Nanostructured Lipid Carrier Co-Loaded with Docetaxel and Magnetic Nanoparticles: Physicochemical Characterization and In Vitro Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Iron Oxide Nanoparticles (IONP)
2.3. Preparation of Magnetic Nanostructured Lipid Carrier (MNLC)
2.4. Physicochemical Characterisation
2.4.1. Morphology and Particle Size Analysis
2.4.2. Entrapment Efficiency and Drug Loading
2.4.3. Iron Content Analysis
2.4.4. Thermal Analysis
2.4.5. Crystallinity Study of Dtx-MNLC
2.4.6. Fourier Transform Infrared (FTIR) Spectroscopy
2.5. In Vitro Drug Release Study via Dialysis
2.6. In Vitro Cytotoxicity Assessment
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterisation of Dtx-MNLC
3.1.1. Morphology and Particle Size
3.1.2. Iron Content and Entrapment Efficiency
3.1.3. Thermal Analysis
3.1.4. Crystallinity Studies
3.1.5. FTIR Spectroscopy
3.2. In Vitro Drug Release
3.3. In Vitro Cytotoxicity Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A549 | Human lung adenocarcinoma cells |
ATR-FTIR | Attenuated total reflectance- Fourier transform infrared |
CFDtx | Commercial formulation of docetaxel |
CT scan | Computed tomography scan |
DDS | Drug delivery system |
DSC | Differential Scanning Calorimetry |
Dtx | Docetaxel |
Dtx-MNLC | Docetaxel-loaded magnetic nanostructured lipid carrier |
HCl | Hydrochloric acid |
HR-TEM | High-resolution transmission electron microscope |
ICP-OES | Inductively coupled plasma-optical emission spectrometry |
IONP | Iron oxide nanoparticle |
MCT | Medium chain triglyceride |
MRC-5 | Human lung fibroblast cells |
MRI | Magnetic resonance imaging |
NLC | Nanostructured lipid carrier |
OA-IONP | Oleic acid-coated iron oxide nanoparticle |
ODE | 1-octadecene |
PdI | Polydispersity index |
P-gp | P-glycoprotein |
P-MCT | Mixture of precirol and medium chain triglyceride |
P-MCT-Dtx | Ternary mixture of precirol, medium chain triglyceride and docetaxel |
PXRD | Powder X-ray diffraction |
siRNA | Small inhibitory RNA |
SLF | Simulated lung fluid |
SLN | Solid lipid nanoparticle |
TPGS | D-a-tocopheryl polyethylene glycol succinate |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Montero, A.; Fossella, F.; Hortobagyi, G.; Valero, V. Docetaxel for Treatment of Solid Tumours: A Systematic Review of Clinical Data. Lancet Oncol. 2005, 6, 229–239. [Google Scholar] [CrossRef]
- Ho, M.Y.; Mackey, J.R. Presentation and Management of Docetaxel-Related Adverse Effects in Patients with Breast Cancer. Cancer Manag. Res. 2014, 6, 253–259. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Kumar, N.S.; Vekariya, R.L. A Brief Review on Solid Lipid Nanoparticles: Part and Parcel of Contemporary Drug Delivery Systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef]
- Joshi, M.D.; Müller, R.H. Lipid Nanoparticles for Parenteral Delivery of Actives. Eur. J. Pharm. Biopharm. 2009, 71, 161–172. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations. Adv. Drug Deliv. Rev. 2002, 54 (Suppl. S1), S131–S155. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured Lipid Matrices for Improved Microencapsulation of Drugs. Int. J. Pharm. 2002, 242, 121–128. [Google Scholar] [CrossRef]
- de Oliveira, I.F.; Barbosa, E.J.; Peters, M.C.C.; Henostroza, M.A.B.; Yukuyama, M.N.; dos Neto, E.S.; Löbenberg, R.; Bou-Chacra, N. Cutting-Edge Advances in Therapy for the Posterior Segment of the Eye: Solid Lipid Nanoparticles and Nanostructured Lipid Carriers. Int. J. Pharm. 2020, 589, 119831. [Google Scholar] [CrossRef]
- Dolatabadi, S.; Karimi, M.; Nasirizadeh, S.; Hatamipour, M.; Golmohammadzadeh, S.; Jaafari, M.R. Preparation, Characterization and in vivo Pharmacokinetic Evaluation of Curcuminoids-Loaded Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs). J. Drug Deliv. Sci. Technol. 2021, 62, 102352. [Google Scholar] [CrossRef]
- Charron, D.M.; Chen, J.; Zheng, G. Theranostic Lipid Nanoparticles for Cancer Medicine. In Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer; Mirkin, C.A., Meade, T.J., Petrosko, S.H., Stegh, A.H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 103–127. ISBN 978-3-319-16555-4. [Google Scholar]
- Margalik, D.A.; Chen, J.; Ho, T.; Ding, L.; Dhaliwal, A.; Doria, A.S.; Zheng, G. Prolonged Circulating Lipid Nanoparticles Enabled by High-Density Gd-DTPA-Bis(Stearylamide) for Long-Lasting Enhanced Tumor Magnetic Resonance Imaging. Bioconjug. Chem. 2022, 33, 2213–2222. [Google Scholar] [CrossRef] [PubMed]
- Naziris, N.; Demetzos, C. Lipid Nanoparticles as Platforms for Theranostic Purposes: Recent Advances in the Field. J. Nanotheranostics 2022, 3, 86–101. [Google Scholar] [CrossRef]
- Bae, K.H.; Lee, J.Y.; Lee, S.H.; Park, T.G.; Nam, Y.S. Optically Traceable Solid Lipid Nanoparticles Loaded with SiRNA and Paclitaxel for Synergistic Chemotherapy with in situ Imaging. Adv Healthc. Mater. 2013, 2, 576–584. [Google Scholar] [CrossRef]
- Olerile, L.D.; Liu, Y.; Zhang, B.; Wang, T.; Mu, S.; Zhang, J.; Selotlegeng, L.; Zhang, N. Near-Infrared Mediated Quantum Dots and Paclitaxel Co-Loaded Nanostructured Lipid Carriers for Cancer Theragnostic. Colloids Surf. B Biointerfaces 2017, 150, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Ji, J.; Zhu, X.; Tang, P.; Zhang, Q.; Zhang, N.; Wang, Z.; Wang, X.-J.; Chen, W.; Hu, J.; et al. T2-Weighted Magnetic Resonance Imaging of Hepatic Tumor Guided by SPIO-Loaded Nanostructured Lipid Carriers and Ferritin Reporter Genes. ACS Appl. Mater. Interfaces 2017, 9, 35548–35561. [Google Scholar] [CrossRef]
- Zhu, X.; Deng, X.; Lu, C.; Chen, Y.; Jie, L.; Zhang, Q.; Li, W.; Wang, Z.; Du, Y.; Yu, R. SPIO-Loaded Nanostructured Lipid Carriers as Liver-Targeted Molecular T2-Weighted MRI Contrast Agent. Quant. Imaging Med. Surg. 2018, 8, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Oumzil, K.; Ramin, M.A.; Lorenzato, C.; Hémadou, A.; Laroche, J.; Jacobin-Valat, M.J.; Mornet, S.; Roy, C.-E.; Kauss, T.; Gaudin, K.; et al. Solid Lipid Nanoparticles for Image-Guided Therapy of Atherosclerosis. Bioconjug. Chem. 2016, 27, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron Oxide Nanoparticles: Diagnostic, Therapeutic and Theranostic Applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. [Google Scholar] [CrossRef]
- Yu, W.W.; Falkner, J.C.; Yavuz, C.T.; Colvin, V.L. Synthesis of Monodisperse Iron Oxide Nanocrystals by Thermal Decomposition of Iron Carboxylate Salts. Chem. Commun. 2004, 20, 2306–2307. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J.M.; Murray, C.B. A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals. J. Am. Chem. Soc. 2011, 133, 998–1006. [Google Scholar] [CrossRef]
- Naguib, Y.W.; Rodriguez, B.L.; Li, X.; Hursting, S.D.; Williams, R.O.; Cui, Z. Solid Lipid Nanoparticle Formulations of Docetaxel Prepared with High Melting Point Triglycerides: In Vitro and in Vivo Evaluation. Mol. Pharm. 2014, 11, 1239–1249. [Google Scholar] [CrossRef]
- Costo, R.; Heinke, D.; Grüttner, C.; Westphal, F.; Morales, M.P.; Veintemillas-Verdaguer, S.; Gehrke, N. Improving the Reliability of the Iron Concentration Quantification for Iron Oxide Nanoparticle Suspensions: A Two-Institutions Study. Anal. Bioanal. Chem. 2019, 411, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Tang, B.; Chao, Y.; Zhang, Y.; Xu, H.; Tang, X. Improved Oral Bioavailability of Docetaxel by Nanostructured Lipid Carriers: In vitro Characteristics, in vivo Evaluation and Intestinal Transport Studies. RSC Adv. 2015, 5, 96437–96447. [Google Scholar] [CrossRef]
- Abdel-Mottaleb, M.; Lamprecht, A. Standardized in Vitro Drug Release Test for Colloidal Drug Carriers Using Modified USP Dissolution Apparatus I. Drug Dev. Ind. Pharm. 2011, 37, 178–184. [Google Scholar] [CrossRef]
- Osanlou, R.; Emtyazjoo, M.; Banaei, A.; Hesarinejad, M.A.; Ashrafi, F. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers Containing Zeaxanthin and Evaluation of Physicochemical Properties. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128588. [Google Scholar] [CrossRef]
- Shu, X.; Zhang, L.; Liao, W.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Nanostructured Lipid Carriers (NLCs) Stabilized by Natural or Synthetic Emulsifiers for Lutein Delivery: Improved Physicochemical Stability, Antioxidant Activity, and Bioaccessibility. Food Chem. 2023, 403, 134465. [Google Scholar] [CrossRef]
- Esposito, E.; Sguizzato, M.; Drechsler, M.; Mariani, P.; Carducci, F.; Nastruzzi, C.; Valacchi, G.; Cortesi, R. Lipid Nanostructures for Antioxidant Delivery: A Comparative Preformulation Study. Beilstein J. Nanotechnol. 2019, 10, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Kang, T.H.; Kim, B.D.; Lee, T.H.; Yoon, H.Y.; Goo, Y.T.; Choi, Y.S.; Kang, M.J.; Choi, Y.W. Enhanced Docetaxel Delivery Using Sterically Stabilized RIPL Peptide-Conjugated Nanostructured Lipid Carriers: In vitro and in vivo Antitumor Efficacy against SKOV3 Ovarian Cancer Cells. Int. J. Pharm. 2020, 583, 119393. [Google Scholar] [CrossRef]
- Tapeinos, C.; Marino, A.; Battaglini, M.; Migliorin, S.; Brescia, R.; Scarpellini, A.; De Fernández, C.J.; Prato, M.; Drago, F.; Ciofani, G. Stimuli-Responsive Lipid-Based Magnetic Nanovectors Increase Apoptosis in Glioblastoma Cells through Synergic Intracellular Hyperthermia and Chemotherapy. Nanoscale 2019, 11, 72–88. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Oliveira, R.R.; Carrião, M.S.; Pacheco, M.T.; Branquinho, L.C.; de Souza, A.L.R.; Bakuzis, A.F.; Lima, E.M. Triggered Release of Paclitaxel from Magnetic Solid Lipid Nanoparticles by Magnetic Hyperthermia. Mater. Sci. Eng. C 2018, 92, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Hamdani, J.; Moës, A.J.; Amighi, K. Physical and Thermal Characterisation of Precirol® and Compritol® as Lipophilic Glycerides Used for the Preparation of Controlled-Release Matrix Pellets. Int. J. Pharm. 2003, 260, 47–57. [Google Scholar] [CrossRef]
- Severino, P.; Pinho, S.C.; Souto, E.B.; Santana, M.H.A. Polymorphism, Crystallinity and Hydrophilic–Lipophilic Balance of Stearic Acid and Stearic Acid–Capric/Caprylic Triglyceride Matrices for Production of Stable Nanoparticles. Colloids Surf. B Biointerfaces 2011, 86, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Negi, L.M.; Jaggi, M.; Talegaonkar, S. Development of Protocol for Screening the Formulation Components and the Assessment of Common Quality Problems of Nano-Structured Lipid Carriers. Int. J. Pharm. 2014, 461, 403–410. [Google Scholar] [CrossRef]
- Becker, K.; Salar-Behzadi, S.; Zimmer, A. Solvent-Free Melting Techniques for the Preparation of Lipid-Based Solid Oral Formulations. Pharm. Res. 2015, 32, 1519–1545. [Google Scholar] [CrossRef]
- Teeranachaideekul, V.; Boonme, P.; Souto, E.B.; Müller, R.H.; Junyaprasert, V.B. Influence of Oil Content on Physicochemical Properties and Skin Distribution of Nile Red-Loaded NLC. J. Control. Release 2008, 128, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, A.; Savic, S.; Vuleta, G.; Müller, R.H.; Keck, C.M. Polyhydroxy Surfactants for the Formulation of Lipid Nanoparticles (SLN and NLC): Effects on Size, Physical Stability and Particle Matrix Structure. Int. J. Pharm. 2011, 406, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Umeyor, C.E.; Okoye, I.; Uronnachi, E.; Okeke, T.; Kenechukwu, F.; Attama, A. Repositioning Miconazole Nitrate for Malaria: Formulation of Sustained Release Nanostructured Lipid Carriers, Structure Characterization and in vivo Antimalarial Evaluation. J. Drug Deliv. Sci. Technol. 2020, 61, 102125. [Google Scholar] [CrossRef]
- Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: A Review Emphasizing on Particle Structure and Drug Release. Eur. J. Pharm. Biopharm. 2018, 133, 285–308. [Google Scholar] [CrossRef]
- Tetyczka, C.; Hodzic, A.; Kriechbaum, M.; Juraić, K.; Spirk, C.; Hartl, S.; Pritz, E.; Leitinger, G.; Roblegg, E. Comprehensive Characterization of Nanostructured Lipid Carriers Using Laboratory and Synchrotron X-ray Scattering and Diffraction. Eur. J. Pharm. Biopharm. 2019, 139, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Asmawi, A.A. Development and Characterization of Docetaxel and Curcumin Loaded Aerosolized Nanoemulsion for Pulmonary Cancer; Universiti Putra Malaysia: Serdang, Malaysia, 2020. [Google Scholar]
- Lu, Y.; Yue, Z.; Xie, J.; Wang, W.; Zhu, H.; Zhang, E.; Cao, Z. Micelles with Ultralow Critical Micelle Concentration as Carriers for Drug Delivery. Nat. Biomed. Eng. 2018, 2, 318–325. [Google Scholar] [CrossRef]
- Almousallam, M.; Moia, C.; Zhu, H. Development of Nanostructured Lipid Carrier for Dacarbazine Delivery. Int. Nano Lett. 2015, 5, 241–248. [Google Scholar] [CrossRef]
- Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of Nanoparticle Cellular Uptake, Intracellular Trafficking, and Kinetics in Nanomedicine. Adv. Drug Deliv. Rev. 2019, 143, 68–96. [Google Scholar] [CrossRef]
- Let’s Talk about Lipid Nanoparticles. Nat. Rev. Mater. 2021, 6, 99. [CrossRef]
- Schwartzberg, L.S.; Navari, R.M. Safety of Polysorbate 80 in the Oncology Setting. Adv. Ther. 2018, 35, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Luo, J.; Tan, S.; Otieno, B.O.; Zhang, Z. The Applications of Vitamin e TPGS in Drug Delivery. Eur. J. Pharm. Sci. 2013, 49, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wu, T.; Qi, Y.; Zhang, Z. Recent Advances in the Application of Vitamin E TPGS for Drug Delivery. Theranostics 2018, 8, 464–485. [Google Scholar] [CrossRef]
- Amin, M.L. P-Glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights 2013, 7, 27–34. [Google Scholar] [CrossRef]
- Rathod, S.; Bahadur, P.; Tiwari, S. Nanocarriers Based on Vitamin E-TPGS: Design Principle and Molecular Insights into Improving the Efficacy of Anticancer Drugs. Int. J. Pharm. 2021, 592, 120045. [Google Scholar] [CrossRef]
Formulation | Correlation Coefficient of Model (R2) | ||||
---|---|---|---|---|---|
Zero-Order | First-Order | Higuchi | Hixson–Crowell | Korsmeyer–Peppas | |
Dtx-MNLC | 0.8495 | 0.9676 | 0.9625 | 0.9383 | 0.9436 |
Sample | IC50 (nM) | |||
---|---|---|---|---|
24 h | 48 h | |||
MRC5 | A549 | MRC5 | A549 | |
CFDtx | 1877 | 551 | 527 | 251 |
Dtx-MNLC | 3718 | 855 | 1999 | 178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idris, A.H.; Che Abdullah, C.A.; Yusof, N.A.; Asmawi, A.A.; Abdul Rahman, M.B. Nanostructured Lipid Carrier Co-Loaded with Docetaxel and Magnetic Nanoparticles: Physicochemical Characterization and In Vitro Evaluation. Pharmaceutics 2023, 15, 1319. https://doi.org/10.3390/pharmaceutics15051319
Idris AH, Che Abdullah CA, Yusof NA, Asmawi AA, Abdul Rahman MB. Nanostructured Lipid Carrier Co-Loaded with Docetaxel and Magnetic Nanoparticles: Physicochemical Characterization and In Vitro Evaluation. Pharmaceutics. 2023; 15(5):1319. https://doi.org/10.3390/pharmaceutics15051319
Chicago/Turabian StyleIdris, Auni Hamimi, Che Azurahanim Che Abdullah, Nor Azah Yusof, Azren Aida Asmawi, and Mohd Basyaruddin Abdul Rahman. 2023. "Nanostructured Lipid Carrier Co-Loaded with Docetaxel and Magnetic Nanoparticles: Physicochemical Characterization and In Vitro Evaluation" Pharmaceutics 15, no. 5: 1319. https://doi.org/10.3390/pharmaceutics15051319
APA StyleIdris, A. H., Che Abdullah, C. A., Yusof, N. A., Asmawi, A. A., & Abdul Rahman, M. B. (2023). Nanostructured Lipid Carrier Co-Loaded with Docetaxel and Magnetic Nanoparticles: Physicochemical Characterization and In Vitro Evaluation. Pharmaceutics, 15(5), 1319. https://doi.org/10.3390/pharmaceutics15051319