In Silico Pharmacology for Evidence-Based and Precision Medicine
Conflicts of Interest
References
- Spanakis, M.; Patelarou, A.E.; Patelarou, E. Nursing Personnel in the Era of Personalized Healthcare in Clinical Practice. J. Pers. Med. 2020, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Standing, J.F. Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Br. J. Clin. Pharmacol. 2017, 83, 247–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight-Schrijver, V.R.; Chelliah, V.; Cucurull-Sanchez, L.; Le Novère, N. The promises of quantitative systems pharmacology modelling for drug development. Comput. Struct. Biotechnol. J. 2016, 14, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aribisala, J.O.; Sabiu, S. Cheminformatics Identification of Phenolics as Modulators of Penicillin-Binding Protein 2a of Staphylococcus aureus: A Structure–Activity-Relationship-Based Study. Pharmaceutics 2022, 14, 1818. [Google Scholar] [CrossRef] [PubMed]
- Andrei, C.; Mihai, D.P.; Zanfirescu, A.; Nitulescu, G.M.; Negres, S. In Silico Drug Repurposing Framework Predicts Repaglinide, Agomelatine and Protokylol as TRPV1 Modulators with Analgesic Activity. Pharmaceutics 2022, 14, 2563. [Google Scholar] [CrossRef] [PubMed]
- Raman, A.P.S.; Kumari, K.; Jain, P.; Vishvakarma, V.K.; Kumar, A.; Kaushik, N.; Choi, E.H.; Kaushik, N.K.; Singh, P. In Silico Evaluation of Binding of 2-Deoxy-D-Glucose with Mpro of nCoV to Combat COVID-19. Pharmaceutics 2022, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Maqoud, F.; Scala, R.; Tragni, V.; Pierri, C.L.; Perrone, M.G.; Scilimati, A.; Tricarico, D. Zoledronic Acid as a Novel Dual Blocker of KIR6.1/2-SUR2 Subunits of ATP-Sensitive K+ Channels: Role in the Adverse Drug Reactions. Pharmaceutics 2021, 13, 1350. [Google Scholar] [CrossRef] [PubMed]
- Jamei, M. Recent Advances in Development and Application of Physiologically-Based Pharmacokinetic (PBPK) Models: A Transition from Academic Curiosity to Regulatory Acceptance. Curr. Pharmacol. Rep. 2016, 2, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, S.F.; Burghaus, R.; Cosson, V.; Cheung, S.; Chenel, M.; DellaPasqua, O.; Frey, N.; Hamrén, B.; Harnisch, L.; Ivanow, F.; et al. Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation. CPT Pharmacomet. Syst. Pharmacol. 2016, 5, 93–122. [Google Scholar] [CrossRef]
- Neroutsos, E.; Nalda-Molina, R.; Paisiou, A.; Zisaki, K.; Goussetis, E.; Spyridonidis, A.; Kitra, V.; Grafakos, S.; Valsami, G.; Dokoumetzidis, A. Development of a Population Pharmacokinetic Model of Busulfan in Children and Evaluation of Different Sampling Schedules for Precision Dosing. Pharmaceutics 2022, 14, 647. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.; Costa, B.; Vale, N. New Data for Nebivolol after In Silico PK Study: Focus on Young Patients and Dosage Regimen. Pharmaceutics 2022, 14, 1911. [Google Scholar] [CrossRef] [PubMed]
- Rostami-Hodjegan, A. Physiologically Based Pharmacokinetics Joined With In Vitro–In Vivo Extrapolation of ADME: A Marriage Under the Arch of Systems Pharmacology. Clin. Pharmacol. Ther. 2012, 92, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Vizirianakis, I.S.; Mystridis, G.A.; Avgoustakis, K.; Fatouros, D.G.; Spanakis, M. Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review). Oncol. Rep. 2016, 35, 1891–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mystridis, G.A.; Batzias, G.C.; Vizirianakis, I.S. Physiologically Based Pharmacokinetic Modelling and Simulation to Predict the Plasma Concentration Profile of Doxorubicin. Pharmaceutics 2022, 14, 541. [Google Scholar] [CrossRef] [PubMed]
- Shuklinova, O.; Dorożyński, P.; Kulinowski, P.; Polak, S. Quality Control Dissolution Data Is Biopredictive for a Modified Release Ropinirole Formulation: Virtual Experiment with the Use of Re-Developed and Verified PBPK Model. Pharmaceutics 2022, 14, 1514. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, M.; de Lange, E.C.M. Revisiting Cerebrospinal Fluid Flow Direction and Rate in Physiologically Based Pharmacokinetic Model. Pharmaceutics 2022, 14, 1764. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Nguyen, T.P.N.; Kaur, J.; Singh, T.G.; Soni, D.; Singh, R.; Kumar, P. Opportunities and challenges in application of artificial intelligence in pharmacology. Pharmacol. Rep. 2023, 75, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.T.H.; Lawal, B.; Wei, L.; Wen, Y.T.; Tzeng, D.T.W.; Lo, W.C. Multiomics Identification of Potential Targets for Alzheimer Disease and Antrocin as a Therapeutic Candidate. Pharmaceutics 2021, 13, 1555. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Shi, Y.; So, H.-C.; Zhao, K.; Shi, Y.; So, H.-C. Prediction of Drug Targets for Specific Diseases Leveraging Gene Perturbation Data: A Machine Learning Approach. Pharmaceutics 2022, 14, 234. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.P.F.; Schmidt, B.J.; Gadkar, K.G.; Damian, V.; Earp, J.C.; Friedrich, C.; van der Graaf, P.H.; Madabushi, R.; Musante, C.J.; Naik, K.; et al. FDA-Industry Scientific Exchange on assessing quantitative systems pharmacology models in clinical drug development: A meeting report, summary of challenges/gaps, and future perspective. AAPS J. 2021, 23, 60. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spanakis, M. In Silico Pharmacology for Evidence-Based and Precision Medicine. Pharmaceutics 2023, 15, 1014. https://doi.org/10.3390/pharmaceutics15031014
Spanakis M. In Silico Pharmacology for Evidence-Based and Precision Medicine. Pharmaceutics. 2023; 15(3):1014. https://doi.org/10.3390/pharmaceutics15031014
Chicago/Turabian StyleSpanakis, Marios. 2023. "In Silico Pharmacology for Evidence-Based and Precision Medicine" Pharmaceutics 15, no. 3: 1014. https://doi.org/10.3390/pharmaceutics15031014
APA StyleSpanakis, M. (2023). In Silico Pharmacology for Evidence-Based and Precision Medicine. Pharmaceutics, 15(3), 1014. https://doi.org/10.3390/pharmaceutics15031014