Synthesis of Magnetic Iron Oxide-Incorporated Cellulose Composite Particles: An Investigation on Antioxidant Properties and Drug Delivery Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cellulose-WTP Particles from WTP
2.3. Preparation of Cellulose-SCB Particles from SCB
2.4. Preparation of WTP/MIO-NCPs and SCB/MIO-NCPs
2.5. Synthesis of MIO-NPs
2.6. Characterization
2.7. Application of Cellulose, NPs, and NCPs
2.7.1. Free Radical Scavenging Activity
2.7.2. Swelling Profile Analysis
2.7.3. Drug Loading and Releasing Studies
2.8. Quality Control
2.8.1. Linearity
2.8.2. Sensitivity
2.8.3. Reproducibility
2.9. Statistical Analyses
3. Results and Discussion
3.1. Characterization
3.1.1. FTIR Analysis
3.1.2. FESEM and EDX Analysis
3.1.3. XRD Analysis
3.1.4. VSM Analysis
3.2. Applications of Cellulose, NPs, and NCPs
3.2.1. DPPH Scavenging Assay Analysis
3.2.2. Swelling Behavior Analysis
3.2.3. Drug Incorporation and Release Efficiency Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Q.; Zhang, Y.; Hu, H.; Wang, W.; Huang, Z.; Chen, D.; Yang, M.; Liang, J. In Situ Synthesis of a Stable Fe3O4@ Cellulose Nanocomposite for Efficient Catalytic Degradation of Methylene Blue. Nanomaterials 2019, 9, 275. [Google Scholar] [CrossRef] [Green Version]
- Rabbi, M.A.; Rahman, M.M.; Minami, H.; Habib, M.R.; Ahmad, H. Ag Impregnated Sub-Micrometer Crystalline Jute Cellulose Particles: Catalytic and Antibacterial Properties. Carbohydr. Polym. 2020, 233, 115842. [Google Scholar] [CrossRef]
- Khoo, R.Z.; Chow, W.S.; Ismail, H. Sugarcane Bagasse Fiber and Its Cellulose Nanocrystals for Polymer Reinforcement and Heavy Metal Adsorbent: A Review. Cellulose 2018, 25, 4303–4330. [Google Scholar] [CrossRef]
- Arantes, A.C.C.; Almeida, C.G.; Dauzacker, L.C.L.; Bianchi, M.L.; Wood, D.F.; Williams, T.G.; Orts, W.J.; Tonoli, G.H.D. Renewable Hybrid Nanocatalyst from Magnetite and Cellulose for Treatment of Textile Effluents. Carbohydr. Polym. 2017, 163, 101–107. [Google Scholar] [CrossRef]
- Mahmoud, K.A.; Male, K.B.; Hrapovic, S.; Luong, J.H.T. Cellulose Nanocrystal/Gold Nanoparticle Composite as A Matrix for Enzyme Immobilization. ACS Appl. Mater. Interfaces 2009, 1, 1383–1386. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose Nano-Composites–A Review. Biotechnol. Rep. 2019, 21, 00316. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; El-Monaem, E.M.; Elshishini, H.M.; El-Aqapa, H.G.; Hosney, M.; Abdelfatah, A.M.; Hammad, E.N.; El-Subruiti, G.H.; Fawzy, M.; Omer, A.M. Recent Developments in Alginate-Based Adsorbents for Removing Phosphate Ions From Wastewater: A Review. RSC Adv. 2022, 12, 8228–8248. [Google Scholar] [CrossRef]
- Rashid, M.; Gafur, M.A.; Sharafat, M.K.; Minami, H.; Miah, M.A.J.; Ahmad, H. Biocompatible Microcrystalline Cellulose Particles From Cotton Wool and Magnetization Via a Simple in Situ Co-Precipitation Method. Carbohydr. Polym. 2017, 170, 72–79. [Google Scholar] [CrossRef]
- Abdelfatah, A.M.; Fawzy, M.; Eltaweil, A.S.; El-Khouly, M.E. Green Synthesis of Nano-Zero-Valent Iron Using Ricinus Communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS Omega 2021, 6, 25397–25411. [Google Scholar] [CrossRef]
- Rabbi, M.A.; Rahman, M.M.; Minami, H.; Rahman, M.A.; Hoque, S.M.; Ahmad, H. Biocomposites of Synthetic Polymer Modified Microcrystalline Jute Cellulose Particles and Their Hemolytic Behavior. Cellulose 2019, 26, 8713–8727. [Google Scholar] [CrossRef]
- Angelova, A.; Angelov, B. Dual and Multi-Drug Delivery Nanoparticles Towards Neuronal Survival and Synaptic Repair. Neural Regen. Res. 2017, 12, 886–88912. [Google Scholar] [CrossRef]
- Wei, H.; Rodriguez, K.; Renneckar, S.; Vikesland, P.J. Environmental Science and Engineering Applications of Nanocellulose-Based Nanocomposites. Environ. Sci. Nano 2014, 1, 302–316. [Google Scholar] [CrossRef] [Green Version]
- Rabbi, M.A.; Rahman, M.M.; Minami, H.; Yamashita, N.; Habib, M.R.; Ahmad, H. Magnetically Responsive Antibacterial Nanocrystalline Jute Cellulose Nanocomposites with Moderate Catalytic Activity. Carbohydr. Polym. 2021, 251, 117024. [Google Scholar] [CrossRef]
- Azizi, A. Green Synthesis of Fe3O4 Nanoparticles and Its Application In Preparation of Fe3O4/Cellulose Magnetic Nanocomposite: A Suitable Proposal For Drug Delivery Systems. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3552–3561. [Google Scholar] [CrossRef]
- Keihan, A.H.; Veisi, H.; Biabri, P.M. Facile Synthesis of PEG-Coated Magnetite (Fe3O4) and Embedment of Gold Nanoparticle as a Nontoxic Antimicrobial Agent. Appl. Organomet. Chem. 2017, 31, 3873. [Google Scholar] [CrossRef]
- Attia, N.F.; El-Monaem, E.M.A.; El-Aqapa, H.G.; Elashery, E.A.; Eltaweil, A.S.; Kady, M.E.; Khalifa, S.A.M.; Hawash, H.B.; El-Seedi, H.R. Iron Oxide Nanoparticles and Their Pharmaceutical Applications. Appl. Surf. Sci. 2022, 11, 100284. [Google Scholar] [CrossRef]
- Vangijzegem, T.; Stanicki, D.; Laurent, S. Magnetic Iron Oxide Nanoparticles for Drug Delivery: Applications and Characteristics. Expert Opin. Drug Deliv. 2019, 16, 69–78. [Google Scholar] [CrossRef]
- Tran, P.H.-L.; Tran, T.T.-D.; Vo, T.V.; Lee, B.-J. Promising Iron Oxide-Based Magnetic Nanoparticles in Biomedical Engineering. Arch. Pharmacal Res. 2012, 35, 2045–2061. [Google Scholar] [CrossRef]
- Marchessault, R.H.; Bremner, G.; Chauve, G. Fishing for Proteins with Magnetic Cellulosic Nanocrystals. ACS Publ. 2006, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Breijaert, T.C.; Daniel, G.; Hedlund, D.; Svedlindh, P.; Kessler, V.G.; Granberg, H.; Hakansson, K.; Seisenbaeva, H.A. Self-Assembly of Ferria–Nanocellulose Composite Fibres. Carbohydr. Polym. 2022, 291, 119560. [Google Scholar] [CrossRef]
- Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular Vesicles as a Nextgeneration Drug Delivery Platform. Nat. Nanotechnol. 2021, 16, 748–759. [Google Scholar] [CrossRef]
- Meyyappan, A.; Banu, S.A.; Kurian, G.A. One Step Synthesis of Iron Oxide Nanoparticles via Chemical and Green Route–An Effective Comparison. Int. J. Pharm. Pharm. 2014, 7, 70–74. [Google Scholar]
- Danial, W.H.; Majid, Z.A.; Muhid, M.N.M.; Triwahyono, S.; Bakar, M.B.; Ramli, Z. The Reuse of Wastepaper for the Extraction of Cellulose Nanocrystals. Carbohydr. Polym. 2015, 118, 165–169. [Google Scholar] [CrossRef]
- Sheltami, R.M.; Abdullah, I.; Ahmad, I.; Dufresne, A.; Kargarzadeh, H. Extraction of Cellulose Nanocrystals from Mengkuang Leaves (Pandanus tectorius). Carbohydr. Polym. 2012, 88, 772–779. [Google Scholar] [CrossRef]
- Evans, S.K.; Wesley, O.N.; Nathan, O.; Moloto, M.J. Chemically Purified Cellulose and Its Nanocrystals from Sugarcane Baggase: Isolation and Characterization. Heliyon 2019, 5, 02635. [Google Scholar] [CrossRef] [Green Version]
- Bouafia, A.; Laouini, S.E.; Khelef, A.; Tedjani, M.L.; Guemari, F. Effect of Ferric Chloride Concentration on the Type of Magnetite (Fe3O4) Nanoparticles Biosynthesized by Aqueous Leaves Extract of Artemisia and Assessment of their Antioxidant Activities. J. Clust. Sci. 2021, 32, 1033–1041. [Google Scholar] [CrossRef]
- Kundu, P.; Debnath, S.L.; Devnath, H.S.; Saha, L.; Sadhu, S.K. Analgesic, Anti-Inflammatory, Antipyretic, and in Silico Measurements of Sonneratia caseolaris (L.) Fruits from Sundarbans, Bangladesh. Biomed Res. Int. 2022, 1405821. [Google Scholar] [CrossRef]
- Omer, A.M.; Ahmed, M.S.; El-Subruiti, G.M.; Khalifa, R.E.; Eltaweil, A.S. Ph-Sensitive Alginate/Carboxymethyl Chitosan/Aminated Chitosan Microcapsules for Efficient Encapsulation and Delivery of Diclofenac Sodium. Pharmaceutics 2021, 13, 338. [Google Scholar] [CrossRef]
- ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2 (R1); Somatek Inc.: San Diego, CA, USA, 2005. [Google Scholar]
- Palla, S.S.; Suresh, T.; Sireesha, D.; Vasudha, B. Development and validation of UV-spectrophotometric Method for Estimation of Metronidazole in Tablet Dosage Form. Int. J. Pharm. Res. Health Sci. 2016, 4, 968–971. [Google Scholar]
- Das, J.; Dhua, M. UV-Spectrophotometric Assay Method Development and Validation of Metronidazole in Bulk and Tablet Formulation. J. PharmaSciTech 2014, 3, 106–109. [Google Scholar]
- Khodaei, M.M.; Alizadeh, A.; Haghipour, M. Cellulose/Fe3O4/Co3O4 Nanocomposite as a Highly Efficient and Reusable Catalyst for the Synthesis of 1-((Benzo [d] thiazol-2-ylamino)(aryl)-methyl) naphthalen-2-ol Derivatives. Org. Chem. Res. 2018, 4, 159–173. [Google Scholar]
- Lu, P.; Hsieh, Y.-L. Preparation and Properties of Cellulose Nanocrystals: Rods, Spheres, and Network. Carbohydr. Polym. 2010, 82, 329–336. [Google Scholar] [CrossRef]
- Ni, X.; Wang, J.; Yue, Y.; Cheng, W.; Wang, D.; Han, G. Enhanced Antibacterial Performance and Cytocompatibility of Silver Nanoparticles Stabilized by Cellulose Nanocrystal Grafted with Chito-Oligosaccharides. Materials 2018, 11, 1339. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Ding, E.; Cheng, R. Thermal Degradation Behaviors of Spherical Cellulose Nanocrystals with Sulfate Groups. Polymer 2007, 48, 3486–3493. [Google Scholar] [CrossRef]
- Dhar, P.K.; Saha, P.; Hasan, M.K.; Amin, M.K.; Haque, M.R. Green Synthesis of Magnetite Nanoparticles Using Lathyrus Sativus Peel Extract and Evaluation of Their Catalytic Activity. Clean. Eng. Technol. 2021, 3, 100117. [Google Scholar] [CrossRef]
- Ruíz-Baltazar, Á.J.; Reyes-López, S.Y.; Mondragón-Sánchez, M.L.; Robles-Cortes, A.I.; Perez, R. Eco-Friendly Synthesis of Fe3O4 Nanoparticles: Evaluation of Their Catalytic Activity in Methylene Blue Degradation by Kinetic Adsorption Models. Results Phys. 2019, 12, 989–995. [Google Scholar] [CrossRef]
- Dimitrov, K.; Herzog, M.; Nenkova, S. Fe3O4 Modification of Microcrystalline Cellulose for Composite Materials. Am. J. Chem. 2013, 3, 140–147. [Google Scholar] [CrossRef]
- Khatun, R.; Mamun, M.S.A.; Islam, S.; Khatun, N.; Hakim, M.; Hossain, M.S.; Dhar, P.K.; Barai, H.R. Phytochemical-assisted Synthesis of Fe3O4 Nanoparticles and Evaluation of Their Catalytic Activity. Micromachines 2022, 13, 2077. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Fu, Y.Q.; Jiang, R.; Jiang, J.H.; Xiao, L.; Zeng, G.M.; Zhao, S.L.; Wang, Y. Adsorption Removal of Congo Red onto Magnetic Cellulose/Fe3O4/Activated Carbon Composite: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2011, 173, 494–502. [Google Scholar] [CrossRef]
- Hossain, M.K.; Minami, H.; Hoque, S.M.; Rahman, M.M.; Sharafat, M.K.; Begum, M.F.; Islam, M.E.; Ahmad, H. Mesoporous Electromagnetic Composite Particles: Electric Current Responsive Release of Biologically Active Molecules and Antibacterial Properties. Colloids Surf. B Biointerfaces 2019, 181, 85–93. [Google Scholar] [CrossRef]
- Salehi, B.; Martorell, M.; Arbiser, J.L.; Sureda, A.; Martins, N.; Maurya, P.K.; Sharifi-Rad, M.; Kumar, P.; Sharifi-Rad, J. Antioxidants: Positive or Negative actors? Biomolecules 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Maheo, A.R.; Vithiya, B.S.M.; Prasad, T.A.A.; Tamizhdurai, P.; Mangesh, V.L. Biosynthesis, Characterization, Biological And Photo Catalytic Investigations of Elsholtzia Blanda and Chitosan Mediated Copper Oxide Nanoparticles. Arab. J. Chem. 2022, 15, 103661. [Google Scholar] [CrossRef]
- Hosny, M.; Fawzy, M.; El-Fakharany, E.M.; Omer, A.M.; El-Monaem, E.M.A.; Khalifa, R.E.; Eltaweil, A.S. Biogenic Synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. J. Environ. Chem. Eng. 2022, 10, 106806. [Google Scholar] [CrossRef]
- Hosny, M.; Eltaweil, A.S.; Mostafa, M.; El-Badry, Y.A.; Hussein, E.E.; Omer, A.M.; Fawzy, M. Facile Synthesis of Gold Nanoparticles for Anticancer, Antioxidant Applications, and Photocatalytic Degradation of Toxic Organic Pollutants. ACS Omega 2022, 7, 3121–3133. [Google Scholar] [CrossRef]
- Paul, S.; Saikia, J.P.; Samdarshi, S.K.; Konwar, B.K. Investigation of Antioxidant Property of Iron Oxide Particlesby 1′-1′ Diphenylpicryl-Hydrazyle (DPPH) Method. J Magn. Magn. Mater. 2009, 321, 3621–3623. [Google Scholar] [CrossRef]
- Shadmehri, A.A.; Namvar, F.; Miri, H.; Yaghmaei, P.; Moghaddam, M. Assessment of Antioxidant and Antibacterial Activities of Zinc Oxide Nanoparticles, Graphene and Graphene Decorated by Zinc Oxide Nanoparticles. Int. J. Nano Dimens. 2019, 10, 350–358. [Google Scholar]
- Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of Silver Nanoparticles Using Alternanthera sessilis (Linn.) Extract and Their Antimicrobial, Antioxidant Activities. Colloids Surf. B Biointerfaces 2013, 102, 288–291. [Google Scholar] [CrossRef]
- Ghadi, F.E.; Ghara, A.R.; Naeimi, A. Phytochemical Fabrication, Characterization, and Antioxidant Application of Copper and Cobalt Oxides Nanoparticles Using Sesbania sesban Plant. Chem. Pap. 2018, 72, 2859–2869. [Google Scholar] [CrossRef]
- Zidan, G.; Greene, C.A.; Seyfoddin, A. Formulation Design in Drug Delivery. In Engineering Drug Delivery Systems, 1st ed.; Seyfoddin, A., Dezfooli, S.M., Greene, C.A., Eds.; Woodhead Publishing and Elsevier: Duxford, CB22 4QH, United Kingdom, 2020; pp. 17–41. [Google Scholar] [CrossRef]
- Yadollahi, M.; Farhoudian, S.; Barkhordari, S.; Gholamali, I.; Farhadnejad, H.; Motasadizadeh, H. Facile Synthesis of Chitosan/Zno Bio-Nanocomposite Hydrogel Beads As Drug Delivery Systems. Int. J. Biol. Macromol. 2016, 82, 273–278. [Google Scholar] [CrossRef]
- Yadollahi, M.; Farhoudian, S.; Namazi, H. One-Pot Synthesis of Antibacterial Chitosan/Silver Bio-Nanocomposite Hydrogel Beads As Drug Delivery Systems. Int. J. Biol. Macromol. 2015, 79, 37–43. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef]
- El-Boubbou, K.; Ali, R.; Al-Humaid, S.; Alhallaj, A.; Lemine, O.M.; Boudjelal, M.; AlKushi, A. Iron Oxide Mesoporous Magnetic Nanostructures with High Surface Area for Enhanced and Selective Drug Delivery to Metastatic Cancer Cells. Pharmaceutics 2021, 13, 553. [Google Scholar] [CrossRef]
- Lucy, S.C.W.; Paul, W.S.H.; Wong, L.F. Relationship Between Swelling and Drug Release in a Hydrophilic Matrix. Drug Dev. Ind. Pharm. 1993, 19, 1201–1210. [Google Scholar] [CrossRef]
Parameter | From the Residual SD of the Regression Line (µg/mL) | From the SD of the Y-Intercept of the Regression Line (µg/mL) |
---|---|---|
LOD | 0.380 | 0.259 |
LOQ | 1.151 | 0.786 |
Sl. No. | Conc. (µg/mL) | Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|---|---|
10 am | 1 pm | 4 pm | Day-1 | Day-2 | Day-3 | ||
1 | 5 | 0.304 | 0.307 | 0.308 | 0.304 | 0.310 | 0.313 |
2 | 5 | 0.304 | 0.308 | 0.307 | 0.304 | 0.311 | 0.312 |
3 | 5 | 0.304 | 0.306 | 0.309 | 0.304 | 0.312 | 0.313 |
4 | 5 | 0.306 | 0.308 | 0.307 | 0.306 | 0.312 | 0.314 |
5 | 5 | 0.305 | 0.308 | 0.308 | 0.305 | 0.311 | 0.314 |
6 | 5 | 0.306 | 0.307 | 0.309 | 0.306 | 0.310 | 0.315 |
% RSD | 0.323 | 0.266 | 0.290 | 0.323 | 0.288 | 0.335 |
Drug Delivery Systems | Drug Loaded (mg/mg) | Releasing Time (min) | Drug Released (%) | References |
---|---|---|---|---|
Chitosan/Ag-0 | 0.00941 | 1440 | 29.85 | [52] |
Chitosan/Ag-1 | 0.00814 | 23.15 | ||
Chitosan/Ag-2 | 0.00750 | 16.23 | ||
Chitosan/Ag-3 | 0.00728 | 8.96 | ||
Chitosan/ZnO-0 | 0.00941 | 1440 | 29.85 | [51] |
Chitosan/ZnO-1 | 0.00996 | 11.49 | ||
Chitosan/ZnO-2 | 0.00995 | 7.11 | ||
Chitosan/ZnO-3 | 0.00998 | 5.7 | ||
Pure cellulose | 0.00901 | 180 | 42 | [14] |
MIO-NPs | 0.00996 | 36 | ||
MIO-NPs/cellulose | 0.01210 | 15 | ||
Cellulose (SCB) | 0.00880 ± 0.00082 | 240 | 47.36 ± 4.26 | Present study |
Cellulose (WTP) | 0.00907 ± 0.00074 | 45.88 ± 4.67 | ||
MIO-NPs | 0.00910 ± 0.00089 | 32.28 ± 2.34 | ||
SCB/MIO-NCPs | 0.01063 ± 0.00061 | 19.45 ± 3.92 | ||
WTP/MIO-NCPs | 0.01133 ± 0.00083 | 14.52 ± 2.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naznin, A.; Dhar, P.K.; Dutta, S.K.; Chakrabarty, S.; Karmakar, U.K.; Kundu, P.; Hossain, M.S.; Barai, H.R.; Haque, M.R. Synthesis of Magnetic Iron Oxide-Incorporated Cellulose Composite Particles: An Investigation on Antioxidant Properties and Drug Delivery Applications. Pharmaceutics 2023, 15, 732. https://doi.org/10.3390/pharmaceutics15030732
Naznin A, Dhar PK, Dutta SK, Chakrabarty S, Karmakar UK, Kundu P, Hossain MS, Barai HR, Haque MR. Synthesis of Magnetic Iron Oxide-Incorporated Cellulose Composite Particles: An Investigation on Antioxidant Properties and Drug Delivery Applications. Pharmaceutics. 2023; 15(3):732. https://doi.org/10.3390/pharmaceutics15030732
Chicago/Turabian StyleNaznin, Arifa, Palash Kumar Dhar, Sagar Kumar Dutta, Sumon Chakrabarty, Utpal Kumar Karmakar, Pritam Kundu, Muhammad Sarwar Hossain, Hasi Rani Barai, and Md. Rezaul Haque. 2023. "Synthesis of Magnetic Iron Oxide-Incorporated Cellulose Composite Particles: An Investigation on Antioxidant Properties and Drug Delivery Applications" Pharmaceutics 15, no. 3: 732. https://doi.org/10.3390/pharmaceutics15030732