Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy
Abstract
1. Introduction
2. Current AONs in Development for DMD
2.1. FDA Approval Obtained
2.2. Phase II Clinical Trials
2.2.1. ATL1102
2.2.2. SCAAV9.U7.ACCA
2.2.3. SRP-5051
2.2.4. WVE-N531
2.2.5. NS-089/NCNP-02
2.2.6. DS-5141B
2.3. Preclinical/Phase I Clinical Trials
2.3.1. PGN-EDO51
2.3.2. ENTR-601-44
2.3.3. DYNE-251
2.3.4. AOC 1044
3. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, D.; Goemans, N.; Takeda, S.; Mercuri, E.; Aartsma-Rus, A. Duchenne Muscular Dystrophy. Nat. Rev. Dis. Primers 2021, 7, 13. [Google Scholar] [CrossRef]
- Blake, D.J.; Weir, A.; Newey, S.E.; Davies, K.E. Function and Genetics of Dystrophin and Dystrophin-Related Proteins in Muscle. Physiol. Rev. 2002, 82, 291–329. [Google Scholar] [CrossRef]
- Deisch, J.K. Muscle and Nerve Development in Health and Disease. In Swaiman’s Pediatric Neurology, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1029–1037. [Google Scholar] [CrossRef]
- Dumont, N.A.; Wang, Y.X.; von Maltzahn, J.; Pasut, A.; Bentzinger, C.F.; Brun, C.E.; Rudnicki, M.A. Dystrophin Expression in Muscle Stem Cells Regulates Their Polarity and Asymmetric Division. Nat. Med. 2015, 21, 1455. [Google Scholar] [CrossRef]
- Chamova, T.; Guergueltcheva, V.; Raycheva, M.; Todorov, T.; Genova, J.; Bichev, S.; Bojinova, V.; Mitev, V.; Tournev, I.; Todorova, A. Association between Loss of Dp140 and Cognitive Impairment in Duchenne and Becker Dystrophies. Balkan. J. Med. Genet. 2013, 16, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Kuniishi, H.; Sakai, K.; Fukushima, Y.; Du, X.; Yamashiro, K.; Hori, K.; Imamura, M.; Hoshino, M.; Yamada, M.; et al. Brain Dp140 Alters Glutamatergic Transmission and Social Behaviour in the Mdx52 Mouse Model of Duchenne Muscular Dystrophy. Prog. Neurobiol. 2022, 216, 102288. [Google Scholar] [CrossRef]
- Hoogland, G.; Hendriksen, R.G.F.; Slegers, R.J.; Hendriks, M.P.H.; Schijns, O.E.M.G.; Aalbers, M.W.; Vles, J.S.H. The Expression of the Distal Dystrophin Isoforms Dp140 and Dp71 in the Human Epileptic Hippocampus in Relation to Cognitive Functioning. Hippocampus 2019, 29, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Rodius, F.; Claudepierre, T.; Rosas-Vargas, H.; Cisneros, B.; Montanez, C.; Dreyfus, H.; Mornet, D.; Rendon, A. Dystrophins in Developing Retina: Dp260 Expression Correlates with Synaptic Maturation. Neuroreport 1997, 8, 2383–2387. [Google Scholar] [CrossRef]
- Gao, Q.Q.; McNally, E.M. The Dystrophin Complex: Structure, Function and Implications for Therapy. Compr. Physiol. 2015, 5, 1223. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, F.; Elshafey, A.; Al-balool, H.; Alaboud, H.; ben Ali, M.A.; Baqer, A.; Bastaki, L. Mutation Spectrum Analysis of Duchenne/Becker Muscular Dystrophy in 68 Families in Kuwait: The Era of Personalized Medicine. PLoS ONE 2018, 13, e0197205. [Google Scholar] [CrossRef] [PubMed]
- Neri, M.; Rossi, R.; Trabanelli, C.; Mauro, A.; Selvatici, R.; Falzarano, M.S.; Spedicato, N.; Margutti, A.; Rimessi, P.; Fortunato, F.; et al. The Genetic Landscape of Dystrophin Mutations in Italy: A Nationwide Study. Front. Genet. 2020, 11, 131. [Google Scholar] [CrossRef]
- Steri, M.; Idda, M.L.; Whalen, M.B.; Orrù, V. Genetic Variants in MRNA Untranslated Regions. Wiley Interdiscip. Rev. RNA 2018, 9, e1474. [Google Scholar] [CrossRef] [PubMed]
- Echigoya, Y.; Lim, K.R.Q.; Nakamura, A.; Yokota, T. Multiple Exon Skipping in the Duchenne Muscular Dystrophy Hot Spots: Prospects and Challenges. J. Pers. Med. 2018, 8, 41. [Google Scholar] [CrossRef]
- Crisafulli, S.; Sultana, J.; Fontana, A.; Salvo, F.; Messina, S.; Trifirò, G. Global Epidemiology of Duchenne Muscular Dystrophy: An Updated Systematic Review and Meta-Analysis. Orphanet. J. Rare Dis. 2020, 15, 8. [Google Scholar] [CrossRef]
- Kariyawasam, D.; D’Silva, A.; Mowat, D.; Russell, J.; Sampaio, H.; Jones, K.; Taylor, P.; Farrar, M. Incidence of Duchenne Muscular Dystrophy in the Modern Era; an Australian Study. Eur. J. Hum. Genet. 2022, 30, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Romitti, P.A.; Zhu, Y.; Puzhankara, S.; James, K.A.; Nabukera, S.K.; Zamba, G.K.D.; Ciafaloni, E.; Cunniff, C.; Druschel, C.M.; Mathews, K.D.; et al. Prevalence of Duchenne and Becker Muscular Dystrophies in the United States. Pediatrics 2015, 135, 513–521. [Google Scholar] [CrossRef]
- Chang, R.F.; Mubarak, S.J. Pathomechanics of Gowers’ Sign: A Video Analysis of a Spectrum of Gowers’ Maneuvers. Clin. Orthop. Relat. Res. 2012, 470, 1987. [Google Scholar] [CrossRef] [PubMed]
- Falzarano, M.S.; Scotton, C.; Passarelli, C.; Ferlini, A. Duchenne Muscular Dystrophy: From Diagnosis to Therapy. Molecules 2015, 20, 18168–18184. [Google Scholar] [CrossRef] [PubMed]
- Gardner-Medwin, D. Clinical Features and Classification of the Muscular Dystrophies. Br. Med. Bull. 1980, 36, 109–116. [Google Scholar] [CrossRef]
- Nowak, K.J.; Davies, K.E. Duchenne Muscular Dystrophy and Dystrophin: Pathogenesis and Opportunities for Treatment: Third in Molecular Medicine Review Series. EMBO Rep. 2004, 5, 872–876. [Google Scholar] [CrossRef]
- Broomfield, J.; Hill, M.; Guglieri, M.; Crowther, M.; Abrams, K. Life Expectancy in Duchenne Muscular Dystrophy. Neurology 2021, 97, e2304–e2314. [Google Scholar] [CrossRef] [PubMed]
- Gloss, D.; Moxley, R.T.; Ashwal, S.; Oskoui, M. Practice Guideline Update Summary: Corticosteroid Treatment of Duchenne Muscular Dystrophy—Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2016, 86, 465–472. [Google Scholar] [CrossRef]
- McDonald, C.M.; Henricson, E.K.; Abresch, R.T.; Duong, T.; Joyce, N.C.; Hu, F.; Clemens, P.R.; Hoffman, E.P.; Cnaan, A.; Gordish-Dressman, H.; et al. Long-Term Effects of Glucocorticoids on Function, Quality of Life, and Survival in Patients with Duchenne Muscular Dystrophy: A Prospective Cohort Study. Lancet 2018, 391, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Dias, N.; Stein, C.A. Antisense Oligonucleotides: Basic Concepts and Mechanisms. Mol. Cancer Ther. 2002, 5, 347–355. [Google Scholar]
- Aartsma-Rus, A.; van Ommen, G.J.B. Antisense-Mediated Exon Skipping: A Versatile Tool with Therapeutic and Research Applications. RNA 2007, 13, 1609. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.H.; Han, Z.; Jeon, H.Y.; Kach, J.; Jing, E.; Weyn-Vanhentenryck, S.; Downs, M.; Corrionero, A.; Oh, R.; Scharner, J.; et al. Antisense Oligonucleotide Modulation of Non-Productive Alternative Splicing Upregulates Gene Expression. Nat. Commun. 2020, 11, 351. [Google Scholar] [CrossRef] [PubMed]
- Khorkova, O.; Hsiao, J.; Wahlestedt, C. Oligonucleotides for Upregulating Gene Expression. Pharm. Pat. Anal. 2013, 2, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Marsollier, A.C.; Joubert, R.; Mariot, V.; Dumonceaux, J. Targeting the Polyadenylation Signal of Pre-MRNA: A New Gene Silencing Approach for Facioscapulohumeral Dystrophy. Int. J. Mol. Sci. 2018, 19, 1347. [Google Scholar] [CrossRef]
- Pauli, A.; Montague, T.G.; Lennox, K.A.; Behlke, M.A.; Schier, A.F. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. PLoS ONE 2015, 10, e0139504. [Google Scholar] [CrossRef]
- Liang, X.H.; Sun, H.; Nichols, J.G.; Crooke, S.T. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Mol. Ther. 2017, 25, 2075–2092. [Google Scholar] [CrossRef]
- Niks, E.H.; Aartsma-Rus, A. Exon Skipping: A First in Class Strategy for Duchenne Muscular Dystrophy. Expert Opin. Biol. Ther. 2017, 17, 225–236. [Google Scholar] [CrossRef]
- Havens, M.A.; Hastings, M.L. Splice-Switching Antisense Oligonucleotides as Therapeutic Drugs. Nucleic Acids Res. 2016, 44, 6549. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.; Jearawiriyapaisarn, N.; Kole, R. Therapeutic Potential of Splice-Switching Oligonucleotides. Oligonucleotides 2009, 19, 161. [Google Scholar] [CrossRef]
- Scharner, J.; Ma, W.K.; Zhang, Q.; Lin, K.T.; Rigo, F.; Frank Bennett, C.; Krainer, A.R. Hybridization-Mediated off-Target Effects of Splice-Switching Antisense Oligonucleotides. Nucleic Acids Res. 2020, 48, 802–816. [Google Scholar] [CrossRef]
- Kole, R.; Krieg, A.M. Exon Skipping Therapy for Duchenne Muscular Dystrophy. Adv. Drug Deliv. Rev. 2015, 87, 104–107. [Google Scholar] [CrossRef]
- Yokota, T.; Duddy, W.; Partridge, T. Optimizing Exon Skipping Therapies for DMD. Acta Myol. 2007, 26, 179–184. [Google Scholar]
- Shirley, M. Casimersen: First Approval. Drugs 2021, 81, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.R.Q.; Echigoya, Y.; Nagata, T.; Kuraoka, M.; Kobayashi, M.; Aoki, Y.; Partridge, T.; Maruyama, R.; Takeda, S.; Yokota, T. Efficacy of Multi-Exon Skipping Treatment in Duchenne Muscular Dystrophy Dog Model Neonates. Mol. Ther. 2019, 27, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; Faelan, C.; Patterson-Kane, J.C.; Rudmann, D.G.; Moore, S.A.; Frank, D.; Charleston, J.; Tinsley, J.; Young, G.D.; Milici, A.J. Duchenne and Becker Muscular Dystrophies: A Review of Animal Models, Clinical Endpoints, and Biomarker Quantification. Toxicol. Pathol. 2017, 45, 961. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.R.Q.; Maruyama, R.; Yokota, T. Eteplirsen in the Treatment of Duchenne Muscular Dystrophy. Drug Des. Devel. Ther. 2017, 11, 533–545. [Google Scholar] [CrossRef]
- Anwar, S.; Yokota, T. Golodirsen for Duchenne Muscular Dystrophy. Drugs Today 2020, 56, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Roshmi, R.R.; Yokota, T. Viltolarsen for the Treatment of Duchenne Muscular Dystrophy. Drugs Today 2019, 55, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Study to Assess the Efficacy and Safety of Viltolarsen in Ambulant Boys with DMD (RACER53)—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04060199?term=NCT04060199&draw=2&rank=1 (accessed on 21 December 2022).
- A Study to Compare Safety and Efficacy of a High Dose of Eteplirsen in Participants with Duchenne Muscular Dystrophy (DMD) (MIS51ON)—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03992430?cond=NCT03992430&draw=2&rank=1 (accessed on 21 December 2022).
- Study of SRP-4045 (Casimersen) and SRP-4053 (Golodirsen) in Participants with Duchenne Muscular Dystrophy (DMD)—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02500381 (accessed on 21 December 2022).
- Servais, L.; Mercuri, E.; Straub, V.; Guglieri, M.; Seferian, A.M.; Scoto, M.; Leone, D.; Koenig, E.; Khan, N.; Dugar, A.; et al. Long-Term Safety and Efficacy Data of Golodirsen in Ambulatory Patients with Duchenne Muscular Dystrophy Amenable to Exon 53 Skipping: A First-in-Human, Multicenter, Two-Part, Open-Label, Phase 1/2 Trial. Nucleic Acid Ther. 2022, 32, 29–39. [Google Scholar] [CrossRef] [PubMed]
- ANZCTR—Registration. Available online: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12618000970246 (accessed on 21 December 2022).
- Limmroth, V.; Barkhof, F.; Desem, N.; Diamond, M.P.; Tachas, G. CD49d Antisense Drug ATL1102 Reduces Disease Activity in Patients with Relapsing-Remitting MS. Neurology 2014, 83, 1780. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Mariz, F.; Rodrigues Carvalho, L.; Prufer De Queiroz Campos Araujo, A.; de Mello, W.; Gonçalves Ribeiro, M.; Cunha, M.D.C.S.A.; Cabello, P.H.; Riederer, I.; Negroni, E.; Desguerre, I.; et al. CD49d Is a Disease Progression Biomarker and a Potential Target for Immunotherapy in Duchenne Muscular Dystrophy. Skelet. Muscle 2015, 5, 45. [Google Scholar] [CrossRef]
- Woodcock, I.; Tachas, G.; Desem, N.; Houweling, P.; Yiu, E.; Kean, M.; Emmanuel, J.; Kennedy, R.; Carroll, K.; de Valle, K.; et al. A Phase 2 Open-Label Study to Determine the Safety and Efficacy of Weekly Dosing of ATL1102 in Patients with Non-Ambulatory Duchenne Muscular Dystrophy. medRxiv 2022. [Google Scholar] [CrossRef]
- Gushchina, L.V.; Frair, E.C.; Rohan, N.; Bradley, A.J.; Simmons, T.R.; Chavan, H.D.; Chou, H.J.; Eggers, M.; Waldrop, M.A.; Wein, N.; et al. Lack of Toxicity in Nonhuman Primates Receiving Clinically Relevant Doses of an AAV9.U7snRNA Vector Designed to Induce DMD Exon 2 Skipping. Hum. Gene Ther. 2021, 32, 882–894. [Google Scholar] [CrossRef]
- Wein, N.; Vetter, T.A.; Vulin, A.; Simmons, T.R.; Frair, E.C.; Bradley, A.J.; Gushchina, L.V.; Almeida, C.F.; Huang, N.; Lesman, D.; et al. Systemic Delivery of an AAV9 Exon-Skipping Vector Significantly Improves or Prevents Features of Duchenne Muscular Dystrophy in the Dup2 Mouse. Mol. Ther. Methods Clin. Dev. 2022, 26, 279. [Google Scholar] [CrossRef]
- Wein, N.; Dunn, D.M.; Waldrop, M.A.; Gushchina, L.V.; Frair, E.C.; Weiss, R.B.; Flanigan, K.M. Absence of Significant Off-Target Splicing Variation with a U7snRNA Vector Targeting DMD Exon 2 Duplications. Hum. Gene Ther. 2021, 32, 1346–1359. [Google Scholar] [CrossRef]
- Wein, N.; Vulin, A.; Falzarano, M.S.; Szigyarto, C.A.K.; Maiti, B.; Findlay, A.; Heller, K.N.; Uhlén, M.; Bakthavachalu, B.; Messina, S.; et al. Translation from a DMD Exon 5 IRES Results in a Functional Dystrophin Isoform That Attenuates Dystrophinopathy in Humans and Mice. Nat. Med. 2014, 20, 992–1000. [Google Scholar] [CrossRef]
- AAV9 U7snRNA Gene Therapy to Treat Boys with DMD Exon 2 Duplications. Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04240314 (accessed on 8 December 2021).
- Philippidis, A. After Third Death, Audentes’ AT132 Remains on Clinical Hold. Hum. Gene Ther. 2020, 31, 908–910. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S. High-Dose AAV Gene Therapy Deaths. Nat. Biotechnol. 2020, 38, 910. [Google Scholar] [CrossRef]
- Pfizer Reports Patient Death in Early-Stage Duchenne Gene Therapy Trial, Halts Enrollment | FierceBiotech. Available online: https://www.fiercebiotech.com/biotech/pfizer-reports-death-patient-duchenne-trial-halts-enrolment (accessed on 26 December 2021).
- Shadid, M.; Badawi, M.; Abulrob, A. Antisense Oligonucleotides: Absorption, Distribution, Metabolism, and Excretion. Expert Opin. Drug Metab. Toxicol. 2021, 17, 1281–1292. [Google Scholar] [CrossRef]
- Moulton, H.M.; Moulton, J.D. Morpholinos and Their Peptide Conjugates: Therapeutic Promise and Challenge for Duchenne Muscular Dystrophy. Biochim. Biophys. Acta BBA Biomembr. 2010, 1798, 2296–2303. [Google Scholar] [CrossRef]
- Tsoumpra, M.K.; Fukumoto, S.; Matsumoto, T.; Takeda, S.; Wood, M.J.A.; Aoki, Y. Peptide-Conjugate Antisense Based Splice-Correction for Duchenne Muscular Dystrophy and Other Neuromuscular Diseases. EBioMedicine 2019, 45, 630. [Google Scholar] [CrossRef] [PubMed]
- Two-Part Study for Dose Determination of SRP-5051 (Vesleteplirsen) (Part A), Then Dose Expansion (Part B) in Participants With Duchenne Muscular Dystrophy Amenable to Exon 51-Skipping Treatment—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04004065?cond=NCT04004065&draw=2&rank=1 (accessed on 21 December 2022).
- Sarepta Therapeutics Provides Update on SRP-5051 for the Treatment of Duchenne Muscular Dystrophy | Sarepta Therapeutics, Inc. Available online: https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-provides-update-srp-5051-treatment-duchenne (accessed on 21 December 2022).
- Open-Label Study of WVE-N531 in Patients with Duchenne Muscular Dystrophy—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04906460?term=53&cond=DMD&draw=2 (accessed on 21 December 2022).
- Kandasamy, P.; McClorey, G.; Shimizu, M.; Kothari, N.; Alam, R.; Iwamoto, N.; Kumarasamy, J.; Bommineni, G.R.; Bezigian, A.; Chivatakarn, O.; et al. Control of Backbone Chemistry and Chirality Boost Oligonucleotide Splice Switching Activity. Nucleic Acids Res. 2022, 50, 5443–5466. [Google Scholar] [CrossRef]
- Kandasamy, P.; Liu, Y.; Aduda, V.; Akare, S.; Alam, R.; Andreucci, A.; Boulay, D.; Bowman, K.; Byrne, M.; Cannon, M.; et al. Impact of Guanidine-Containing Backbone Linkages on Stereopure Antisense Oligonucleotides in the CNS. Nucleic Acids Res. 2022, 50, 5401–5423. [Google Scholar] [CrossRef]
- Wave Life Sciences Provides Positive Update On. Available online: https://www.globenewswire.com/news-release/2022/12/19/2576214/0/en/Wave-Life-Sciences-Provides-Positive-Update-on-Proof-of-Concept-Study-for-WVE-N531-in-Duchenne-Muscular-Dystrophy.html (accessed on 21 December 2022).
- Exploratory Study of NS-089/NCNP-02 in DMD—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04129294 (accessed on 21 December 2022).
- Extension Study of NS-089/NCNP-02 in DMD—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05135663 (accessed on 21 December 2022).
- Study Shows the Efficacy of Antisense Oligonucleotide-Based Exon 44 Skipping Drug, NS-089/NCNP-02, for Patients with Duchenne Muscular Dystrophy (DMD)\National Center of Neurology and Psychiatry. Available online: https://www.ncnp.go.jp/topics/2022/20220317e.html (accessed on 21 December 2022).
- Takaishi, K.; Kakuta, M.; Ito, K.; Kanda, A.; Takakusa, H.; Miida, H.; Masuda, T.; Nakamura, A.; Onishi, Y.; Onoda, T.; et al. Stunning Pharmacological Properties of DS-5141b, an Antisense Oligonucleotide Consisting of 2’-O,4’-C-Ethylene-Bridged Nucleic Acids and 2’-O-Methyl RNA, on Dystrophin MRNA Exon Skipping. Neuromuscul. Disord. 2017, 27, S216. [Google Scholar] [CrossRef]
- Long-Term, Extension Study of DS-5141b in Patients with Duchenne Muscular Dystrophy—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04433234 (accessed on 21 December 2022).
- Daiichi Sankyo Announces the Results Summary of Phase 1/2 Clinical Trial in Japan for DS-5141—Press Releases—Media—Daiichi Sankyo. Available online: https://www.daiichisankyo.com/media/press_release/detail/index_4112.html (accessed on 21 December 2022).
- Study of DS-5141b in Patients with Duchenne Muscular Dystrophy—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02667483 (accessed on 21 December 2022).
- PepGen Reports Positive Data from Phase 1 Trial of PGN-EDO51 for the Treatment of Duchenne Muscular Dystrophy|PepGen. Available online: https://investors.pepgen.com/news-releases/news-release-details/pepgen-reports-positive-data-phase-1-trial-pgn-edo51-treatment (accessed on 21 December 2022).
- Entrada Therapeutics Announces Clinical Hold on IND Application for ENTR-601-44 in Duchenne Muscular Dystrophy | BioSpace. Available online: https://www.biospace.com/article/releases/entrada-therapeutics-announces-clinical-hold-on-ind-application-for-entr-601-44-in-duchenne-muscular-dystrophy/ (accessed on 21 December 2022).
- Qian, Z.; Martyna, A.; Hard, R.L.; Wang, J.; Appiah-Kubi, G.; Coss, C.; Phelps, M.A.; Rossman, J.S.; Pei, D. Discovery and Mechanism of Highly Efficient Cyclic Cell-Penetrating Peptides. Biochemistry 2016, 55, 2601–2612. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, P.G.; Sahni, A.; Pei, D. Understanding Cell Penetration of Cyclic Peptides. Chem Rev. 2019, 119, 10241–10287. [Google Scholar] [CrossRef] [PubMed]
- Sahni, A.; Qian, Z.; Pei, D. Cell-Penetrating Peptides Escape the Endosome by Inducing Vesicle Budding and Collapse. ACS Chem. Biol. 2020, 15, 2485–2492. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Larochelle, J.R.; Jiang, B.; Lian, W.; Hard, R.L.; Selner, N.G.; Luechapanichkul, R.; Barrios, A.M.; Pei, D. Early Endosomal Escape of a Cyclic Cell-Penetrating Peptide Allows Effective Cytosolic Cargo Delivery. Biochemistry 2014, 53, 4034–4046. [Google Scholar] [CrossRef]
- Desjardins, C.A.; Yao, M.; Hall, J.; O’donnell, E.; Venkatesan, R.; Spring, S.; Wen, A.; Hsia, N.; Shen, P.; Russo, R.; et al. NAR Breakthrough Article Enhanced Exon Skipping and Prolonged Dystrophin Restoration Achieved by TfR1-Targeted Delivery of Antisense Oligonucleotide Using FORCE Conjugation in Mdx Mice. Nucleic Acids Res. 2022, 50, 641. [Google Scholar] [CrossRef]
- Levin, A.A. Targeting Therapeutic Oligonucleotides. N. Engl. J. Med. 2017, 376, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Safety, Tolerability, Pharmacodynamic, Efficacy, and Pharmacokinetic Study of DYNE-251 in Participants with Duchenne Muscular Dystrophy Amenable to Exon 51 Skipping—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05524883 (accessed on 21 December 2022).
- Avidity Biosciences Announces Phase 1/2 EXPLORE44TM Trial of AOC 1044 for Duchenne Muscular Dystrophy Mutations Amenable to Exon 44 Skipping. Available online: https://www.prnewswire.com/news-releases/avidity-biosciences-announces-phase-12-explore44-trial-of-aoc-1044-for-duchenne-muscular-dystrophy-mutations-amenable-to-exon-44-skipping-301646531.html (accessed on 21 December 2022).
- Aoki, Y.; Yokota, T.; Nagata, T.; Nakamura, A.; Tanihata, J.; Saito, T.; Duguez, S.M.R.; Nagaraju, K.; Hoffman, E.P.; Partridge, T.; et al. Bodywide Skipping of Exons 45-55 in Dystrophic Mdx52 Mice by Systemic Antisense Delivery. Proc. Natl. Acad. Sci. USA 2012, 109, 13763–13768. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Echigoya, Y.; Duddy, W.; Saito, T.; Aoki, Y.; Takeda, S.; Yokota, T. Antisense PMO Cocktails Effectively Skip Dystrophin Exons 45-55 in Myotubes Transdifferentiated from DMD Patient Fibroblasts. PLoS ONE 2018, 13, e0197084. [Google Scholar] [CrossRef] [PubMed]
- Echigoya, Y.; Lim, K.R.Q.; Melo, D.; Bao, B.; Trieu, N.; Mizobe, Y.; Maruyama, R.; Mamchaoui, K.; Tanihata, J.; Aoki, Y.; et al. Exons 45-55 Skipping Using Mutation-Tailored Cocktails of Antisense Morpholinos in the DMD Gene. Mol. Ther. 2019, 27, 2005–2017. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.A.; Saito, T.; Duddy, W.; Takeda, S.I.; Yokota, T. Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression. Methods Mol. Biol. 2018, 1828, 141–150. [Google Scholar] [CrossRef]
- Lim, K.R.Q.; Woo, S.; Melo, D.; Huang, Y.; Dzierlega, K.; Shah, M.N.A.; Aslesh, T.; Roshmi, R.R.; Echigoya, Y.; Maruyama, R.; et al. Development of DG9 Peptide-Conjugated Single- and Multi-Exon Skipping Therapies for the Treatment of Duchenne Muscular Dystrophy. Proc. Natl. Acad. Sci. USA 2022, 119, 2112546119. [Google Scholar] [CrossRef]
- Aupy, P.; Echevarría, L.; Relizani, K.; Goyenvalle, A. The Use of Tricyclo-DNA Oligomers for the Treatment of Genetic Disorders. Biomedicines 2018, 6, 2. [Google Scholar] [CrossRef]
- Relizani, K.; Goyenvalle, A. Use of Tricyclo-DNA Antisense Oligonucleotides for Exon Skipping. Methods Mol. Biol. 2018, 1828, 381–394. [Google Scholar] [CrossRef]
- Goyenvalle, A.; Griffith, G.; Babbs, A.; el Andaloussi, S.; Ezzat, K.; Avril, A.; Dugovic, B.; Chaussenot, R.; Ferry, A.; Voit, T.; et al. Functional Correction in Mouse Models of Muscular Dystrophy Using Exon-Skipping Tricyclo-DNA Oligomers. Nat. Med. 2015, 21, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Relizani, K.; Griffith, G.; Echevarría, L.; Zarrouki, F.; Facchinetti, P.; Vaillend, C.; Leumann, C.; Garcia, L.; Goyenvalle, A. Efficacy and Safety Profile of Tricyclo-DNA Antisense Oligonucleotides in Duchenne Muscular Dystrophy Mouse Model. Mol. Ther. Nucleic Acids 2017, 8, 144. [Google Scholar] [CrossRef]
- Shin, J.H.; Pan, X.; Hakim, C.H.; Yang, H.T.; Yue, Y.; Zhang, K.; Terjung, R.L.; Duan, D. Microdystrophin Ameliorates Muscular Dystrophy in the Canine Model of Duchenne Muscular Dystrophy. Mol. Ther. 2013, 21, 750. [Google Scholar] [CrossRef]
- le Guiner, C.; Servais, L.; Montus, M.; Larcher, T.; Fraysse, B.; Moullec, S.; Allais, M.; François, V.; Dutilleul, M.; Malerba, A.; et al. Long-Term Microdystrophin Gene Therapy Is Effective in a Canine Model of Duchenne Muscular Dystrophy. Nat. Commun. 2017, 8, 16105. [Google Scholar] [CrossRef]
- Microdystrophin Gene Transfer Study in Adolescents and Children With DMD—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03368742 (accessed on 8 December 2021).
- A Phase 3 Study to Evaluate the Safety and Efficacy of PF-06939926 for the Treatment of Duchenne Muscular Dystrophy—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04281485 (accessed on 8 December 2021).
- Finkel, R.S.; Flanigan, K.M.; Wong, B.; Bönnemann, C.; Sampson, J.; Sweeney, H.L.; Reha, A.; Northcutt, V.J.; Elfring, G.; Barth, J.; et al. Phase 2a Study of Ataluren-Mediated Dystrophin Production in Patients with Nonsense Mutation Duchenne Muscular Dystrophy. PLoS ONE 2013, 8, e0081302. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E.; Muntoni, F.; Osorio, A.N.; Tulinius, M.; Buccella, F.; Morgenroth, L.P.; Gordish-Dressman, H.; Jiang, J.; Trifillis, P.; Zhu, J.; et al. Safety and Effectiveness of Ataluren: Comparison of Results from the STRIDE Registry and CINRG DMD Natural History Study. J. Comp. Eff. Res. 2020, 9, 341–360. [Google Scholar] [CrossRef] [PubMed]
- Long-Term Outcomes of Ataluren in Duchenne Muscular Dystrophy—Full Text View—ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03179631 (accessed on 18 August 2022).
- A Study of CAP-1002 in Ambulatory and Non-Ambulatory Patients with Duchenne Muscular Dystrophy (HOPE-3)—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05126758 (accessed on 8 August 2022).
- A Study of CAP-1002 in Ambulatory and Non-Ambulatory Patients with Duchenne Muscular Dystrophy (HOPE-2)—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03406780 (accessed on 8 August 2022).
Therapeutic Target | Name | AON Chemistry | Sponsor | Status |
---|---|---|---|---|
Exon 53 Skipping | viltolarsen | PMO | NS Pharma | Conditionally Approved |
golodirsen | PMO | Sarepta Therapeutics | Conditionally Approved | |
WVE-N531 | phosphoryl guanidine (PN) backbone | Wave Life Sciences | Phase I/II | |
Exon 51 Skipping | eteplirsen | PMO | Sarepta Therapeutics | Conditionally Approved |
SRP-5051 | PPMO | Sarepta Therapeutics | Phase II | |
PGN-EDO51 | PPMO | PepGen | Phase I | |
DYNE-251 | Antibody-PMO | Dyne Therapeutics | Phase I | |
Exon 45 Skipping | casimersen | PMO | Sarepta Therapeutics | Conditionally Approved |
DS-5141B | 2′-O,4′-C-ethylene-bridged nucleic acid (ENA) | Daiichi Sankyo | Phase II | |
Exon 44 Skipping | NS-089/NCNP-02 | Unknown | NS Pharma | Phase II |
AOC 1044 | Antibody-PMO | Avidity Biosciences | Phase I | |
ENTR-601-44 | PPMO | Entrada Therapeutics | Preclinical | |
Exon 2 Skipping | SCAAV9.U7.ACCA | AAV U7snRNA | Astellas Pharma | Phase I/II |
CD49d Knockdown | ATL1102 | 2′-O-(2-methoxyethyl) | Antisense Therapeutics | Phase IIa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilton-Clark, H.; Yokota, T. Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy. Pharmaceutics 2023, 15, 778. https://doi.org/10.3390/pharmaceutics15030778
Wilton-Clark H, Yokota T. Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy. Pharmaceutics. 2023; 15(3):778. https://doi.org/10.3390/pharmaceutics15030778
Chicago/Turabian StyleWilton-Clark, Harry, and Toshifumi Yokota. 2023. "Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy" Pharmaceutics 15, no. 3: 778. https://doi.org/10.3390/pharmaceutics15030778
APA StyleWilton-Clark, H., & Yokota, T. (2023). Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy. Pharmaceutics, 15(3), 778. https://doi.org/10.3390/pharmaceutics15030778