In Vitro and In Vivo Characterisation of a Mucoadhesive Buccal Film Loaded with Doxycycline Hyclate for Topical Application in Periodontitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. In Vitro Characterisation
2.3.1. Visual Inspection, Content Uniformity and Recovery of Doxy Hyc
2.3.2. Scanning Electron Microscopic Studies
2.3.3. X-ray Scattering Measurement
2.3.4. pH Study
2.3.5. Thickness, Folding Endurance, Tensile Strength
2.3.6. Swelling Index
2.3.7. In Vitro Release of Doxy Hyc from Mucoadhesive Buccal Films
2.3.8. Kinetic Release of Doxy Hyc
2.4. Ex Vivo Mucoadhesion Time
2.5. In Vivo Studies
2.5.1. Experiment Design
2.5.2. Induction of Periodontitis
2.5.3. Periodontal Treatment
2.5.4. Assessment of MMP-8 Salivary Levels
2.5.5. Evaluation of Periodontal Parameters
2.5.6. Histological Examination
2.6. Statistical Analysis
3. Results
3.1. In vitro Characterisation
3.1.1. Physical Appearance, Uniformity of Content and Stability of Doxy Hyc in Mucoadhesive Buccal Films
3.1.2. Surface Morphology of Studied Doxy Hyc Loaded Mucoadhesive Buccal Films
3.1.3. X-ray Diffraction Analysis
3.1.4. pH
3.1.5. Thickness, Folding Endurance, Tensile Strength
3.1.6. Swelling Index
3.1.7. In Vitro Drug Release
3.1.8. Mathematical Modeling of Drug Release Profiles
3.2. Ex Vivo Mucoadhesion Time
3.3. In Vivo Studies
3.3.1. Clinical and Histological Aspects of Experimentally-Induced Periodontitis
3.3.2. Clinical Effect of Doxy Hyc Mucoadhesive Buccal Film
3.3.3. Evolution of the Periodontal Parameters
3.3.4. Evolution of the Salivary MMP-8 Levels
3.3.5. Histological Findings
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Institute of Dental and Craniofacial Research. Periodontal Disease in Adults (Age 30 or Older). Available online: https://www.nidcr.nih.gov/research/data-statistics/periodontal-disease/adults (accessed on 15 November 2022).
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol 2018, 45, S162–S170. [Google Scholar] [CrossRef] [PubMed]
- Baranov, N.; Popa, M.; Atanase, L.I.; Ichim, D.L. Biopolymer-Based Drug Delivery Systems for the Treatment of Periodontitis. Molecules 2021, 26, 2735. [Google Scholar] [CrossRef] [PubMed]
- Gondivkar, S.; Gadbail, A.; Sarode, G.S.; Sarode, S.C.; Patil, S.; Awan, K.H. Infectious diseases of oral cavity. Dis Mon 2019, 65, 164. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.G.; Takei, H.; Klokkevold, P.R.; Carranza, F.A. Newman and Carranza’s Clinical Periodontology, 13th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018; pp. 639–647. [Google Scholar]
- Singh, G.; Gokhale, S.T.; Manjunath, S.; Al-Qahtani, S.M.; Nagate, R.R.; Venkataram, V.; Joseph, B. Evaluation of locally administered controlled-release doxycycline hyclate gel in smokers and non-smokers in the management of periodontitis: An Indian study. Trop. J. Pharm. Res. 2021, 20, 1739–1747. [Google Scholar] [CrossRef]
- Patlolla, V.G.R.; Popovic, N.; Peter Holbrook, W.; Kristmundsdottir, T.; Gizurarson, S. Effect of Doxycycline Microencapsulation on Buccal Films: Stability, Mucoadhesion and In Vitro Drug Release. Gels 2021, 7, 51. [Google Scholar] [CrossRef]
- Matesanz-Pérez, P.; García-Gargallo, M.; Figuero, E.; Bascones-Martínez, A.; Sanz, M.; Herrera, D. A systematic review on the effects of local antimicrobials as adjuncts to subgingival debridement, compared with subgingival debridement alone, in the treatment of chronic periodontitis. J. Clin. Periodontol. 2013, 40, 227–241. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, W. A comparative study of systemic subantimicrobial and topical treatment of minocycline in experimental periodontitis of rats. Arch. Oral. Biol. 2006, 51, 794–803. [Google Scholar] [CrossRef]
- Jiao, Y.; Tay, F.R.; Niu, L.-N.; Chen, J.-H. Advancing antimicrobial strategies for managing oral biofilm infections. Int. J. Oral. Sci. 2019, 11, 28. [Google Scholar] [CrossRef]
- Nguyen, S.; Hiorth, M. Advanced drug delivery systems for local treatment of the oral cavity. Ther. Deliv. 2015, 6, 595–608. [Google Scholar] [CrossRef]
- Senel, S.; Ikinci, G.; Kas, S.; Yousefi-Rad, A.; Sargon, M.F.; Hincal, A.A. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int. J. Pharm. 2000, 193, 197–203. [Google Scholar] [CrossRef]
- Holpuch, A.; Desai, K.G.; Schwendeman, S.; Mallery, S. Optimizing therapeutic efficacy of chemopreventive agents. A critical review of delivery strategies in oral cancer chemoprevention clinical trials. J. Carcinog. 2011, 10, 23. [Google Scholar]
- Sankar, V.; Hearnden, V.; Hull, K.; Juras, D.V.; Greenberg, M.S.; Kerr, A.R.; Lockhart, P.B.; Patton, L.L.; Porter, S.; Thornhill, M. Local drug delivery for oral mucosal diseases. Challenges and opportunities. Oral. Dis. 2011, 17, 73–84. [Google Scholar] [CrossRef]
- Rata, D.M.; Cadinoiu, A.N.; Burlui, V.; Atanase, L.I. Polysaccharide-based orodental delivery systems. In Polysaccharide Carriers for Drug Delivery; Maiti, S., Jana, S., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 685–711. [Google Scholar]
- Rajeshwari, H.R.; Dhamecha, D.; Jagwani, S.; Rao, M.; Jadhav, K.; Shaikh, S.; Puzhankara, L.; Jalalpure, S. Local drug delivery systems in the management of periodontitis: A scientific review. J. Control. Rel. 2019, 307, 393–409. [Google Scholar]
- Dinte, E.; Tomuta, I.; Iovanov, R.I.; Leucuta, S.E. Design and formulation of buccal mucoadhesive preparation based on sorbitan monostearate oleogel. Farmacia 2013, 61, 284–297. [Google Scholar]
- Li, A.; Khan, I.N.; Khan, I.U.; Yousaf, A.M.; Shahzad, Y. Gellan Gum-Based Bilayer Mucoadhesive Films Loaded with Moxifloxacin Hydrochloride and Clove Oil for Possible Treatment of Periodontitis. Drug Des. Devel. Ther. 2021, 15, 3937–3952. [Google Scholar] [CrossRef]
- Fenton, O.S.; Olafson, K.N.; Pillai, P.S.; Mitchell, M.J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328. [Google Scholar] [CrossRef]
- George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers-based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019, 561, 244–264. [Google Scholar] [CrossRef]
- Skulason, S.; Asgeirsdottir, M.S.; Magnusson, J.P.; Kristmundsdottir, T. Evaluation of polymeric films for buccal drug delivery. Pharmazie 2009, 64, 197–201. [Google Scholar]
- Olechno, K.; Basa, A.; Winnicka, K. “Success Depends on Your Backbone”—About the Use of Polymers as Essential Materials Forming Orodispersible Films. Materials 2021, 14, 4872. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Hoffman, A. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.; Slaughter, B.; Kanzelberger, M. Hydrogels. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 385–395. [Google Scholar] [CrossRef]
- Skulason, S.; Holbrook, W.P.; Thormar, H.; Gunnarsson, G.B.; Kristmundsdottir, T. A study of the clinical activity of a gel combining monocaprin and doxycycline: A novel treatment for herpes labialis. J. Oral. Pathol. Med. 2012, 41, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Eskitoros-Togay, M.S.; Bulbul, Y.E.; Tort, S.; Korkmaz, F.D.; Acaturk, F.; Dilsiz, N. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int. J. Pharm. 2019, 565, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Tan, O.L.; Safii, S.H.; Razali, M. Commercial local pharmacotherapeutics and adjunctive agents for nonsurgical treatment of periodontitis: A contemporary review of clinical efficacies and challenges. Antibiotics 2019, 9, 11. [Google Scholar] [CrossRef]
- Benjamin, M.M.; Khalil, R.A. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. Exp. Suppl. 2012, 103, 209–279. [Google Scholar] [CrossRef]
- Liu, J.; Xiong, W.; Baca-Regen, L.; Nagase, H.; Baxter, B.T. Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells. J. Vasc. Surg. 2003, 38, 1376–1383. [Google Scholar] [CrossRef]
- Goktolga, U.; Cavkaytar, S.; Altinbas, S.K.; Tapisiz, O.L.; Tapisiz, A.; Erdem, O. Effect of the non-specific matrix metalloproteinase inhibitor Doxycycline on endometriotic implants in an experimental rat model. Exp. Ther. Med. 2015, 9, 1813–1818. [Google Scholar] [CrossRef]
- Patlolla, V.G.R.; Holbrook, W.P.; Gizurarson, S.; Kristmundsdottir, T. Long-term Stabilization of Aqueous Doxycycline Formulations, in Mucoadhesive Hydrogels for Treatment of Oral Mucosal Conditions. Curr. Drug Discov. Technol. 2020, 17, 376–386. [Google Scholar] [CrossRef]
- Loftsson, T. Chapter 6–Drug Degradation in Solid State. In Drug Stability for Pharmaceutical Scientists; Loftsson, T., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 115–120. [Google Scholar]
- Skúlason, S.; Ingólfsson, E.; Kristmundsdóttir, T. Development of a simple HPLC method for separation of doxycycline and its degradation products. J. Pharm. Biomed. Anal. 2003, 33, 667–672. [Google Scholar] [CrossRef]
- Patlolla, V.G.R.; Holbrook, W.P.; Gizurarson, S.; Kristmundsdottir, T. Doxycycline and Monocaprin In Situ Hydrogel: Effect on Stability, Mucoadhesion and Texture Analysis and In Vitro Release. Gels 2019, 5, 47. [Google Scholar] [CrossRef]
- Ammar, H.O.; Ghorab, M.M.; Mahmoud, A.A.; Shahin, H.I. Design and In Vitro/In Vivo Evaluation of Ultra-Thin Mucoadhesive Buccal Film Containing Fluticasone Propionate. AAPS PharmSciTech 2017, 18, 93–103. [Google Scholar] [CrossRef]
- Abdella, S.; Afinjuomo, F.; Song, Y.; Upton, R.; Garg, S. Mucoadhesive Buccal Film of Estradiol for Hormonal Replacement Therapy: Development and In-Vivo Performance Prediction. Pharmaceutics 2022, 14, 542. [Google Scholar] [CrossRef]
- Gupta, A.; Garg, S.; Khar, R.K. Measurement of bioadhesive strength of mucoadhesive buccal tablets: Design of an in-vitro assembly. Indian Drugs 1993, 30, 1–6. [Google Scholar]
- Boșca, A.B.; Dinte, E.; Colosi, H.; Ilea, A.; Câmpian, R.S.; Uifălean, A.; Parvu, A.E. Curcumin effect on nitro-oxidative stress in ligature-induced rat periodontitis. Rom. Biotechnol. Lett. 2015, 20, 10708–10717. [Google Scholar]
- Khan, G.; Yadav, S.K.; Patel, R.R.; Nath, G.; Bansal, M.; Mishra, B. Development and Evaluation of Biodegradable Chitosan Films of Metronidazole and Levofloxacin for the Management of Periodontitis. AAPS PharmSciTech 2016, 17, 1312–1325. [Google Scholar] [CrossRef] [Green Version]
- Graziani, F.; Karapetsa, D.; Alonso, B.; Herrera, D. Nonsurgical and surgical treatment of periodontitis: How many options for one disease? Periodontol 2000 2017, 75, 152–188. [Google Scholar] [CrossRef]
- Sorsa, T.; Gursoy, U.K.; Nwhator, S.; Hernandez, M.; Tervahartiala, T.; Leppilahti, J.; Gursoy, M.; Könönen, E.; Emingil, G.; Pussinen, P.J.; et al. Analysis of matrix metalloproteinases, especially MMP-8, in gingival creviclular fluid, mouthrinse and saliva for monitoring periodontal diseases. Periodontol 2000 2016, 70, 142–163. [Google Scholar] [CrossRef]
- Ilea, A.; Andrei, V.; Feurdean, C.N.; Băbțan, A.M.; Petrescu, N.B.; Câmpian, R.S.; Boșca, A.B.; Ciui, B.; Tertiș, M.; Săndulescu, R.; et al. Saliva, a Magic Biofluid Available for Multilevel Assessment and a Mirror of General Health—A Systematic Review. Biosensors 2019, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Boșca, A.B.; Miclăuș, V.; Rațiu, C.; Melincovici, C. Matrix metalloproteinase-8—A Salivary diagnostic biomarker related to soft tissue destruction in chronic periodontitis. Ann. RSCB 2012, 17, 251–257. [Google Scholar]
Component | Formulation | ||
---|---|---|---|
F1 | F2 | F3 | |
HPMC E3 (g) | 1 | 1 | 1 |
HPMC K4 (g) | 0.15 | 0.05 | 0.20 |
C 940 (g) | 0.25 | 0.35 | 0.20 |
Propylene Glycol (mL) | 1.10 | 1.10 | 1.10 |
Glycerol (mL) | 0.20 | 0.20 | 0.20 |
Doxy Hyc (g) | 0.25 | 0.25 | 0.25 |
Ethanol 95% (mL) | 35 | 35 | 35 |
Content | Formulation | ||
---|---|---|---|
F1 | F2 | F3 | |
Doxy Hyc content in the fresh films (mg Doxy Hyc/100 mg film) | 7.83 ± 0.41 | 7.52 ± 0.42 | 7.79 ± 0.39 |
Recovery in Doxy Hyc content in the films, 6 months after preparation (%) | 94.21 ± 1.14 | 95.34 ± 4.22 | 96.25 ± 2.33 |
Recovery in Doxy-Hyc content in the films, 12 months after preparation (%) | 93.45 ± 3.24 | 92.88 ± 5.23 | 94.65 ± 5.36 |
Parameters | Formulation | ||
---|---|---|---|
F1 | F2 | F3 | |
pH | 6.3 ± 0.33 | 5.9 ± 0.20 | 6.8 ± 0.27 |
Folding endurance | >350 | >350 | >350 |
Thickness (mm) | 0.37 ± 0.01 | 0.45 ± 0.02 | 0.35 ± 0.01 |
Tensile strength (MPa) | 0.232 ± 0.011 | 0.122 ± 0.012 | 0.390 ± 0.066 |
Swelling index (%) at 180 min | 11.62 ± 3.54 | 17.02 ± 2.16 | 43.47 ± 8.27 |
Ex vivo bioadhesion time (min) | 285 ± 10 | 225 ± 12 | 180 ± 17 |
Kinetic Models | Parameters | Formulation | ||
---|---|---|---|---|
F1 | F2 | F3 | ||
Zero—order model | R2 | 0.6193 | 0.5998 | 0.7412 |
K0 | 2.76 | 2.53 | 2.94 | |
First—order model | R2 | 0.9278 | 0.8799 | 0.9908 |
K1 | 0.134 | 0.109 | 0.178 | |
Higuchi model | R2 | 0.8434 | 0.8261 | 0.9212 |
KH | 16.83 | 15.46 | 17.05 | |
Korsmeyer-Peppas model | R2 | 0.9589 | 0.9532 | 0.9792 |
KHP | 44.67 | 46.65 | 43.90 | |
n | 0.303 | 0.275 | 0.286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinte, E.; Muntean, D.M.; Andrei, V.; Boșca, B.A.; Dudescu, C.M.; Barbu-Tudoran, L.; Borodi, G.; Andrei, S.; Gal, A.F.; Rus, V.; et al. In Vitro and In Vivo Characterisation of a Mucoadhesive Buccal Film Loaded with Doxycycline Hyclate for Topical Application in Periodontitis. Pharmaceutics 2023, 15, 580. https://doi.org/10.3390/pharmaceutics15020580
Dinte E, Muntean DM, Andrei V, Boșca BA, Dudescu CM, Barbu-Tudoran L, Borodi G, Andrei S, Gal AF, Rus V, et al. In Vitro and In Vivo Characterisation of a Mucoadhesive Buccal Film Loaded with Doxycycline Hyclate for Topical Application in Periodontitis. Pharmaceutics. 2023; 15(2):580. https://doi.org/10.3390/pharmaceutics15020580
Chicago/Turabian StyleDinte, Elena, Dana Maria Muntean, Vlad Andrei, Bianca Adina Boșca, Cristian Mircea Dudescu, Lucian Barbu-Tudoran, Gheorghe Borodi, Sanda Andrei, Adrian Florin Gal, Vasile Rus, and et al. 2023. "In Vitro and In Vivo Characterisation of a Mucoadhesive Buccal Film Loaded with Doxycycline Hyclate for Topical Application in Periodontitis" Pharmaceutics 15, no. 2: 580. https://doi.org/10.3390/pharmaceutics15020580
APA StyleDinte, E., Muntean, D. M., Andrei, V., Boșca, B. A., Dudescu, C. M., Barbu-Tudoran, L., Borodi, G., Andrei, S., Gal, A. F., Rus, V., Gherman, L.-M., Cadar, O., Barabas, R., Niculae, M., & Ilea, A. (2023). In Vitro and In Vivo Characterisation of a Mucoadhesive Buccal Film Loaded with Doxycycline Hyclate for Topical Application in Periodontitis. Pharmaceutics, 15(2), 580. https://doi.org/10.3390/pharmaceutics15020580