoride Polymer Films under Ultrasound Treatment. Polymers 2020, 12, 240. [Google Scholar] [CrossRef]
- Liu, D.; Li, L.; Shi, B.L.; Shi, B.; Li, M.D.; Qiu, Y.; Zhao, D.; Shen, Q.D.; Zhu, Z.Z. Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing. Bioact. Mater. 2023, 24, 96–111. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Zheng, Y.; Cui, Z.; Jiang, H.; Li, Z.; Zhu, S.; Wu, S. Achieving Fast Charge Separation by Ferroelectric Ultrasonic Interfacial Engineering for Rapid Sonotherapy of Bacteria-Infected Osteomyelitis. Adv. Mater. 2023, 35, 2210296. [Google Scholar] [CrossRef]
- Zhu, Z.; Gou, X.; Liu, L.; Xia, T.; Wang, J.; Zhang, Y.; Huang, C.; Zhi, W.; Wang, R.; Li, X.; et al. Dynamically evolving piezoelectric nanocomposites for antibacterial and repair-promoting applications in infected wound healing. Acta Biomater. 2023, 157, 566–577. [Google Scholar] [CrossRef]
- Li, B.; Yang, C.; Guo, M.; Wang, S.; Peng, W.; Guo, Q.; Ming, D.; Teng, Y.; Zheng, B. Ultrasound-Remote Selected Activation Mitophagy for Precise Treatment of Rheumatoid Arthritis by Two-Dimensional Piezoelectric Nanosheets. ACS Nano 2023, 17, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Gazvoda, L.; Perisic Nanut, M.; Spreitzer, M.; Vukomanovic, M. Antimicrobial activity of piezoelectric polymer: Piezoelectricity as the reason for damaging bacterial membrane. Biomater. Sci. 2022, 10, 4933–4948. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, Y.; Zhao, Y.; Ye, M.; Zhang, S.; Gong, S. Ultrasound-activable piezoelectric membranes for accelerating wound healing. Biomater. Sci. 2022, 10, 692–701. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Z.; Liu, Z.; Zhang, J.; Zhang, Y.; Ding, Y.; Huang, T.; Xiang, D.; Wang, Z.; Dai, Y.; et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 2021, 37, 101104. [Google Scholar] [CrossRef]
- Güthner, P.; Dransfeld, K. Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 1992, 61, 1137–1139. [Google Scholar] [CrossRef]
- Uršič, H.; Prah, U. Investigations of ferroelectric polycrystalline bulks and thick films using piezoresponse force microscopy. Proc. R. Soc. A Math. Phys. Eng. Sci. 2019, 475, 20180782. [Google Scholar] [CrossRef] [PubMed]
- Calahorra, Y.; Kim, W.; Vukajlovic-Plestina, J.; Fontcuberta, I.M.A.; Kar-Narayan, S. Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation. Nanotechnology 2020, 31, 404003. [Google Scholar] [CrossRef] [PubMed]
- ter Haar, G.; Shaw, A.; Pye, S.; Ward, B.; Bottomley, F.; Nolan, R.; Coady, A.M. Guidance on reporting ultrasound exposure conditions for bio-effects studies. Ultrasound Med. Biol. 2011, 37, 177–183. [Google Scholar] [CrossRef]
- Preston, R.C. Output Measurements for Medical Ultrasound; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Morchi, L.; Mariani, A.; Diodato, A.; Tognarelli, S.; Cafarelli, A.; Menciassi, A. Acoustic Coupling Quantification in Ultrasound-Guided Focused Ultrasound Surgery: Simulation-Based Evaluation and Experimental Feasibility Study. Ultrasound Med. Biol. 2020, 46, 3305–3316. [Google Scholar] [CrossRef]
- Rouabhia, M.; Park, H.; Meng, S.; Derbali, H.; Zhang, Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS ONE 2013, 8, e71660. [Google Scholar] [CrossRef]
Classification | Materials | Piezoelectric Charge Constant, dj (pC/N) | |
---|---|---|---|
Bulk | Nanofiber | ||
Ceramic materials | PbNb2O6 | d33 = 57 | - |
PbTiO3 | d33 = 97 | - | |
BaTiO3 | d33 = 95 | - | |
PBLN | d33 = 350 | - | |
Li2B4O7 | d33 = 8.76 | - | |
PZT | d33 = 223 | - | |
ZNO | d33 = 12.3 | - | |
Polymer materials | PVDF | d31 = 23, d33 = 15 | d33 = 57.6 |
PLLA | d14 = 6.0 | d33 = 3±1 | |
PHBV | d33 = 0.43 | d33 = 0.7 ± 0.5 | |
PAN | d31 = 0.6 | d33 = 39, 1.5 | |
Nylon-11 | d33 = 6.5, d31 = 14 | - | |
Collagen | d14 = 12, d33 = 2 | d15 = 1 | |
Cellulose | d25 = 2.1 | d33 = 31 | |
Chitin | d33 = 9.49 | - | |
Chitosan | d31 = 10, d33 = 4.4 | - |
Materials | Particle Diameter | Piezoelectric Coefficients | Ultrasound Features In Vitro | Cell Type | Cell Outcome | Ultrasound Features In Vivo | In Vivo | Vivo Outcome | Ref. |
---|---|---|---|---|---|---|---|---|---|
BTNP–pDA–BNN6 | 261.15 ± 5.14 nm | / | / | / | / | 1.5 MHz, 462.4 W/cm2, 10% duty cycle | Male C57BL/6 mice | Opening BBB, opening voltage-gated ion channel, releasing neurotransmitter to synapse | [16] |
BT NPs with gum arabic coating | 479.0 ± 145.3 nm | / | 1 MHz, 0.8 W/cm2, 5 s | SH-SY5Y | Activating voltage-gated Ca2+ and Na+ channels | / | / | / | [34] |
BN nanotubes with glycol chitosan coating | length 200–600 nm, diameter 50 nm | / | 40 kHz, 20 W, 5 s per time | PC-12 SH-SY5Y | Increasing neurite elongation | / | / | / | [39] |
BTNPs with gum arabic coating | 116.8 ± 46.5 nm | / | 1 MHz, 1 W/cm2, 3 min | Primary rat cortical and hippocampal neurons | Increasing the neural network activity | / | / | / | [40] |
BTNPs with DSPE-PEG5000 coating | 30 μm | / | 500 kHz, 2 kPa, 10 s | Primary rat cortex neurons | Increasing Ca2+ concentration and neuron network response | / | / | / | [41] |
BTNPs with carbon shell | 66 ± 10 nm | / | 1 MHz, 0.64 W/cm2, 5 min, for 7 days | PC-12 | Increase Ca2+ influx; upregulate synaptophysin and tyrosine hydroxylase | 3 times (10 min each) per day for 1 week | PD zebrafish model zebrafish | Distinctly improvement after the treatment | [42] |
BTNPs with gum arabic coating | 0.8 μm | / | 1 MHz, 1 W/cm2 | PC-12 | Activating voltage-dependent Ca2+ channels and adenylyl cyclase pathway | / | / | / | [43] |
BTNPs | / | / | / | / | / | 3 MHz at 2.75 W/cm2 for 5 min | Adult male beagles | Reducing the ventricular rate by stimulating the inferior right ganglionated plexus | [44] |
BTNPs in (P(VDF-TrFE)) | 212 nm | d31 = 53.5 pm/V g31 = 0.24 mV/N | 1 MHz, 1 W/cm2, 5s | SH-SY5Y | Enhance Ca2+ transients and neurite lengths | / | / | / | [45] |
Polyvinylidene fluoride PVDF films | 20 μm | d33 = −30 ± 2 pC/N | 132 kHz, 80 W, 10 min, 5 times a day | PC-12 | Promote the cell differentiation | / | / | / | [46] |
FeOOH/PVDF | / | d33 = 27.2 pC/N | 400 W, 8 min, twice a day | rbMSCs | Promote rbMSCs into neuron-like cells | / | / | / | [47] |
PLLA | 500–700 nm | / | 300 W, 0.5 V | NSCs | Maintain the stemness of NSCs during proliferation | / | / | / | [48] |
BiOCl | Width: 0.8–2.5 μm, thickness: 200–470 nm | / | / | / | / | 49 W | 5xFAD mouse model of AD | Decreased the density of amyloid plaques | [49] |
Materials | Particle Diameter | Piezoelectric Coefficients | Ultrasound Features In Vitro | Cell Type | Cell Outcome | Ultrasound Features In Vivo | In Vivo | Vivo Outcome | Ref. |
---|---|---|---|---|---|---|---|---|---|
Boron nitride nanotubes | / | / | 5 s, 20 W, 40 kHz | NHDF, C2C12 | Promote skeletal muscle differentiation | / | / | / | [55] |
Boron nitride nanotube | / | / | / | C2C12 | Promote skeletal muscle differentiation | / | / | / | [56] |
BTNPs | 273.3 ± 10.7 nm | d33 = 88 pm/V | 5 min, 1 MHz; 250 mW/cm2; 1 kHz, 20% duty cycle | C2C13 | Promote skeletal muscle differentiation | / | / | / | [57] |
BNNTs | 40–70 nm, lengths <500 nm, thickness 10 nm | 40 kHz, 5 s, 20 W | Primary human osteoblasts | Stimulating bone ECM formation by upregulation of TGF-β | / | / | / | [58] | |
Piezoelectric nylon-11 nanoparticles | 50 nm | / | DPSCs | Promote the osteogenic differentiation of DPSCs | / | / | / | [59] | |
Poly (L-lactic acid) (PLLA) | / | / | 40 kHz, 20 min each day and performed for 10 days. | adipose derived stem cells | Piezoelectric charge on enhanced osteogenesis | 30 min per day, 5 days per week, 4 weeks in total, 40 kHz, | Mice | Repair of bone defects | [60] |
PLLA/BT/graphene scaffold | 400 μm | 0.8 W/cm2, 40 KHz, 100% duty cycle, 100 Hz | hUC-MSCs | Cell proliferation and differentiation | / | / | / | [61] | |
P(VDF-TrFE)/BNNT | 10 nm | d31 = 11 ± 4 pm/V, g31 = 0.155 ± 0.056 Vm/N, e31 = 7.59 ± 3.52 mC/m2 | Twice a day for 10 s, 1 W/cm2, 100 Hz, 100% duty cycle | SaOS-2 osteosarcoma cells | Osteogenic differentiation | / | / | / | [62] |
PVDF/p-BT | / | / | Three times a day for 10 s, 0.8 W/cm2, 100 Hz | MG-63 cells | Cell adhesion, proliferation, and differentiation | / | / | / | [63] |
PVDF piezoelectric membrane | / | / | 40 kHz, 20 min a day | D1 cells | Better proliferation and mineralization | / | / | / | [64] |
BT/TC4 materials | 1.6 μm | d33 = 0.42 pC/N | 1 min, 1 MHz, with a repetition rate of 100 Hz and 30 mW/cm2, daily exposure 20 min | MC3T3-E1 cells | Greatest osteogenesis | / | / | / | [65] |
BaTiO3-coating titanium scaffold | Thickness 50 μm | / | 1.5 MHz, 30 mW/cm2, 1 kHz, 20% duty cycle, 20 min per day | BMSCs | Better viability and adhesion, increasing the expression of osteo-genesis-related genes BMP-2 | / | / | / | [66] |
BaTiO3-coating porous Ti6Al4V | d33 = 0.7 pC/N | 1.5 MHz, 200 μs, 1 kHz, 30 mW/cm2, 10 min daily | BMSCs | Promote the osteogenic differentiation | 1.5 MHz, 200 μs, 1 kHz, 30 mW/cm2, 10 min daily | Sheep | Bone formation and growth into implants in vivo | [67] | |
BaTiO3/Ti6Al4V (BT/Ti) scaffold | / | / | / | / | / | 10 min, at 3, 5, 7 and 14 days, 1.5 MHz, 0.2 ms, 30 mW/cm2 | SD rats | Decreased the ratio of M1 macrophages | [68] |
AT-cut quartz coverslip | / | / | (80 W, 132 kHz) for 10 min | Mesenchymal stem cells | Drove clustering facilitated chondrogenesis | / | / | / | [69] |
Materials | Particle Diameter | Piezoelectric Coefficients | Ultrasound Features In Vitro | Cell Type | Cell Outcome | Ultrasound Features In Vivo | In Vivo | Vivo Outcome | Ref. |
---|---|---|---|---|---|---|---|---|---|
DSPE-PEG2000 coated BaTiO3 nanoparticle | 6.83 ± 1.75 nm | / | 1 MHz, 1 W/cm2, 50% duty cycle, 5 min | 4T1 | ROS and O2 generation | 1 MHz, 1 W/cm2, 50% duty cycle, 10 min | 4T1 tumor-bearing mice | Downregulate HIF-1α, and ROS can kill tumor cells | [13] |
Few-layer black phosphorus (BP) nanosheet | Thickness 5.3 ± 3.7 nm average lateral 162.4 ± 99.4 nm | / | 0.14 W/cm2, 15 min | 4T1 | ROS generation | Once a day for the first 4 days, 1 MHz, 1.5 W/cm2, 10 min | 4T1 tumor-bearing mice | suppressed tumor growth and metastasis without causing off-target toxicity | [38] |
P(VDF-TrFE)/BaTiO3 nanoparticle composite films | ≈212 nm | / | 1 W/cm2 (100 Hz burst rate) | SH-SY5Y | Elicit Ca2+ transients | / | / | / | [45] |
Barium titanate nanoparticles (BTNPs) | 150 nm | / | 0.2–1 W/cm2, 0.5 Hz, 10% duty cycle | SK-BR-3 | Inhibit proliferation | / | / | / | [74] |
BTNPS with anti-TfR antibody (AbBTNPs) | 252 ± 11 nm | / | 1 W/cm2, 1 MHz, 200 ms, every 2 s, 1 h per day, for 4 days. | U87 | Reduce proliferation, increased sensitivity to the chemotherapy treatment | / | / | / | [75] |
Nutlin-3a-loaded ApoE- functionalized nanoparticles P(VDF-TrFE) | 115 ± 20 nm | / | Total 2 s, 200 ms each | 98G, U251, and U87 M | reduce cell migration, actin polymerization, and invasion ability, fostering apoptotic and necrotic events | / | / | / | [76] |
Barium titanate nanoparticles (BTNPs) | 100 ± 47 nm | / | 28 kHz, 2.25 W/cm2, 30 s | MDA-MB-231 | Inhibited cell growth and migration up | 28 kHz, 2.25 W/cm2, 1 min | MDA-MB-231 tumor model | Suppressing tumor growth | [77] |
P-BTO nanoparticles | 120.70 ± 41.48 nm | / | 1 MHz, 1.0 W/cm2, 1 min per day | HUVECs | Inhibits endothelial cell migration and angiogenesis | 1 MHz, 1.0 W/cm2, 10 min, every other day, 3 times in total | A375 tumor model | tumor vascular normalization and anti-tumor efficacy of doxorubicin | [78] |
ApoE-Nut- PNPs | 76 ± 16 nm | / | 1 MHz and 1 W/cm2, 200 ms each and activated every 2 s | hCMEC/D3 | Inhibition of angiogenic growth factors | / | / | / | [79] |
β-phase poly(vinylidene fluoride) (β-PVDF) film | 2 μm | d33 = 16.22 pC/N | 80 kHz, 12.5 μs | HP-1, HeLa, HepG2 | Enhanced the M1 polarization of macrophages and exerted cytocidal effects against tumor cells | / | / | [80] | |
tetragonal BaTiO3 (T-BTO) | 106.91 ± 49.72 nm | / | 1.0 MHz, 1.0 W/cm2, 50% duty cycle | 4T1 | Kill cancer cells | 3 h, 2, and 3 days, 10 min administration | 4T1 tumor model | Eradicate tumors | [81] |
NSH700 nanosheets | 130 nm | / | 0.8 MHz, 0.5 W/cm2, 50% duty cycle, 10 min | MCF 7 | ROS generation | 40 kHz; 3 W/cm2; 50% duty cycle; 5 min | MCF7 tumor model | ROS accumulation and anti-tumor effects | [82] |
Bi2MoO6 nanoribbons | 79.26 nm long, 19.95 nm wide, and 6.03 nm thick | / | 40 kHz; 3 W/cm2; 50% duty cycle, 5 min | HeLa | GSH depletion to amplify oxidative stress | 40 kHz; 3 W/cm2; 50% duty cycle; 5 min at 12, 24, and 48 h | U14 tumor model | Tumor growth suppression | [83] |
BTO/MoS2@CA (16:1) | / | / | / | / | / | 10 min per day, 3 days | CT26 tumor model | Trigger ferroptosis to cause Tumor elimination | [84] |
FX11@TPEG-WS2 | Lateral 100 nm, thickness 5 nm | / | 1 MHz, 0.5 W/cm2, 2 min | MCF-7 | Produce ROS, inhibition glycolysis, apoptosis | 1 MHz, 0.5 W/cm2, 3 min | MCF-7 tumor model | Tumor growth inhibition | [85] |
MD@C | 200 nm | / | / | / | / | 1.5 W/cm2, 3 min | U14 and PAN02 tumor model | increased the perfusion of blood-derived drugs and inhibit the growth of tumor | [86] |
CPT-t-R-PEG2000@BaTiO3 (CRB) | 256.6 ± 38.2 nm | / | 1.0 MHz, 1.5 W/cm2, 50% duty, 2 min | Panc02 | Release ROS, CPT, and NO | 1.0 MHz, 1.5 W/cm2, 50% duty, 5 min | PAN02 tumor models | enhanced penetration of CPT for tumor growth inhibition | [87] |
BiOCl@PAA | 150 nm | / | 1.0 W/cm2,1.0 MHz, 50% duty cycle, 1 min | 4T1 | Increase free radicals and H2O2 | 5 min, 1.0 MHz, 2.5 W/cm2, 50% duty cycle | 4T1 tumor model | Tumor eradicated | [88] |
Cu2−xO−BTO NCs | 162.3 ± 3.5 nm | / | 1.0 MHz, 1.0 W/cm2, 50% duty cycle, 3 min | 4T1 | Kill tumor cells | 1.0 MHz, 1.0 W/cm2, 5 min, 50% duty cycle | 4T1 tumor- model | SDT and CDT realized effective tumor suppression | [89] |
P(VDF-TrFE), graphene quantum dots (GQDs), and Silibinin (a hydrophobic drug) | 230 ± 20 nm | / | / | / | / | 0.1 MPa, 1.5 MHz, 1.007 kHz, 300 mW/cm2 | 4T1 tumor model | Suppressing tumor growth | [90] |
Materials | Particle Diameter | Piezoelectric Coefficients | Ultrasound Feature | Bacteria Type | In Vitro/Vivo | Outcome | Ref. |
---|---|---|---|---|---|---|---|
ZnO@GDY NR | 40 ± 6 nm | / | 1 W/cm2, 1 MHz and 100% duty cycle | Multidrug-resistant pathogens. Staphylococcus aureus. Pseudomonas aeruginosa | Rat model | Decomposition of hydrogen peroxide (H2O2) and production of reactive oxygen species, almost 100% antibacterial efficacy | [105] |
PLLA nanotextured films | r = 177 ± 28 nm and l = 27 ± 2 μm | / | 30 min, 80 kHz, 30% power | S. epidermidis and E. coli | In vitro | Confirmed piezoelectricity as the main reason for the observed antimicrobial affect | [107] |
barium titanate (BaTiO3, BT) nanoparticles embedded in the hydrogel | 117 ± 42 nm | / | 10 min (1.5 W/cm2, 1 MHz) | E. coli and S. aureus | Rat model | Eradicate bacteria and accelerate full-thickness skin wound healing | [108] |
BiFeO3/Ti3C2 | 500 nm | / | 1.0 MHz, 1.5 W/cm2, 50% duty cycle | Staphylococcus | Osteomyelitis in vitro | Enhancing the yield of reactive oxygen species under US and ultrasonic heating for killing bacteria | [109] |
BTO@ZIF-8/CIP NCs | 168 nm | / | 1.5 W/cm2, 1 MHz, 50% duty cycle, 1 min | S. aureus | Infected mice | pH-stimulated drug delivery and ultrasound-controlled sonodynamic offering a multifunctional therapy | [110] |
Two-dimensional piezoelectric nanosheets (NSs) Fe/BiOCl | Around 55 nm, 3 nm thickness | / | 1.0 MHz, 50% duty cycle, day 1 h, 2, 3, and 4, 3 min, 1.5 W/cm2 | / | RA model mice | Alleviated RA by inducing mitophagy | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Wang, Y.; Liang, X. Piezoelectric Nanomaterials Activated by Ultrasound in Disease Treatment. Pharmaceutics 2023, 15, 1338. https://doi.org/10.3390/pharmaceutics15051338
Yang S, Wang Y, Liang X. Piezoelectric Nanomaterials Activated by Ultrasound in Disease Treatment. Pharmaceutics. 2023; 15(5):1338. https://doi.org/10.3390/pharmaceutics15051338
Chicago/Turabian StyleYang, Shiyuan, Yuan Wang, and Xiaolong Liang. 2023. "Piezoelectric Nanomaterials Activated by Ultrasound in Disease Treatment" Pharmaceutics 15, no. 5: 1338. https://doi.org/10.3390/pharmaceutics15051338