Antibacterial Bionanocomposites Based on Drug-Templated Bifunctional Mesoporous Silica Nanocontainers
Abstract
:1. Introduction
- The synthesis of MSNs;
- Template removal by calcination or chemical etching;
- The modification of the inner and/or outer surface with a functional compound having an affinity for the loaded drug;
- Drug loading;
- An additional modification of the MSN surface to ensure that the drug release occurs “at the right time in the right place”.
2. Materials and Methods
2.1. Quercetin Solubilization in Miramistin Micelles
2.2. Synthesis of MSNs on a Hybrid Template
2.3. Characterisation of MSNs
2.4. Preparation of Alginate Films and Creation of Alginate/MSN Composites
2.5. Kinetic Study of the Encapsulated Drug Release into the Aqueous Medium from the MSNs and Alginate/MSN Composites
2.6. Determination of Antibacterial Activity of Alginate/MSN Composites
3. Results and Discussion
3.1. Quercetin Solubilization in Miramistin Micelles
3.2. Synthesis of MSNs on a Hybrid Template and Creation of Alginate/MSN Composites
3.3. Study of the Kinetics of the Encapsulated Drug Release from the MSNs and Alginate/MSN Composites into the Aqueous Medium
3.4. Study of the Biological Activity of Alginate/MSN Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef] [PubMed]
- Zehra, S.; Mobin, M.; Aslam, R.; ul Islam Bhat, S. Nanocontainers: A Comprehensive Review on Their Application in the Stimuli-Responsive Smart Functional Coatings. Progr. Org. Coat. 2023, 176, 107389. [Google Scholar] [CrossRef]
- Hofmann, C.; Duerkop, A.; Baeumner, A.J. Nanocontainers for Analytical Applications. Angew. Chem. Int. Ed. 2019, 58, 12840−12860. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Sodagar-Taleghani, A.; Ebrahimnejad, P.; Moghadam, S.P.H.; Ebrahimnejad, F.; Asare-Addo, K.; Nokhodchi, A. A Review on the Latest Developments of Mesoporous Silica Nanoparticles as a Promising Platform for Diagnosis and Treatment of Cancer. Int. J. Pharm. 2022, 625, 122099. [Google Scholar] [CrossRef]
- Dement’eva, O.V. Mesoporous Silica Container Particles: New Approaches and New Opportunities. Colloid J. 2020, 82, 479−501. [Google Scholar] [CrossRef]
- Shchukina, E.; Shchukin, D.; Grigoriev, D. Effect of inhibitor-loaded halloysites and mesoporous silica nanocontainers on corrosion protection of powder coatings. Prog. Org. Coat. A 2017, 102, 60−65. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, M.D.; Wang, C.; Feng, J.; Li, J.S.; Wang, L.J.; Fu, J.J. Facile Synthesis of Smart Nanocontainers as Key Components for Construction of Self-Healing Coating with Superhydrophobic Surfaces. Nanoscale Res. Lett. 2016, 11, 231. [Google Scholar] [CrossRef]
- Xu, J.-B.; Cao, Y.-Q.; Fang, L.; Hu, J.-M. A One-Step Preparation of Inhibitor-Loaded Silica Nanocontainers for Self-Healing Coatings. Corros. Sci. 2018, 140, 349−362. [Google Scholar] [CrossRef]
- Dement’eva, O.V.; Semiletov, A.M.; Chirkunov, A.A.; Rudoy, V.M.; Kuznetsov, Y.I. Sol–Gel Synthesis of SiO2 Containers Using Micelles of an Anionic Corrosion Inhibitor as a Template and the Prospects of Creation Protective Coatings Based on Them. Colloid J. 2018, 80, 474–483. [Google Scholar] [CrossRef]
- Fang, L.; Zhou, H.; Cheng, L.; Wang, Y.; Liu, F.; Wang, S. The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment. Front. Cell. Infect. Microbiol. 2023, 13, 1124411. [Google Scholar] [CrossRef]
- Kankala, R.K.; Han, Y.H.; Xia, H.Y.; Wang, S.B.; Chen, A.Z. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J. Nanobiotechnol. 2022, 20, 126. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liao, Z.; Li, M.; Zhang, H.; Li, T.; Qin, X.; Li, S.; Wu, C.; You, F.; Liao, X.; et al. Mesoporous Silica Nanoparticles-Based Nanoplatforms: Basic Construction, Current State, and Emerging Applications in Anticancer Therapeutics. Adv. Healthc. Mater. 2023, 12, 2201884. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Garnes, M.; Morales, V.; Sanz, R.; García-Muñoz, R.A. Cytostatic and Cytotoxic Effects of Hollow-Shell Mesoporous Silica Nanoparticles Containing Magnetic Iron Oxide. Nanomaterials 2021, 11, 2455. [Google Scholar] [CrossRef] [PubMed]
- Brezhnev, A.; Tang, F.-K.; Kwan, C.-S.; Basabrain, M.S.; Tsoi, J.K.H.; Matinlinna, J.P.; Neelakantan, P.; Leung, K.C.-F. One-Pot Preparation of Cetylpyridinium Chloride-Containing Nanoparticles for Biofilm Eradication. ACS Appl. Bio Mater. 2023, 6, 1221–1230. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, J.; Zhong, Y.; Luo, J.; Zhao, Y.; Yang, Y.; Song, Y.; Lin, X.; Yang, Y.; Song, H.; et al. In-situ synthesis of Drug-Containing bactericidal rough silica nanoparticles for antibacterial coating. Chem. Eng. J. 2022, 440, 135837. [Google Scholar] [CrossRef]
- Naumova, K.A.; Dement’eva, O.V.; Senchikhin, I.N.; Rudoy, V.M. Mesoporous Silica Particles Based on Complex Micelles of Poorly Water-Soluble Compounds. One Simple Step to Multidrug Carriers. Microporous Mesoporous Mater. 2021, 316, 110911. [Google Scholar] [CrossRef]
- Zadymova, N.M.; Tsikurina, N.N.; Poteshnova, M.V. Solubilization of Perfluorodecalin in Aqueous Solutions of Dodecaethoxylated Nonylphenol. Colloid J. 2003, 65, 314–318. [Google Scholar] [CrossRef]
- Zadymova, N.M.; Ivanova, N.I. Tween 80-Based Mixed Micelles as Felodipine Carriers in Aqueous Medium. Colloid J. 2013, 75, 159–169. [Google Scholar] [CrossRef]
- Ibatullina, M.R.; Zhil’tsova, E.P.; Lukashenko, S.S.; Zakharova, L.Y. Supramolecular Systems of Metal Complexes of 1-Cetyl-4-aza-1-azoniabicyclo[2,2,2]octane Bromide for Increasing Griseofulvin Solubility. Colloid J. 2020, 82, 8–15. [Google Scholar] [CrossRef]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumar, N.V.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of curcumin: A review of clinical trials. Eur. J. Med. Chem. 2019, 163, 527–545. [Google Scholar] [CrossRef]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-Based Hydrogels as Drug Delivery Vehicles in Cancer Treatment and Their Applications in Wound Dressing and 3D Bioprinting. J. Biol. Eng. 2020, 14, 8. [Google Scholar] [CrossRef]
- Li, J.; He, J.; Huang, Y.; Li, D.; Chen, X. Improving Surface and Mechanical Properties of Alginate Films by Using Ethanol as a Co-solvent During External Gelation. Carbohydr. Polym. 2015, 123, 208−216. [Google Scholar] [CrossRef] [PubMed]
- Yaminsky, I.; Filonov, A.; Sinitsyna, O.; Meshkov, G. FemtoScan Online Software. Nanoindustry 2016, 2, 42–46. [Google Scholar] [CrossRef]
- Akhmetova, A.; Yaminsky, I. 20 Years Since FemtoScan Shows Atoms. Nanoindustry 2017, 2, 88–89. [Google Scholar] [CrossRef]
- Filonov, A.; Yaminsky, I.; Akhmetova, A.; Meshkov, G. FemtoScan Online. Why? Nanoindustry 2018, 5, 336–342. [Google Scholar] [CrossRef]
- Yaminsky, I.V.; Akhmetova, A.I.; Meshkov, G.B. FemtoScan Online Software and Visualization of Nano-Objects in High-Resolution Microscopy. Nanoindustry 2018, 6, 414–416. [Google Scholar] [CrossRef]
- He, Q.; Gao, Y.; Zhang, L.; Zhang, Z.; Gao, F.; Ji, X.; Li, Y.; Shi, J. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 2011, 32, 7711−7720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Zhang, Y.; Tao, L.; Wei, Y. Facile Incorporation of Aggregation-Induced Emission Materials into Mesoporous Silica Nanoparticles for Intracellular Imaging and Cancer Therapy. ACS Appl. Mater. Interfaces 2013, 5, 1943−1947. [Google Scholar] [CrossRef]
- Available online: https://miramistin.ru/eng/ (accessed on 19 September 2023).
- Barvinchenko, V.N.; Lipkovskaya, N.A.; Fedyanina, T.V.; Rugal’, A.A. Effect of Supramolecular Interactions with Cationic Surfactants on Adsorption of Flavonoids on Highly Dispersed Silica Surface. Colloid J. 2014, 76, 139–145. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Fu, J.; Huang, J.; Lin, M.; Xie, T.; You, T. Quercetin Promotes Diabetic Wound Healing via Switching Macrophages from M1 to M2 Polarization. J. Surg. Res. 2020, 246, 213−223. [Google Scholar] [CrossRef]
- Barvinchenko, V.N.; Lipkovskaya, N.A.; Fedyanina, T.V. Keto-Enol Tautomerization of Quercetin in Solutions of a Cationic Surfactant, Miramistin. Colloid J. 2014, 76, 1–5. [Google Scholar] [CrossRef]
- Budiman, A.; Aulifa, D.L. Characterization of Drugs with Good Glass Formers in Loaded-Mesoporous Silica and Its Theoretical Value Relevance with Mesopores Surface and Pore-Filling Capacity. Pharmaceuticals 2022, 15, 93. [Google Scholar] [CrossRef] [PubMed]
- Eaton, P.; West, P. Atomic Force Microscopy; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Yousefiasl, S.; Manoochehri, H.; Makvandi, P.; Afshar, S.; Salahinejad, E.; Khosraviyan, P.; Saidijam, M.; Soleimani Asl, S.; Sharifi, E. Chitosan/Alginate Bionanocomposites Adorned with Mesoporous Silica Nanoparticles for Bone Tissue Engineering. J. Nanostruct. Chem. 2023, 13, 389–403. [Google Scholar] [CrossRef]
- Aderibigbe, B.A.; Buyana, B. Alginate in Wound Dressings. Pharmaceutics 2018, 10, 42. [Google Scholar] [CrossRef]
- Dement’eva, O.V.; Senchikhin, I.N.; Kartseva, M.E.; Ogarev, V.A.; Zaitseva, A.V.; Matushkina, N.N.; Rudoy, V.M. A New Method for Loading Mesoporous Silica Nanoparticles with Drugs: Sol–Gel Synthesis Using Drug Micelles as a Template. Colloid J. 2016, 78, 586–595. [Google Scholar] [CrossRef]
- Dement’eva, O.V.; Naumova, K.A.; Zhigletsova, S.K.; Klykova, M.V.; Somov, A.N.; Dunaytsev, I.A.; Senchikhin, I.N.; Volkov, V.V.; Rudoy, V.M. Drug-Templated Mesoporous Silica Nanocontainers with Extra High Payload and Controlled Release Rate. Colloids Surf. B 2020, 85, 110577. [Google Scholar] [CrossRef]
Alginate/MSN Composite | Non-Crosslinked Films | Crosslinked Films |
---|---|---|
Drug: miramistin | 1.27 ± 0.06 | 1.26 ± 0.03 |
Drugs: miramistin, quercetin | 1.23 ± 0.04 | 1.28 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishmakova, E.M.; Ivchenko, A.V.; Bolshakova, A.V.; Staltsov, M.S.; Urodkova, E.K.; Grammatikova, N.E.; Rudoy, V.M.; Dement’eva, O.V. Antibacterial Bionanocomposites Based on Drug-Templated Bifunctional Mesoporous Silica Nanocontainers. Pharmaceutics 2023, 15, 2675. https://doi.org/10.3390/pharmaceutics15122675
Shishmakova EM, Ivchenko AV, Bolshakova AV, Staltsov MS, Urodkova EK, Grammatikova NE, Rudoy VM, Dement’eva OV. Antibacterial Bionanocomposites Based on Drug-Templated Bifunctional Mesoporous Silica Nanocontainers. Pharmaceutics. 2023; 15(12):2675. https://doi.org/10.3390/pharmaceutics15122675
Chicago/Turabian StyleShishmakova, Elena M., Anastasia V. Ivchenko, Anastasia V. Bolshakova, Maxim S. Staltsov, Ekaterina K. Urodkova, Natalia E. Grammatikova, Victor M. Rudoy, and Olga V. Dement’eva. 2023. "Antibacterial Bionanocomposites Based on Drug-Templated Bifunctional Mesoporous Silica Nanocontainers" Pharmaceutics 15, no. 12: 2675. https://doi.org/10.3390/pharmaceutics15122675
APA StyleShishmakova, E. M., Ivchenko, A. V., Bolshakova, A. V., Staltsov, M. S., Urodkova, E. K., Grammatikova, N. E., Rudoy, V. M., & Dement’eva, O. V. (2023). Antibacterial Bionanocomposites Based on Drug-Templated Bifunctional Mesoporous Silica Nanocontainers. Pharmaceutics, 15(12), 2675. https://doi.org/10.3390/pharmaceutics15122675