Glioblastoma Multiforme: Probing Solutions to Systemic Toxicity towards High-Dose Chemotherapy and Inflammatory Influence in Resistance against Temozolomide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Development of TMZ Resistant U87 (U87-R) Cell Line
2.3. Preparation of Solid Lipid Nanoparticles (SLNPs)
2.4. Characterizing SLNPs by Physio-Chemical Techniques
2.4.1. Encapsulation Efficiency (EE) and Drug Release (DR) of SLNP
2.4.2. Cytotoxicity Assay to Determine TMZ Resistance
2.5. Cell Migration by Wound Healing Assay
2.6. Animal Studies
2.6.1. Pharmacokinetic Analysis (Tissue Distribution)
2.6.2. Generation of an Orthotopic Xenograft Mouse Model
2.6.3. Drug Treatment Regimens and Doses
2.6.4. Hematoxylin and Eosin Staining
2.6.5. Differential Quantification (qRT-PCR) of Inflammatory Markers
2.7. Statistical Analysis
3. Results
3.1. Physiochemical Characterization of Solid Lipid Nanoparticles (SLNPs)
3.1.1. Scanning Electron Microscopy (SEM)
3.1.2. Fourier Transfer Infrared Spectroscopy (FTIR)
3.1.3. X-ray Dispersive Spectroscopy (XRDS)
3.1.4. Energy Dispersive Spectroscopy (EDS)
3.1.5. Entrapment Efficiency of SLNPs
3.2. Drug Release Efficiency of SLNP-TMZ
3.3. Development of TMZ-Resistant U87-R Cell Line
3.3.1. Confirmation of Establishment of Resistance in U87-R
3.3.2. Assessment of Proliferation and Anti-Apoptotic Markers in U87-R
3.4. Effect of TMZ and SLNP-TMZ on the Proliferation of U87-S and U87-R Cells
3.5. Cell Migration by Wound Healing Assay
3.6. Time-Dependent Drug Distribution/Pharmacokinetics Studies in Mice
3.7. In Vivo Anti-Tumor Activity of SLNP-TMZ
3.8. In Vitro and In Vivo Expression of Signatory Inflammation Markers (IL-6, IL-1β, and TNF-α) GBM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laug, D.; Glasgow, S.M.; Deneen, B. A glial blueprint for gliomagenesis. Nat. Rev. Neurosci. 2018, 19, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, A.F.; Juweid, M. Epidemiology and Outcome of Glioblastoma. Exon Publ. 2017, ch8, 143–153. [Google Scholar]
- Seidlitz, A.; Siepmann, T.; Löck, S.; Juratli, T.; Baumann, M.; Krause, M. Impact of waiting time after surgery and overall time of postoperative radiochemotherapy on treatment outcome in glioblastoma multiforme. Radiat. Oncol. 2015, 10, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio-Blanco, J.; Torres-Suárez, A.-I. Glioblastoma multiforme and lipid nanocapsules: A review. J. Biomed. Nanotechnol. 2015, 11, 1283–1311. [Google Scholar] [CrossRef] [PubMed]
- Mathew, E.N.; Berry, B.C.; Yang, H.W.; Carroll, R.S.; Johnson, M.D. Delivering Therapeutics to Glioblastoma: Overcoming Biological Constraints. Int. J. Mol. Sci. 2022, 23, 1711. [Google Scholar] [CrossRef] [PubMed]
- Chu, E.; Sartorelli, A. Cancer chemotherapy. Lange’s Basic Clin. Pharmacol. 2018, 14, 948–976. [Google Scholar]
- Carafa, V.; Altucci, L. Deregulation of Cell Death in Cancer: Recent Highlights. Cancers 2020, 12, 3517. [Google Scholar] [CrossRef]
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol. 2019, 54, 407–419. [Google Scholar]
- Duong, V.-A.; Nguyen, T.-T.-L.; Maeng, H.-J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules 2020, 25, 4781. [Google Scholar] [CrossRef]
- Nooli, M.; Chella, N.; Kulhari, H.; Shastri, N.R.; Sistla, R. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: Formulation, optimization and in vivo evaluation. Drug Dev. Ind. Pharm. 2017, 43, 611–617. [Google Scholar] [CrossRef]
- Jain, N.; Jain, R.; Thakur, N.; Gupta, B.P.; Jain, D.K.; Banveer, J.; Jain, S. Nanotechnology: A safe and effective drug delivery system. Asian J. Pharm. Clin. Res. 2010, 3, 159–165. [Google Scholar]
- Harde, H.; Das, M.; Jain, S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv. 2011, 8, 1407–1424. [Google Scholar] [CrossRef] [PubMed]
- Rompicharla, S.V.K.; Bhatt, H.; Shah, A.; Komanduri, N.; Vijayasarathy, D.; Ghosh, B.; Biswas, S. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chem. Phys. Lipids 2017, 208, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Krzak, A.; Bilewicz, R. Voltammetric/UV–Vis study of temozolomide inclusion complexes with cyclodextrin derivatives. Bioelectrochemistry 2020, 136, 107587. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.P.; Recht, L.; Nagpal, S. Advances in the management of glioblastoma: The role of temozolomide and MGMT testing. Clin. Pharmacol. Adv. Appl. 2013, 5, 1. [Google Scholar]
- Fan, C.; Liu, W.; Cao, H.; Wen, C.; Chen, L.; Jiang, G. O 6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death Dis. 2013, 4, e876. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Xue, H.; Sun, Y.; Zhang, C.; Song, Y.; Qi, Y. The role of tumor inflammatory microenvironment in lung cancer. Front. Pharmacol. 2021, 12, 1168. [Google Scholar] [CrossRef]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009, 30, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol. 2012, 2, 98. [Google Scholar] [CrossRef] [Green Version]
- Edwardson, D.W.; Boudreau, J.; Mapletoft, J.; Lanner, C.; Kovala, A.T.; Parissenti, A.M. Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance. PLoS ONE 2017, 12, e0183662. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, S.; Patel, J.; Patel, V.; Saluja, A. Effect of different lipids and surfactants on formulation of solid lipid nanoparticles incorporating tamoxifen citrate. J. Pharm. Bioallied Sci. 2012, 4, 112–113. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Nazir, S.; Farooq, R.K.; Khan, I.N.; Javed, A. Fabrication and Assessment of Diosgenin Encapsulated Stearic Acid Solid Lipid Nanoparticles for Its Anticancer and Antidepressant Effects Using in vitro and in vivo Models. Front. Neurosci. 2021, 15, 806713. [Google Scholar] [CrossRef] [PubMed]
- Sarkaria, J.N.; Carlson, B.L.; Schroeder, M.A.; Grogan, P.; Brown, P.D.; Giannini, C.; Ballman, K.V.; Kitange, G.J.; Guha, A.; Pandita, A. Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin. Cancer Res. 2006, 12, 2264–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langford, S.B.; Spencer, H.T.; Dasgupta, A.; Gillespie, G.Y.; Sutton, K.; Pereboeva, L.; Lamb, L.S. Improved Outcomes with Drug-resistant Immunotherapy in a Human Xenograft Model of Glioblastoma Multiforme; AACR: Philadelphia, PA, USA, 2017. [Google Scholar]
- Barré, B.; Vigneron, A.; Perkins, N.; Roninson, I.B.; Gamelin, E.; Coqueret, O. The STAT3 oncogene as a predictive marker of drug resistance. Trends Mol. Med. 2007, 13, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, L.; Wei, Q.; Shao, A. O6-methylguanine-DNA methyltransferase (MGMT): Challenges and new opportunities in glioma chemotherapy. Front. Oncol. 2020, 9, 1547. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.V.; Barbee, R.W. Responsible science and research animal use. ILAR J. 2019, 60, 1–4. [Google Scholar] [CrossRef]
- Yang, K.; Wu, Z.; Zhang, H.; Zhang, N.; Wu, W.; Wang, Z.; Dai, Z.; Zhang, X.; Zhang, L.; Peng, Y.; et al. Glioma targeted therapy: Insight into future of molecular approaches. Mol. Cancer 2022, 21, 39. [Google Scholar] [CrossRef]
- Yasaswi, P.S.; Shetty, K.; Yadav, K.S. Temozolomide nano enabled medicine: Promises made by the nanocarriers in glioblastoma therapy. J. Control. Release 2021, 336, 549–571. [Google Scholar] [CrossRef]
- Goenka, A.; Tiek, D.; Song, X.; Huang, T.; Hu, B.; Cheng, S.-Y. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 2021, 10, 484. [Google Scholar] [CrossRef]
- Maji, S.; Panda, S.; Samal, S.K.; Shriwas, O.; Rath, R.; Pellecchia, M.; Emdad, L.; Das, S.K.; Fisher, P.B.; Dash, R. Bcl-2 antiapoptotic family proteins and chemoresistance in cancer. Adv. Cancer Res. 2018, 137, 37–75. [Google Scholar]
- Thotakura, M.; Tirumalasetti, N.; Krishna, R. Role of Ki-67 labeling index as an adjunct to the histopathological diagnosis and grading of astrocytomas. J. Cancer Res. Ther. 2014, 10, 641. [Google Scholar] [PubMed]
- Neves, A.R.; Queiroz, J.F.; Reis, S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J. Nanobiotechnol. 2016, 14, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olbrich, C.; Kayser, O.; Müller, R.H. Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)—Effect of surfactants, storage time and crystallinity. Int. J. Pharm. 2002, 237, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Venkateswarlu, V.; Manjunath, K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release 2004, 95, 627–638. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, S.; Zhang, C.; Yin, C.; Chu, Z.; Song, C.; Lin, G.; Li, Q. Multidrug Resistance in Cancer Circumvented Using a Cytosolic Drug Reservoir. Adv. Sci. (Weinh) 2017, 5, 1700289. [Google Scholar] [CrossRef]
- Xu, W.; Bae, E.J.; Lee, M.-K. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. Int. J. Nanomed. 2018, 13, 7549–7563. [Google Scholar] [CrossRef] [Green Version]
- Fathy Abd-Ellatef, G.-E.; Gazzano, E.; Chirio, D.; Ragab Hamed, A.; Belisario, D.C.; Zuddas, C.; Peira, E.; Rolando, B.; Kopecka, J.; Assem Said Marie, M.; et al. Curcumin-Loaded Solid Lipid Nanoparticles Bypass P-Glycoprotein Mediated Doxorubicin Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics 2020, 12, 96. [Google Scholar] [CrossRef] [Green Version]
- Hartl, N.; Adams, F.; Merkel, O.M. From Adsorption to Covalent Bonding: Apolipoprotein E Functionalization of Polymeric Nanoparticles for Drug Delivery Across the Blood–Brain Barrier. Adv. Ther. 2021, 4, 2000092. [Google Scholar] [CrossRef]
- Shankar, J.; Geetha, K.; Wilson, B. Potential applications of nanomedicine for treating Parkinson’s disease. J. Drug Deliv. Sci. Technol. 2021, 66, 102793. [Google Scholar] [CrossRef]
- He, H.; Yao, J.; Zhang, Y.; Chen, Y.; Wang, K.; Lee, R.J.; Yu, B.; Zhang, X. Solid lipid nanoparticles as a drug delivery system to across the blood-brain barrier. Biochem. Biophys. Res. Commun. 2019, 519, 385–390. [Google Scholar] [CrossRef]
- Ou, A.; Ott, M.; Fang, D.; Heimberger, A.B. The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers 2021, 13, 437. [Google Scholar] [CrossRef] [PubMed]
- Brighi, N.; Farolfi, A.; Conteduca, V.; Gurioli, G.; Gargiulo, S.; Gallà, V.; Schepisi, G.; Lolli, C.; Casadei, C.; De Giorgi, U. The interplay between inflammation, anti-angiogenic agents, and immune checkpoint inhibitors: Perspectives for renal cell cancer treatment. Cancers 2019, 11, 1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.B. Cancer and apoptosis. In Understanding Cancer; Elsevier: Amsterdam, The Netherlands, 2022; pp. 103–116. [Google Scholar]
- Ham, I.-H.; Oh, H.J.; Jin, H.; Bae, C.A.; Jeon, S.-M.; Choi, K.S.; Son, S.-Y.; Han, S.-U.; Brekken, R.A.; Lee, D.; et al. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol. Cancer 2019, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Rébé, C.; Ghiringhelli, F. Interleukin-1β and Cancer. Cancers 2020, 12, 1791. [Google Scholar] [CrossRef]
- Lai, M.; Liu, G.; Li, R.; Bai, H.; Zhao, J.; Xiao, P.; Mei, J. Hsa_circ_0079662 induces the resistance mechanism of the chemotherapy drug oxaliplatin through the TNF-α pathway in human colon cancer. J. Cell. Mol. Med. 2020, 24, 5021–5027. [Google Scholar] [CrossRef] [Green Version]
Sr No. | Groups | Treatment | Duration |
---|---|---|---|
1 | PBS (Control) | TMZ | 21 Days (5 times a week) |
2 | PBS (Control) | SLNP-TMZ | 21 Days |
3 | Sensitive-cell-induced tumor | PBS | 21 Days |
4 | Sensitive-cell-induced tumor | TMZ | 21 Days |
5 | Sensitive-cell-induced tumor | SLNP-TMZ | 21 Days |
Sr No. | Genes | Primers |
---|---|---|
1 | β-actin (Homo sapiens) | F:CATGTACGTTGCTATCCAGGC R:CTCCTTAATGTCACGCACGAT |
2 | MGMT (Homo sapiens) | F:TTTTCCAGCAAGAGTCGTTCAC R:GGGACAGGATTGCCTCTCAT |
3 | STAT-3 (Homo sapiens) | F:ACCAGCAGTATAGCCGCTTC R:GCCACAATCCGGGCAATCT |
4 | Ki67 (Homo sapiens) | F:ATCATTGACCGCTCCTTTAGGT R:GCTCGCCTTGATGGTTCCT |
5 | Bcl-2 (Homo sapiens) | F:CATGTGTGTGGAGAGCGTCAA R:GCCGGTTCAGGTACTCAGTCA |
6 | IL-1β (Homo sapiens) | F:ACGATGCACCTGTACGATCA R:TCTTTCAACACGCAGGACAG |
7 | IL-6 (Homo sapiens) | F:AGGAGACTTGCCTGGTGAA R:CAGGGGTGGTTATTGCATCT |
8 | TNF-α (Homo sapiens) | F:TGGAGAAGGGTGACCGACTC R:TGCCCAGACTCGGCAAAG |
9 | β-actin (Mus musculus) | F:GGCTGTATTCCCCTCCATCG R:CCAGTTGGTAACAATGCCATGT |
10 | IL-1β (Mus musculus) | F:CAGGCAGGCAGTATCACTCA R:AGCTCATATGGGTCCGACAG |
11 | IL-6 (Mus musculus) | F:AGTTGCCTTCTTGGGACTGA R:TCCACGATTTCCCAGAGAAC |
12 | TNF-α (Mus musculus) | F:CAGGCGGTGCCTATGTCTC R:CGATCACCCCGAAGTTCAGTAG |
Compound | Element | Weight% | Atomic% |
---|---|---|---|
SLNP-TMZ | C | 25.91 | 33.47 |
O | 61.83 | 59.96 | |
Blank-SLNPs | C | 26.54 | 35.49 |
O | 50.37 | 50.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasir, S.; Nazir, S.; Hanif, R.; Javed, A. Glioblastoma Multiforme: Probing Solutions to Systemic Toxicity towards High-Dose Chemotherapy and Inflammatory Influence in Resistance against Temozolomide. Pharmaceutics 2023, 15, 687. https://doi.org/10.3390/pharmaceutics15020687
Nasir S, Nazir S, Hanif R, Javed A. Glioblastoma Multiforme: Probing Solutions to Systemic Toxicity towards High-Dose Chemotherapy and Inflammatory Influence in Resistance against Temozolomide. Pharmaceutics. 2023; 15(2):687. https://doi.org/10.3390/pharmaceutics15020687
Chicago/Turabian StyleNasir, Sadia, Sadia Nazir, Rumeza Hanif, and Aneela Javed. 2023. "Glioblastoma Multiforme: Probing Solutions to Systemic Toxicity towards High-Dose Chemotherapy and Inflammatory Influence in Resistance against Temozolomide" Pharmaceutics 15, no. 2: 687. https://doi.org/10.3390/pharmaceutics15020687