Freeze-Drying of Encapsulated Bacteriophage T4 to Obtain Shelf-Stable Dry Preparations for Oral Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteriophage and Bacteria
2.2. Encapsulation of Bacteriophage T4
2.3. Lyophilization of Encapsulated Bacteriophage T4
2.4. Release of Phages from Microspheres
2.5. Stability of Encapsulated Bacteriophages in the Simulated Gastrointestinal Conditions
2.6. Statistical Analysis
3. Results
3.1. Encapsulation of Bacteriophage T4
3.2. Lyophilization of Bacteriophage T4
3.3. Viability of Encapsulated Bacteriophage T4 after Storage
3.4. Stability of Immobilized Phage T4 in Simulated Gastrointestinal Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aranaga, C.; Pantoja, L.D.; Martínez, E.A.; Falco, A. Phage therapy in the era of multidrug resistance in bacteria: A systematic review. Int. J. Mol. Sci. 2022, 23, 4577. [Google Scholar] [CrossRef] [PubMed]
- Taati Moghadam, M.; Khoshbayan, A.; Chegini, Z.; Farahani, I.; Shariati, A. Bacteriophages, a new therapeutic solution for inhibiting multidrug-resistant bacteria causing wound infection: Lesson from animal models and clinical trials. Drug Des. Devel. Ther. 2020, 14, 1867–1883. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Brives, C.; Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun. 2020, 6, 100. [Google Scholar] [CrossRef]
- Moelling, K.; Broecker, F.; Willy, C.A. Wake-up call: We need phage therapy now. Viruses 2018, 10, 688. [Google Scholar] [CrossRef] [PubMed]
- Altamirano, F.L.G.; Barr, J.J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 2019, 32, e00066-18. [Google Scholar] [CrossRef]
- Briot, T.; Kolenda, C.; Ferry, T.; Medina, M.; Laurent, F.; Leboucher, G.; Pirot, F.; PHAGEinLYON Study Group. Paving the way for phage therapy using novel drug delivery approaches. J. Control Release 2022, 347, 414–424. [Google Scholar] [CrossRef]
- Sacher, J.C.; Zheng, J. Phage therapy collaboration and compassionate use. In Bacteriophages; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Qadir, M.I.; Mobeen, T.; Masood, A. Phage therapy: Progress in pharmacokinetics. Braz. J. Pharm. Sci. 2018, 54, e17093. [Google Scholar] [CrossRef]
- Międzybrodzki, R.; Kłak, M.; Jończyk-Matysiak, E.; Bubak, B.; Wójcik, A.; Kaszowska, M.; Weber-Dąbrowska, B.; Łobocka, M.; Górski, A. Means to facilitate the overcoming of gastric juice barrier by a therapeutic staphylococcal bacteriophage A5/80. Front. Microbiol. 2017, 8, 467. [Google Scholar] [CrossRef]
- Dąbrowska, K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 2019, 39, 2000–2025. [Google Scholar] [CrossRef]
- Rosner, D.; Clark, J. Formulations for bacteriophage therapy and the potential uses of immobilization. Pharmaceuticals 2021, 14, 359. [Google Scholar] [CrossRef] [PubMed]
- Rotman, S.G.; Sumrall, E.; Ziadlou, R.; Grijpma, D.W.; Richards, R.G.; Eglin, D.; Moriarty, T.F. Local bacteriophage delivery for treatment and prevention of bacterial infections. Front. Microbiol. 2020, 11, 538060. [Google Scholar] [CrossRef] [PubMed]
- Loh, B.; Gondil, V.S.; Manohar, P.; Khan, F.M.; Yang, H.; Leptihn, S. Encapsulation and delivery of therapeutic phages. Appl. Environ. Microbiol. 2021, 87, e01979-20. [Google Scholar] [CrossRef] [PubMed]
- Śliwka, P.; Mituła, P.; Mituła, A.; Skaradziński, G.; Choińska-Pulit, A.; Niezgoda, N.; Weber-Dąbrowska, B.; Żaczek, M.; Skaradzińska, A. Encapsulation of bacteriophage T4 in mannitol-alginate dry macrospheres and survival in simulated gastrointestinal conditions. LWT—Food Sci. Technol. 2019, 99, 238–243. [Google Scholar] [CrossRef]
- Skaradzińska, A.; Śliwka, P.; Kuźmińska-Bajor, M.; Skaradziński, G.; Rząsa, A.; Friese, A.; Roschanski, N.; Murugaiyan, J.; Roesler, U.H. The efficacy of isolated bacteriophages from pig farms against ESBL/AmpC-producing Escherichia coli from pig and turkey farms. Front. Microbiol. 2017, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.H. Enumeration of bacteriophage particles. In The Bacteriophages; Adams, M.H., Ed.; Inter Science Publ.: New York, NY, USA, 1959; pp. 27–30. [Google Scholar] [CrossRef]
- Yongsheng, M.; Pacan, J.C.; Wang, Q.; Xu, Y.; Huang, X.; Korenevsky, A.; Sabour, P.M. Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery. Appl. Environ. Microbiol. 2008, 74, 4799–4805. [Google Scholar] [CrossRef]
- Hazem, A. Effects of temperatures, pH-values, ultra-violet light, ethanol and chloroform on the growth of isolated thermophilic Bacillus phages. New Microbiol. 2002, 25, 469–476. [Google Scholar]
- Richards, K.; Malik, D.J. Bacteriophage encapsulation in pH-responsive core-shell capsules as an animal feed additive. Viruses 2021, 13, 1131. [Google Scholar] [CrossRef]
- Abdelsattar, A.S.; Abdelrahman, F.; Dawoud, A.; Connerton, I.F.; El-Shibiny, A. Encapsulation of E. coli phage ZCEC5 in chitosan–alginate beads as a delivery system in phage therapy. AMB Express 2019, 9, 87. [Google Scholar] [CrossRef]
- Rahimzadeh, G.; Saeedi, M.; Moosazadeh, M.; Hashemi, S.M.H.; Babaei, A.; Rezai, M.S.; Kamel, K.; Asare-Addo, K.; Nokhodchi, A. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea. Sci. Rep. 2021, 11, 15603. [Google Scholar] [CrossRef]
- Choińska-Pulit, A.; Mituła, P.; Śliwka, P.; Łaba, W.; Skaradzińska, A. Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci. Technol. 2015, 45, 212–221. [Google Scholar] [CrossRef]
- Silva Batalha, L.; Pardini Gontijo, M.T.; Vianna Novaes de Carvalho Teixeira, A.; Meireles Gouvêa Boggione, D.; Soto Lopez, M.E.; Renon Eller, M.; Santos Mendonça, R.C. Encapsulation in alginate-polymers improves stability and allows controlled release of the UFV-AREG1 bacteriophage. Food Res. Int. 2021, 139, 109947. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Huang, X.; Baxi, S.; Chambers, J.R.; Sabour, P.M.; Wang, Q. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Res. Int. 2013, 52, 460–466. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, X.; Sabour, P.M.; Chambers, J.R.; Wang, Q. Preparation and characterization of dry powder bacteriophage K for intestinal delivery through oral administration. LWT—Food Sci. Technol. 2015, 60, 263–270. [Google Scholar] [CrossRef]
- Ma, Y.; Pacan, J.C.; Wang, Q.; Sabour, P.M.; Huang, X.; Xu, Y. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocoll. 2012, 26, 434–440. [Google Scholar] [CrossRef]
- Manohar, P.; Ramesh, N. Improved lyophilization conditions for long-term storage of bacteriophages. Sci. Rep. 2019, 9, 15242. [Google Scholar] [CrossRef]
- Ergin, F. Effect of freeze drying, spray drying and electrospraying on the morphological, thermal, and structural properties of powders containing phage Felix O1 and activity of phage Felix O1 during storage. Powder Technol. 2022, 404, 117516. [Google Scholar] [CrossRef]
- Puapermpoonsiri, U.; Ford, S.J.; Van der Walle, C.F. Stabilization of bacteriophage during freeze drying. Int. J. Pharm. 2010, 389, 168–175. [Google Scholar] [CrossRef]
- Dini, C.; De Urraza, P.J. Effect of buffer systems and disaccharides concentration on Podoviridae coliphage stability during freeze drying and storage. Cryobiology 2013, 66, 339–342. [Google Scholar] [CrossRef]
- Zierdt, C.H. Stabilities of lyophilized Staphylococcus aureus typing bacteriophages. Appl. Environ. Microbiol. 1988, 54, 2590. [Google Scholar] [CrossRef]
- Schade, A.L.; Caroline, L. The preparation of a polyvalent dysentery bacteriophage in a dry and stable form: II. Factors affecting the stabilization of dysentery bacteriophage during lyophilization. J. Bacteriol. 1944, 48, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Shapira, A.; Kohn, A. The effects of freeze-drying on bacteriophage T4. Cryobiology 1974, 11, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Skaradzińska, A.; Skaradziński, G.; Choińska-Pulit, A.; Śliwka, P.; Łaba, W.; Mituła, P.; Żaczek, M.; Weber-Dąbrowska, B. Potential application of lyophilization in commercial use of bacteriophage preparations in veterinary medicine. Slov. Vet. Res. 2018, 55, 73–80. [Google Scholar] [CrossRef]
- Merabishvili, M.; Vervaet, C.; Pirnay, J.P.; De Vos, D.; Verbeken, G.; Mast, J.; Chanishvili, N.; Vaneechoutte, M. Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization). PLoS ONE 2013, 8, e68797. [Google Scholar] [CrossRef] [PubMed]
- Lavenburg, V.M.; Liao, Y.T.; Salvador, A.; Hsu, A.L.; Harden, L.A.; Wu, V.C. Effects of lyophilization on the stability of bacteriophages against different serogroups of Shiga toxin-producing Escherichia coli. Cryobiology 2020, 96, 85–91. [Google Scholar] [CrossRef]
- Manbua, N.; Suteewong, T.; Sae-Ueng, U. Efficacy of sugar excipients on lyophilized C22 phage infectivity evaluated by atomic force microscopy. Biol. Control 2022, 170, 104922. [Google Scholar] [CrossRef]
- Liang, L.; Carrigy, N.B.; Kariuki, S.; Muturi, P.; Onsare, R.; Nagel, T.; Vehring, R.; Connerton, P.L.; Connerton, I.F. Development of a lyophilization process for Campylobacter bacteriophage storage and transport. Microorganisms 2020, 8, 282. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Ghosh, D. The stabilizing excipients in dry state therapeutic phage formulations. AAPS PharmSciTech 2020, 21, 133. [Google Scholar] [CrossRef]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L.J. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. [Google Scholar] [CrossRef]
- Leung, S.S.Y.; Parumasivam, T.; Gao, F.G.; Carrigy, N.B.; Vehring, R.; Finlay, W.H.; Morales, S.; Britton, W.J.; Kutter, E.; Chan, H.K. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections. Pharm. Res. 2016, 33, 1486–1496. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, X.; Zhang, H.; Watts, A.B.; Ghosh, D. Manufacturing and ambient stability of shelf freeze dried bacteriophage powder formulations. Int. J. Pharm. 2018, 542, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vandenheuvel, D.; Meeus, J.; Lavigne, R.; Van Den Mooter, G. Instability of bacteriophages in spray-dried trehalose powders is caused by crystallization of the matrix. Int. J. Pharm. 2014, 472, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.Y.K.; Chow, M.Y.T.; Khanal, D.; Chen, D.; Chan, H.K. Dry powder pharmaceutical biologics for inhalation therapy. Adv. Drug Deliv. Rev. 2021, 172, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Alfadhel, M.; Puapermpoonsiri, U.; Ford, S.J.; McInnes, F.J.; van der Walle, C.F. Lyophilized inserts for nasal administration harboring bacteriophage selective for Staphylococcus aureus: In vitro evaluation. Int. J. Pharm. 2011, 416, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Puapermpoonsiri, U.; Spencer, J.; van der Walle, C.F. A freeze-dried formulation of bacteriophage encapsulated in biodegradable microspheres. Eur. J. Pharm. Biopharm. 2009, 72, 26–33. [Google Scholar] [CrossRef]
- Yin, H.; Li, J.; Huang, H.; Wang, Y.; Qian, X.; Ren, J.; Xue, F.; Dai, J.; Tang, F. Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157:H7 infection. Vet. Res. 2021, 52, 118. [Google Scholar] [CrossRef]
- Seth, D.; Mishra, H.N.; Deka, S.C. Effect of microencapsulation using extrusion technique on viability of bacterial cells during spray drying of sweetened yoghurt. Int. J. Biol. Macromol. 2017, 103, 802–807. [Google Scholar] [CrossRef]
- Vinner, G.K.; Richards, K.; Leppanen, M.; Sagona, A.P.; Malik, D.J. Microencapsulation of enteric bacteriophages in a pH-responsive solid oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics 2019, 11, 475. [Google Scholar] [CrossRef]
- Manohar, P.; Nachimuthu, R.; Lopes, B.S. The therapeutic potential of bacteriophages targeting gram-negative bacteria using Galleria mellonella infection model. BMC Microbiol. 2018, 18, 97. [Google Scholar] [CrossRef]
- Bach, S.J.; McAllister, T.A.; Veira, D.M.; Gannon, V.P.; Holley, R.A. Effect of bacteriophage DC22 on Escherichia coli O157: H7 in an artificial rumen system (Rusitec) and inoculated sheep. Anim. Res. 2003, 52, 89–101. [Google Scholar] [CrossRef]
Nozzle Size [µm] | Diameter of Beads | Bacteriophage T4 Titer [log10 pfu/mL] | ||||
---|---|---|---|---|---|---|
[µm] | SD | 0.1 M CaCl2 | SD | 0.1 M CaCl2 0.3 M Mannitol | SD | |
150 | 341 | 22 | 9.56 a | ±0.248 | 9.70 a | ±0.175 |
300 | 523 | 21 | 9.46 a | ±0.178 | 9.46 a | ±0.204 |
450 | 717 | 20 | 9.44 a | ±0.175 | 9.44 a | ±0.227 |
Initial phage titer 9.63 log10 pfu/mL a |
Nozzle Size [µm] | Encapsulation Efficiency [%] | |||
---|---|---|---|---|
0.1 M CaCl2 | SD | 0.1 M CaCl2 0.3 M Mannitol | SD | |
150 | 99.4 a | ±1.538 | 100 a | ±1.937 |
300 | 100 a | ±1.482 | 99.8 a | ±1.724 |
450 | 98.9 a | ±1.724 | 99.1 a | ±0.970 |
Nozzle Size [µm] | Diameter of Beads | Bacteriophage T4 Titer [log10 pfu/mL] | |||
---|---|---|---|---|---|
[µm] | SD | 0.1 M CaCl2 | 0.1 M CaCl2 0.3 M Mannitol | SD | |
150 | 224 | 17 | 0 | 7.52 a | ±0.004 |
300 | 343 | 15 | 0 | 7.50 a | ±0.082 |
450 | 524 | 24 | 0 | 7.24 a | ±0.076 |
Lyophilized phage lysate: 6.24 log10 pfu/mL b | |||||
Initial phage titer: 9.63 log10 pfu/mL c |
Nozzle Size | Bacteriophage T4 Titer [log10 pfu/mL] | |||||
---|---|---|---|---|---|---|
Wet Microspheres CaCl2 | Wet Microspheres CaCl2 and Mannitol | Dry Microspheres CaCl2 and Mannitol | ||||
150 | 9.59 a | ±0.088 | 9.62 a | ±0.074 | 6.92 c | ±0.103 |
300 | 9.75 a,b | ±0.195 | 9.89 a | ±0.073 | 6.68 c,d | ±0.247 |
450 | 9.83 b | ±0.038 | 9.57 a | ±0.081 | 6.23 d | ±0.206 |
Lyophilized phage lysate: 6.13 log10 pfu/mL d | ||||||
Initial phage titer: 9.63 log10 pfu/mL a |
Time of Incubation in SGF [h] | Nozzle Size | Bacteriophage Titer [log10 pfu/mL] | |||
---|---|---|---|---|---|
1 Day after Immobilization | 30 Days after Immobilization | ||||
Wet Microspheres | Dry Microspheres | Dry Microspheres | |||
0.1 M CaCl2 | 1 | 150 | 8.60 ± 0.167 b | 0 | n.i. |
300 | 8.64 ± 0.191 b | 0 | n.i. | ||
450 | 8.71 ± 0.100 b | 0 | n.i. | ||
0.1 M CaCl2 0.3 M mannitol | 0.5 | 150 | 9.63 ± 0.135 c | 5.28 ± 0.118 e | |
1 | 5.68 ± 0.137 d | 5.34 ± 0.086 e | |||
0.5 | 300 | 9.75 ± 0.180 c | 5.28 ± 0.153 e | ||
1 | 4.86 ± 0.125 f | 4.84 ± 0.241 f | |||
0.5 | 450 | 9.55 ± 0.150 c | 5.27 ± 0.194 e | ||
1 | 4.82 ± 0.476 f | 4.53 ± 0.152 g | |||
Initial phage titer: 9.63 log10 pfu/mL a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śliwka, P.; Skaradziński, G.; Dusza, I.; Grzywacz, A.; Skaradzińska, A. Freeze-Drying of Encapsulated Bacteriophage T4 to Obtain Shelf-Stable Dry Preparations for Oral Application. Pharmaceutics 2023, 15, 2792. https://doi.org/10.3390/pharmaceutics15122792
Śliwka P, Skaradziński G, Dusza I, Grzywacz A, Skaradzińska A. Freeze-Drying of Encapsulated Bacteriophage T4 to Obtain Shelf-Stable Dry Preparations for Oral Application. Pharmaceutics. 2023; 15(12):2792. https://doi.org/10.3390/pharmaceutics15122792
Chicago/Turabian StyleŚliwka, Paulina, Grzegorz Skaradziński, Izabela Dusza, Aleksandra Grzywacz, and Aneta Skaradzińska. 2023. "Freeze-Drying of Encapsulated Bacteriophage T4 to Obtain Shelf-Stable Dry Preparations for Oral Application" Pharmaceutics 15, no. 12: 2792. https://doi.org/10.3390/pharmaceutics15122792
APA StyleŚliwka, P., Skaradziński, G., Dusza, I., Grzywacz, A., & Skaradzińska, A. (2023). Freeze-Drying of Encapsulated Bacteriophage T4 to Obtain Shelf-Stable Dry Preparations for Oral Application. Pharmaceutics, 15(12), 2792. https://doi.org/10.3390/pharmaceutics15122792