Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantification of BNN27 Concentration in Formulations
2.2. Preparation and Characterization of LIP and Chitosan Coated LIPs
2.2.1. Preparation of BNN27-Loaded LIPs
2.2.2. Preparation of Chitosan-Coated LIPs
2.2.3. Physicochemical Properties of LIPs
2.3. Preparation of BNN27-Loaded Nanoemulsion
2.3.1. Solubility of BNN27 in Potential NE Ingredients
2.3.2. Optimization of NE Formulation
2.3.3. Preparation of BNN27-Loaded NEs
2.3.4. Physicochemical Properties and Stability of NEs
2.4. Mucoadhesive Properties
2.5. Cell Culture Studies
2.5.1. Cytotoxicity Assessment
2.5.2. Cell-Monolayer Permeation Studies
2.6. Transmission Electron Microscopy (TEM)
2.7. In Vivo Studies
2.8. Statistical Analysis
3. Results and Discussion
3.1. BNN-Loaded LIPs and Chitosan-Coated LIPs
3.1.1. BNN Loading in LIPs
3.1.2. Coating of BNN27-Loaded LIPs with Chitosan
3.2. Development of BNN27-Loaded Nanoemulsions
3.2.1. BNN27 Solubility Studies—Selection of NE Ingredients
3.2.2. Selection of Optimal Surfactant and Composition for NE
3.2.3. Properties of BNN27-Loaded NEs
3.3. Cytotoxicity Evaluation
3.4. TEM Morphology
3.5. Mucoadhesive Properties
3.6. In Vitro and In Vivo Studies
3.6.1. In Vitro Permeability across hCMEC/D3 Monolayer
3.6.2. BNN27 In Vivo Intranasal Delivery Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
References
- Kokras, N.; Dioli, C.; Paravatou, R.; Sotiropoulos, M.G.; Delis, F.; Antoniou, K.; Calogeropoulou, T.; Charalampopoulos, I.; Gravanis, A.; Dalla, C. Psychoactive Properties of BNN27, a Novel Neurosteroid Derivate, in Male and Female Rats. Psychopharmacology 2020, 237, 2435–2449. [Google Scholar] [CrossRef] [PubMed]
- Charalampopoulos, I.; Remboutsika, E.; Margioris, A.N.; Gravanis, A. Neurosteroids as Modulators of Neurogenesis and Neuronal Survival. Trends Endocrinol. Metab. 2008, 19, 300–307. [Google Scholar] [CrossRef]
- Calogeropoulou, T.; Avlonitis, N.; Minas, V.; Alexi, X.; Pantzou, A.; Charalampopoulos, I.; Zervou, M.; Vergou, V.; Katsanou, E.S.; Lazaridis, I.; et al. Novel Dehydroepiandrosterone Derivatives with Antiapoptotic, Neuroprotective Activity. J. Med. Chem. 2009, 52, 6569–6587. [Google Scholar] [CrossRef]
- Bennett, J.P.; O’Brien, L.C.; Brohawn, D.G. Pharmacological Properties of Microneurotrophin Drugs Developed for Treatment of Amyotrophic Lateral Sclerosis. Biochem. Pharmacol. 2016, 117, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Lisa, S.; Iban- Arias, R.; Kokona, D.; Charalampopoulos, I.; Gravanis, A.; Thermos, K. Effects of Novel Synthetic Microneurotrophins in Diabetic Retinopathy. Springerplus 2015, 4, L25. [Google Scholar] [CrossRef]
- Tsika, C.; Tzatzarakis, M.N.; Antimisiaris, S.G.; Tsoka, P.; Efstathopoulos, P.; Charalampopoulos, I.; Gravanis, A.; Tsilimbaris, M.K. Quantification of BNN27, a Novel Neuroprotective Spiroepoxy Dehydroepiandrosterone Derivative in the Blood and Retina of Rodents, after Single Intraperitoneal Administration. Pharmacol. Res. Perspect. 2021, 9, e00724. [Google Scholar] [CrossRef]
- Gravanis, A.; Pediaditakis, I.; Charalampopoulos, I. Synthetic Microneurotrophins in Therapeutics of Neurodegeneration. Oncotarget 2017, 8, 9005–9006. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-Brain Drug Delivery: An Update on Clinical Challenges and Progress towards Approval of Anti-Alzheimer Drugs. J. Control. Release 2018, 281, 139–177. [Google Scholar] [CrossRef]
- Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent Advances in Carrier Mediated Nose-to-Brain Delivery of Pharmaceutics. Eur. J. Pharm. Biopharm. 2018, 128, 337–362. [Google Scholar] [CrossRef]
- Bonferoni, M.C.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “Nose-to-Brain” Drug Delivery. Pharmaceutics 2019, 11, 84. [Google Scholar] [CrossRef]
- Richmond, W. Preparation and Properties of a Cholesterol Oxidase from Nocardia Sp. and Its Application to the Enzymatic Assay of Total Cholesterol in Serum. Clin. Chem. 1973, 19, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic Determination of Total Serum Cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Zaru, M.; Manca, M.L.; Fadda, A.M.; Antimisiaris, S.G. Chitosan-Coated LIPs for Delivery to Lungs by Nebulisation. Colloids Surf. B Biointerfaces 2009, 71, 88–95. [Google Scholar] [CrossRef]
- Markoutsa, E.; Papadia, K.; Giannou, A.D.; Spella, M.; Cagnotto, A.; Salmona, M.; Stathopoulos, G.T.; Antimisiaris, S.G. Mono and Dually Decorated NanoLIPs for Brain Targeting, in vitro and in vivo Studies. Pharm. Res. 2014, 31, 1275–1289. [Google Scholar] [CrossRef]
- Filipovic, J.; Enjak, I.J. Mucoadhesive Chitosan-Coated LIPs: Characteristics. J. Microencapsul. 2001, 18, 3–12. [Google Scholar] [CrossRef]
- Stewart, J.C. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal. Biochem. 1980, 104, 10–14. [Google Scholar] [CrossRef]
- Kumar, M.; Misra, A.; Babbar, A.K.; Mishra, A.K.; Mishra, P.; Pathak, K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int. J. Pharm. 2008, 358, 285–291. [Google Scholar] [CrossRef]
- Kumar, M.; Pathak, K.; Misra, A. Formulation and Characterization of Nanoemulsion-Based Drug Delivery System of Risperidone. Drug Dev. Ind. Pharm. 2009, 35, 387–395. [Google Scholar] [CrossRef]
- Haider, M.F.; Khan, S.; Gaba, B.; Alam, T.; Baboota, S.; Ali, J.; Ali, A. Optimization of rivastigmine nanoemulsion for enhanced brain delivery: In-vivo and toxicity evaluation. J. Mol. Liq. 2018, 255, 384–396. [Google Scholar] [CrossRef]
- Boche, M.; Pokharkar, V. Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency. AAPS PharmSciTech 2017, 18, 686–696. [Google Scholar] [CrossRef]
- Mallick, A.; Gupta, A.; Hussain, A.; Aparajay, P.; Singh, S.; Singh, S.K.; Dev, A. Intranasal delivery of gabapentin loaded optimized nanoemulsion for augmented permeation. J. Drug Deliv. Sci. Technol. 2020, 56, 101606. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Poller, B.; Gutmann, H.; Krähenbühl, S.; Weksler, B.; Romero, I.; Couraud, P.O.; Tuffin, G.; Drewe, J.; Huwyler, J. The Human Brain Endothelial Cell Line HCMEC/D3 as a Human Blood-Brain Barrier Model for Drug Transport Studies. J. Neurochem. 2008, 107, 1358–1368. [Google Scholar] [CrossRef]
- Markoutsa, E.; Papadia, K.; Clemente, C.; Flores, O.; Antimisiaris, S.G. Anti-Aβ-MAb and dually decorated nanoLIPs: Effect of Aβ1-42 peptides on interaction with hCMEC/D3 cells. Eur. J. Pharm. Biopharm. 2012, 81, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Franken, L.E.; Boekema, E.J.; Stuart, M.C.A. Transmission Electron Microscopy as a Tool for the Characterization of Soft Materials: Application and Interpretation. Adv. Sci. 2017, 4, 1600476. [Google Scholar] [CrossRef]
- Kanazawa, T.; Fukuda, M.; Suzuki, N.; Suzuki, T. Novel Methods for Intranasal Administration Under Inhalation Anesthesia to Evaluate Nose-to-Brain Drug Delivery. J. Vis. Exp. 2018, 141, e58485. [Google Scholar] [CrossRef] [PubMed]
- Perugini, P.; Genta, I.; Pavanetto, F.; Conti, B.; Scalia, S.; Baruffini, A. Study on Glycolic Acid Delivery by LIPs and Microspheres. Int. J. Pharm. 2000, 196, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Illum L Transport of Drugs from the Nasal Cavity to the Central Nervous System. Eur. J. Pharm. Sci. 2000, 11, 1–18. [CrossRef] [PubMed]
- Battaglia, L.; Panciani, P.P.; Muntoni, E.; Capucchio, M.T.; Biasibetti, E.; De Bonis, P.; Mioletti, S.; Fontanella, M.; Swaminathan, S. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin. Drug Deliv. 2018, 15, 369–378. [Google Scholar] [CrossRef]
- Zha, S.; Wong, K.L.; All, A.H. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv. Health Mater. 2022, 11, e2102610. [Google Scholar] [CrossRef] [PubMed]
- Campion, R.P. The Influence of Structure on Autohesion (Self-Tack) and Other Forms of Diffusion into Polymers. J. Adhes. 1975, 7, 1–23. [Google Scholar] [CrossRef]
- Deryaguin, B.V.; Toporow, Y.P.; Mueler, V.M. On the Relationship between the Electrostatic and Molecular Component of the Adhesion of Elastic Particles to a Solid Surface. J. Colloid Interface Sci. 1997, 58, 528–533. [Google Scholar] [CrossRef]
- Kaelble, D.H. A Surface Energy Analysis of Bioadhesion. Polymer 1977, 18, 475–482. [Google Scholar] [CrossRef]
- Helfand, E.; Tagami, Y. Theory of the Interface between Immiscible Polymers. J. Chem. Phys. 1972, 57, 1821–1823. [Google Scholar] [CrossRef]
- Thongborisute, J.; Takeuchi, H. Evaluation of Mucoadhesiveness of Polymers by BIACORE Method and Mucin-Particle Method. Int. J. Pharm. 2008, 354, 204–209. [Google Scholar] [CrossRef]
- Sun, Y.; Cui, F.; Shi, K.; Wang, J.; Niu, M.; Ma, R. The Effect of Chitosan Molecular Weight on the Characteristics of Spray-Dried Methotrexate-Loaded Chitosan Microspheres for Nasal Administration. Drug Dev. Ind. Pharm. 2009, 35, 379–386. [Google Scholar] [CrossRef]
- Karn, P.R.; Vanić, Z.; Pepić, I.; Škalko-Basnet, N. Mucoadhesive Liposomal Delivery Systems: The Choice of Coating Material. Drug Dev. Ind. Pharm. 2011, 37, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Matsui, Y.; Yamamoto, H.; Kawashima, Y. Mucoadhesive Properties of Carbopol or Chitosan-Coated LIPs and Their Effectiveness in the Oral Administration of Calcitonin to Rats. J. Control. Release 2003, 86, 235–242. [Google Scholar] [CrossRef]
- Dhuria, S.V.; Hanson, L.R.; Frey, W.H., 2nd. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci. 2010, 99, 1654–1673. [Google Scholar] [CrossRef] [PubMed]
- Kadakia, E.; Shah, L.; Amiji, M.M. Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers. Pharm. Res. 2017, 34, 1416–1427. [Google Scholar] [CrossRef]
- Rinaldi, F.; Oliva, A.; Sabatino, M.; Imbriano, A.; Hanieh, P.N.; Garzoli, S.; Mastroianni, C.M.; De Angelis, M.; Miele, M.C.; Arnaut, M.; et al. Antimicrobial Essential Oil Formulation: Chitosan Coated Nanoemulsions for Nose to Brain Delivery. Pharmaceutics 2020, 12, 678. [Google Scholar] [CrossRef]
- Salem, L.H.; El-Feky, G.S.; Fahmy, R.H.; El Gazayerly, O.N.; Abdelbary, A. Coated Lipidic Nanoparticles as a New Strategy for Enhancing Nose-to-Brain Delivery of a Hydrophilic Drug Molecule. J. Pharm. Sci. 2020, 109, 2237–2251. [Google Scholar] [CrossRef]
- Jojo, G.M.; Kuppusamy, G.; De, A.; Karri, V.V.S.N.R. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design. Drug Dev. Ind. Pharm. 2019, 45, 1061–1072. [Google Scholar] [CrossRef]
- Formica, M.L.; Real, D.A.; Picchio, M.L.; Catlin, E.; Donnelly, R.F.; Paredes, A.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Appl. Mater. Today 2022, 29, 101631. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, R.; Alam, A.; Samim, M.; Iqbal, Z.; Ahmad, F. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int. J. Biol. Macromol. 2016, 88, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Abdou, E.M.; Kandil, S.M.; El Miniawy, H.M. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int. J. Pharm. 2017, 529, 667–677. [Google Scholar] [CrossRef]
- Ahmad, E.; Feng, Y.; Qi, J.; Fan, W.; Ma, Y.; He, H.; Xia, F.; Dong, X.; Zhao, W.; Lu, Y.; et al. Evidence ofnose-to-brain delivery of nanoemulsions: Cargoes but not vehicles. Nanoscale 2017, 9, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Clares, B.; Calpena, A.C.; Parra, A.; Abrego, G.; Alvarado, H.; Fangueiro, J.F.; Souto, E.B. Nanoemulsions (NEs), LIPs (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: Effect on skin permeation. Int. J. Pharm. 2014, 473, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Molska, A.; Nyman, A.K.G.; Sofias, A.M.; Kristiansen, K.A.; Hak, S.; Widerøe, M. In vitro and in vivo evaluation of organic solvent-free injectable melatonin nanoformulations. Eur. J. Pharm. Biopharm. 2020, 152, 248–256. [Google Scholar] [CrossRef]
Lipos | CHT MW-CHT/LIP (w/w) | Mean Diameter (nm) | PDI | ζ-Potential (mV) | Coating Efficiency (%) |
---|---|---|---|---|---|
PC | Non-coated | 78.1 ± 1.15 | 0.281 | −3.48 ± 0.49 | - |
Low-0.1 | 123.7 ± 2.17 | 0.398 | 3.65 ± 0.27 | 3.5 ± 0.2 | |
Med.-0.1 | 158.8 ± 6.27 | 0.405 | 4.57 ± 0.18 | 4.8 ± 0.6 | |
PC/PG | Non-coated | 83.01 ± 1.36 | 0.263 | −12.4 ± 0.689 | - |
Low-0.1 | 822 ± 21.54 | 0.452 | 15.2 ± 0.47 | 79.9 ± 1.5 | |
Med.-0.1 | 1147 ± 86.27 | 0.447 | 23.1 ± 1.41 | 85.1 ± 4.5 | |
Med.-0.3 | 2563.5 ± 109.6 | 0.592 | 24.4 ± 1.273 | 78.2 ± 0.7 | |
Med.-0.5 | 5155 ± 51.24 | 0.617 | 29.4 ± 0.689 | 81.4 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannavou, M.; Karali, K.; Katsila, T.; Siapi, E.; Marazioti, A.; Klepetsanis, P.; Calogeropoulou, T.; Charalampopoulos, I.; Antimisiaris, S.G. Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery. Pharmaceutics 2023, 15, 419. https://doi.org/10.3390/pharmaceutics15020419
Kannavou M, Karali K, Katsila T, Siapi E, Marazioti A, Klepetsanis P, Calogeropoulou T, Charalampopoulos I, Antimisiaris SG. Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery. Pharmaceutics. 2023; 15(2):419. https://doi.org/10.3390/pharmaceutics15020419
Chicago/Turabian StyleKannavou, Maria, Kanelina Karali, Theodora Katsila, Eleni Siapi, Antonia Marazioti, Pavlos Klepetsanis, Theodora Calogeropoulou, Ioannis Charalampopoulos, and Sophia G. Antimisiaris. 2023. "Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery" Pharmaceutics 15, no. 2: 419. https://doi.org/10.3390/pharmaceutics15020419
APA StyleKannavou, M., Karali, K., Katsila, T., Siapi, E., Marazioti, A., Klepetsanis, P., Calogeropoulou, T., Charalampopoulos, I., & Antimisiaris, S. G. (2023). Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery. Pharmaceutics, 15(2), 419. https://doi.org/10.3390/pharmaceutics15020419