Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications
Abstract
:1. Introduction
2. Biosynthesis of ZnONPs
2.1. Microbe-Mediated Biosynthesis of ZnONPs
2.2. Plant-Mediated Biosynthesis of ZnONPs
3. Critical Parameters for Rapid and Stable Biosynthesis of ZnONPs
3.1. Factors Influencing the Mass Production of ZnONPs
3.2. Factors Influencing the Shape and Size of Synthesized ZnONPs
4. Characterization of Biosynthesized ZnONPs
5. Antimicrobial Applications and Mechanisms of Biosynthesized ZnONPs
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pezzoni, M.; Catalano, P.N.; Pizarro, R.A.; Desimone, M.F.; Soler-Illia, G.; Bellino, M.G.; Costa, C.S. Antibiofilm effect of supramolecularly templated mesoporous silica coatings. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1044–1049. [Google Scholar] [CrossRef]
- Urge, S.K.; Dibaba, S.T.; Gemta, A.B. Green Synthesis Method of ZnO Nanoparticles using Extracts of Zingiber officinale and Garlic Bulb (Allium sativum) and Their Synergetic Effect for Antibacterial Activities. J. Nanomater. 2023, 2023, 7036247. [Google Scholar]
- Kumar, R.; Vinoth, S.; Baskar, V.; Arun, M.; Gurusaravanan, P. Synthesis of zinc oxide nanoparticles mediated by Dictyota dichotoma endophytic fungi and its photocatalytic degradation of fast green dye and antibacterial applications. S. Afr. J. Bot. 2022, 151, 337–344. [Google Scholar] [CrossRef]
- Akter, S.; Huq, M.A. Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11T and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes. Artif. Cells Nanomed. Biotechnol. 2020, 48, 672–682. [Google Scholar] [CrossRef]
- Bachheti, R.K.; Fikadu, A.; Bachheti, A.; Husen, A. Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: A review. Saudi J. Biol. Sci. 2020, 27, 2551–2562. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.-D.; Andronescu, E.; Holban, A.M. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil—A Novel Antimicrobial Structure. Pharmaceutics 2021, 13, 1020. [Google Scholar] [CrossRef]
- Suba, S.; Vijayakumar, S.; Vidhya, E.; Punitha, V.N.; Nilavukkarasi, M. Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp.: Characterizations, antimicrobial and biocompatibility efficiencies. Sens. Int. 2021, 2, 100104. [Google Scholar] [CrossRef]
- Ghdeeb, N.J.; Hussain, N.A. Antimicrobial Activity of ZnO Nanoparticles Prepared Using a Green Synthesis Approach. Nano Biomed. Eng. 2023, 15, 14–20. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Parvez, M.A.K.; Balusamy, S.R.; Rahman, M.M.; Kim, J.H.; Akter, S. Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review. Polymers 2022, 14, 5302. [Google Scholar] [CrossRef]
- Huq, M.A.; Akter, S. Bacterial mediated rapid and facile synthesis of silver nanoparticles and their antimicrobial efficacy against pathogenic microorganisms. Materials 2021, 14, 2615. [Google Scholar] [CrossRef] [PubMed]
- Venkatasubbu, G.D.; Baskar, R.; Anusuya, T.; Seshan, C.A.; Chelliah, R. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surf. B Biointerfaces 2016, 148, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Yusof, H.M.; Rahman, N.A.; Mohamad, R.; Zaidan, U.H.; Samsudin, A.A. Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci. Rep. 2020, 10, 19996. [Google Scholar] [CrossRef]
- Khan, M.A.; Lone, S.A.; Shahid, M.; Zeyad, M.T.; Syed, A.; Ehtram, A.; Elgorban, A.M.; Verma, M.; Danish, M. Phytogenically Synthesized Zinc Oxide Nanoparticles (ZnO-NPs) Potentially Inhibit the Bacterial Pathogens: In Vitro Studies. Toxics 2023, 11, 452. [Google Scholar] [CrossRef]
- Faisal, S.; Abdullah; Rizwan, M.; Ullah, R.; Alotaibi, A.; Khattak, A.; Bibi, N.; Idrees, M. Paraclostridium Benzoelyticum Bacterium-Mediated Zinc Oxide Nanoparticles and Their In Vivo Multiple Biological Applications. Oxid. Med. Cell. Longev. 2022, 2022, 5994033. [Google Scholar]
- Motelica, L.; Vasile, B.-S.; Ficai, A.; Surdu, A.-V.; Ficai, D.; Oprea, O.-C.; Andronescu, E.; Jinga, D.C.; Holban, A.M. Influence of the Alcohols on the ZnO Synthesis and Its Properties: The Photocatalytic and Antimicrobial Activities. Pharmaceutics 2022, 14, 2842. [Google Scholar] [CrossRef] [PubMed]
- Tayel, A.A.; El-Tras, W.F.; Moussa, S.; El-Baz, A.F.; Mahrous, H.; Salem, M.F.; Brimer, L. Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Saf. 2011, 31, 211–218. [Google Scholar] [CrossRef]
- Elemike, E.E.; Onwudiwe, D.C.; Fayemi, O.E.; Botha, T.L. Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract. Appl. Phys. A 2019, 125, 42. [Google Scholar] [CrossRef]
- Guzmán, M.G.; Dille, J.; Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng. 2009, 2, 104–111. [Google Scholar]
- Pauzi, N.; Zain, N.M.; Yusof, N.A.A. Microwave-assisted synthesis of ZnO nanoparticles stabilized with gum arabic: Effect of microwave irradiation time on ZnO nanoparticles size and morphology. Bull. Chem. React. Eng. Catal. 2019, 14, 182–188. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385. [Google Scholar]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Lal, S.; Verma, R.; Chauhan, A.; Dhatwalia, J.; Guleria, I.; Ghotekar, S.; Thakur, S.; Mansi, K.; Kumar, R.; Kumari, A.; et al. Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from Myrica esculenta fruits extract. Inorg. Chem. Comm. 2022, 141, 109518. [Google Scholar] [CrossRef]
- Abdelhakim, H.K.; El-Sayed, E.R.; Rashidi, F.B. Biosynthesis of Zinc Oxide Nanoparticles with Antimicrobial, Anticancer, Antioxidant and Photocatalytic Activities by the Endophytic Alternaria tenuissima. J. Appl. Microbiol. 2020, 128, 1634–1646. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Lee, S.-Y.; Siddiqi, M.Z.; Balusamy, S.R.; Ashrafudoulla, M.; Rupa, E.J.; Huq, M.A. Ecofriendly synthesis of silver nanoparticles by Terrabacter humi sp. nov. and their antibacterial application against antibiotic-resistant pathogens. Int. J. Mol. Sci. 2020, 21, 9746. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Singh, H.; Yi, T.H. Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract. Bioprocess Biosyst. Eng. 2020, 39, 1923–1931. [Google Scholar] [CrossRef]
- Wang, X.; Lee, S.-Y.; Akter, S.; Huq, M.A. Probiotic-mediated biosynthesis of silver nanoparticles and their antibacterial applications against pathogenic strains of Escherichia coli O157:H7. Polymers 2022, 14, 1834. [Google Scholar] [CrossRef]
- Ashrafudoulla, M.; Mizan, M.F.R.; Park, S.H.; Ha, S.D. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1827–1851. [Google Scholar] [CrossRef]
- Hamida, R.M.; Ali, M.A.; Goda, D.A.; Khalilad, M.I.; Redhwan, A. Cytotoxic effect of green silver nanoparticles against ampicillin-resistant Klebsiella pneumoniae. RSC Adv. 2020, 10, 21136–21146. [Google Scholar] [CrossRef]
- Huq, M.A.; Akter, S. Biosynthesis, characterization and antibacterial application of novel silver nanoparticles against drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Molecules 2021, 26, 5996. [Google Scholar] [CrossRef]
- Ashrafudoulla, M.; Mizan, M.F.R.; Park, H.; Byun, K.H.; Lee, N.; Park, S.H.; Ha, S.D. Genetic Relationship, Virulence Factors, Drug Resistance Profile and Biofilm Formation Ability of Vibrio parahaemolyticus Isolated from Mussel. Front. Microbiol. 2019, 10, 513. [Google Scholar] [CrossRef]
- Afshari, A.; Baratpour, A.; Khanzade, S.; Jamshidi, A. Salmonella Enteritidis and Salmonella Typhimorium identification in poultry carcasses. Iran. J. Microbiol. 2018, 10, 45–50. [Google Scholar] [PubMed]
- Huq, M.A.; Akter, S. Characterization and Genome Analysis of Arthrobacter bangladeshi sp. nov., Applied for the Green Synthesis of Silver Nanoparticles and Their Antibacterial Efficacy against Drug-Resistant Human Pathogens. Pharmaceutics 2021, 13, 1691. [Google Scholar] [CrossRef] [PubMed]
- Huq, M.A. Biogenic silver nanoparticles synthesized by Lysinibacillus xylanilyticus MAHUQ-40 to control antibiotic-resistant human pathogens vibrio parahaemolyticus and salmonella typhimurium. Front. Bioeng. Biotechnol. 2020, 8, 1407. [Google Scholar] [CrossRef]
- Barani, M.; Masoudi, M.; Mashreghi, M.; Makhdoumi, A.; Eshghi, H. Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. Int. J. Pharm. 2021, 606, 120878. [Google Scholar] [CrossRef] [PubMed]
- MuthuKathija, M.; Badhusha, M.S.M.; Rama, V. Green synthesis of zinc oxide nanoparticles using Pisonia alba leaf extract and its antibacterial activity. Appl. Surf. Sci. Adv. 2023, 15, 100400. [Google Scholar] [CrossRef]
- Chowdhury, M.A.H.; Ashrafudoulla, M.; Mevo, S.I.U.; Mizan, M.F.R.; Park, S.H.; Ha, S.D. Current and future interventions for improving poultry health and poultry food safety and security: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1555–1596. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater. 2021, 402, 123560. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Microbial Mediated Synthesis of Zinc Oxide Nanoparticles, Characterization and Multifaceted Applications. J. Inorg. Organomet. Polym. 2022, 32, 4114–4132. [Google Scholar] [CrossRef]
- Singh, A.; Singh, N.B.; Afzal, S.; Singh, T.; Hussain, I. Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J. Mater. Sci. 2018, 53, 185–201. [Google Scholar] [CrossRef]
- Raja, A.; Ashokkumar, S.; Pavithra-Marthandam, R.; Jayachandiran, J.; Khatiwada, C.P.; Kaviyarasu, K.; Ganapathi Raman, R.; Swaminathan, M. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B Biol. 2018, 181, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Wu, Z.; Jiang, H.; Luo, J.; Noman, M.; Shahid, M.; Manzoor, I.; Allemailem, K.S.; Alrumaihi, F.; Li, B. Bioinspired Green Synthesis of Zinc Oxide Nanoparticles from a Native Bacillus cereus Strain RNT6: Characterization and Antibacterial Activity against Rice Panicle Blight Pathogens Burkholderia glumae and B. gladioli. Nanomaterials 2021, 11, 884. [Google Scholar] [CrossRef] [PubMed]
- Yusof, H.M.; Mohamad, R.; Zaidan, U.H.; Abdul Rahman, N.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol. 2019, 10, 57. [Google Scholar]
- Abdo, A.M.; Fouda, A.; Eid, A.M.; Fahmy, N.M.; Elsayed, A.M.; Khalil, A.M.A.; Alzahrani, O.M.; Ahmed, A.F.; Soliman, A.M. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and Their Activity against Pathogenic Microbes and Common House Mosquito, Culex pipiens. Materials 2021, 14, 6983. [Google Scholar] [CrossRef] [PubMed]
- Jayabalan, J.; Mani, G.; Krishnan, N.; Pernabas, J.; Devadoss, J.M.; Jang, H.T. Green Biogenic Synthesis of Zinc Oxide Nanoparticles Using Pseudomonas putida Culture and Its In Vitro Antibacterial and Anti-Biofilm Activity. Biocatal. Agric. Biotechnol. 2019, 21, 101327. [Google Scholar] [CrossRef]
- Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K.V.B. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 90, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Gopinath, V.; Chaurasia, M.K.; Syed, A.; Ameen, F.; Purushothaman, N. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb. Pathog. 2018, 115, 57–63. [Google Scholar] [CrossRef]
- Taran, M.; Rad, M.; Alavi, M. Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. Bioimpacts 2018, 8, 81–89. [Google Scholar] [CrossRef]
- Król, A. Mechanism study of intracellular zinc oxide nanocomposites formation. Colloids Surf. 2018, 553, 349–358. [Google Scholar] [CrossRef]
- Mishra, M.; Paliwal, J.; Singh, S.; Ethiraj, S.; Mohanashrinivasan, V. Studies on the inhibitory activity of biologically synthesized and characterized ZnO nanoparticles using L.sporogens against Staphylococcus aureus. J. Pure Appl. Microbiol. 2013, 7, 1263–1268. [Google Scholar]
- Kundu, D.; Hazra, C.; Chatterjee, A.; Chaudhari, A.; Mishra, S. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: Multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J. Photochem. Photobiol. B Biol. 2014, 140, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Rajabairavi, N.; Raju, C.S.; Karthikeyan, C.; Varutharaju, K.; Nethaji, S.; Hameed, A.S.H.; Shajahan, A. Biosynthesis of Novel Zinc Oxide Nanoparticles (ZnO NPs) Using Endophytic Bacteria Sphingobacterium thalpophilum. In Recent Trends in Materials Science and Applications; Ebenezar, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 245–254. [Google Scholar]
- Rauf, M.A.; Owais, M.; Rajpoot, R.; Ahmad, F.; Khan, N.; Zubair, S. Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible S. aureus skin infection in experimental animals. RSC Adv. 2017, 7, 36361–36373. [Google Scholar] [CrossRef]
- Balraj, B.; Senthilkumar, N.; Siva, C.; Krithikadevi, R.; Julie, A.; Potheher, I.V.; Arulmozhi, M. Synthesis and characterization of Zinc Oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity. Res. Chem. Intermed. 2017, 43, 2367–2376. [Google Scholar] [CrossRef]
- Moghaddam, A.B.; Moniri, M.; Azizi, S.; Rahim, R.A.; Ariff, A.B.; Saad, W.Z.; Namvar, F.; Navaderi, M. Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules 2017, 22, 872. [Google Scholar] [CrossRef]
- Chauhan, R.; Reddy, A.; Abraham, J. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Appl. Nanosci. 2015, 5, 63–71. [Google Scholar] [CrossRef]
- Rajan, A.; Cherian, E.; Gurunathan, D.B. Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. Int. J. Mod. Sci. Technol. 2016, 1, 52–57. [Google Scholar]
- Kalpana, V.N.; Kataru, B.A.S.; Sravani, N.; Vigneshwari, T.; Panneerselvam, A.; Devi Rajeswari, V. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano 2018, 3, 48–55. [Google Scholar] [CrossRef]
- Gurunathan, D.B.; Jagadeesan, C.; Fahad, K.; Praveen, A. Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian J. Pharm. Technol. 2013, 3, 142–146. [Google Scholar]
- Fagier, M.A. Plant-Mediated Biosynthesis and Photocatalysis Activities of Zinc Oxide Nanoparticles: A Prospect towards Dyes Mineralization. J. Nanotechnol. 2021, 2021, 6629180. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, Z.-S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, 270974. [Google Scholar] [CrossRef]
- Abomuti, M.A.; Danish, E.Y.; Firoz, A.; Hasan, N.; Malik, M.A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. Biology 2021, 10, 1075. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.; Saied, E.; Eid, A.M.; Kouadri, F.; Alemam, A.M.; Hamza, M.F.; Alharbi, M.; Elkelish, A.; Hassan, S.E.-D. Green Synthesis of Zinc Oxide Nanoparticles Using an Aqueous Extract of Punica granatum for Antimicrobial and Catalytic Activity. J. Funct. Biomater. 2023, 14, 205. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, B.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Elharty, M.E.; Saleh, A.; Abdelkader, D.H.; Mokhtar, F.A. Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: In vitro and in vivo study. Artif. Cells Nanomed. Biotechnol. 2022, 50, 96–106. [Google Scholar] [CrossRef]
- Dulta, K.; Koşarsoy Ağçeli, G.; Chauhan, P.; Jasrotia, R.; Chauhan, P.K. Ecofriendly Synthesis of Zinc Oxide Nanoparticles by Carica papaya Leaf Extract and Their Applications. J. Clust. Sci. 2022, 33, 603–617. [Google Scholar] [CrossRef]
- Menazea, A.A.; Ismail, A.M.; Samy, A. Novel Green Synthesis of Zinc Oxide Nanoparticles Using Orange Waste and Its Thermal and Antibacterial Activity. J. Inorg. Organomet. Polym. 2021, 31, 4250–4259. [Google Scholar] [CrossRef]
- Suručić, R.; Šmitran, A.; Gajić, D.; Božić, L.; Antić, M.; Topić-Vučenović, V.; Umičević, N.; Antunović, V.; Jelić, D. Phytosynthesis of zinc oxide nanoparticles with acetonic extract of flowers of Geranium robertianum L. (Geraniaceae). J. Hyg. Eng. Des. 2020, 615, 28. [Google Scholar]
- Subramanian, H.; Krishnan, M.; Mahalingam, A. Photocatalytic dye degradation and photoexcited anti-microbial activities of green zinc oxide nanoparticles synthesized via Sargassum muticum extracts. RSC Adv. 2022, 12, 985–997. [Google Scholar] [CrossRef]
- Abdelmigid, H.M.; Hussien, N.A.; Alyamani, A.A.; Morsi, M.M.; AlSufyani, N.M.; Kadi, H.A. Green Synthesis of Zinc Oxide Nanoparticles Using Pomegranate Fruit Peel and Solid Coffee Grounds vs. Chemical Method of Synthesis, with Their Biocompatibility and Antibacterial Properties Investigation. Molecules 2022, 27, 1236. [Google Scholar] [CrossRef]
- Ramesh, R.; Parasaran, M.; Mubashira, G.T.F.; Flora, C.; Khan, F.L.A.; Almaary, K.S.; Elbadawi, Y.B.; Chen, T.-W.; Kanimozhi, K.; Bashir, A.; et al. Biogenic synthesis of ZnO and NiO nanoparticles mediated by fermented Cocos nucifera. (L) Deoiled cake extract for antimicrobial applications towards gram positive and gram negative pathogens. J. King Saud. Univ. Sci. 2022, 34, 101696–101704. [Google Scholar] [CrossRef]
- Alahmdi, M.I.; Khasim, S.; Vanaraj, S.; Panneerselvam, C.; Mahmoud, M.A.A.; Mukhtar, S.; Alsharif, M.A.; Zidan, N.S.; Abo-Dya, N.E.; Aldosari, O.F. Green Nanoarchitectonics of ZnO Nanoparticles from Clitoria ternatea Flower Extract for In Vitro Anticancer and Antibacterial Activity: Inhibits MCF-7 Cell Proliferation via Intrinsic Apoptotic Pathway. J. Inorg. Organomet. Polym. 2022, 32, 2146–2159. [Google Scholar] [CrossRef]
- Ilangovan, A.; Venkatramanan, A.; Thangarajan, P.; Saravanan, A.; Rajendran, S.; Kaveri, K. Green Synthesis of Zinc Oxide Nanoparticles (ZnO NPs) Using Aqueous Extract of Tagetes Erecta Flower and Evaluation of Its Antioxidant, Antimicrobial, and Cytotoxic Activities on HeLa Cell Line. Curr. Biotechnol. 2021, 10, 61–76. [Google Scholar] [CrossRef]
- Djouadi, A.; Derouiche, S. Spinach mediated synthesis of zinc oxide nanoparticles: Characterization, In vitro biological activities study and in vivo acute toxicity evaluation. Curr. Res. Green Sustain. Chem. 2021, 4, 100214. [Google Scholar] [CrossRef]
- Khan, M.I.; Fatima, N.; Shakil, M.; Tahir, M.B.; Riaz, K.N.; Rafique, M.; Iqbal, T.; Mahmood, K. Investigation of in-vitro antibacterial and seed germination properties of green synthesized pure and nickel doped ZnO nanoparticles. Phys. B Condens. Matter 2021, 601, 412563. [Google Scholar] [CrossRef]
- Vijayakumar, S.; González-Sánchez, Z.I.; Malaikozhundan, B.; Saravanakumar, K.; Divya, M.; Vaseeharan, B.; Durán-Lara, E.F.; Wang, M.-H. Biogenic Synthesis of Rod Shaped ZnO Nanoparticles Using Red Paprika (Capsicum annuum L. var. grossum (L.) Sendt) and Their in Vitro Evaluation. J. Clust. Sci. 2021, 32, 1129–1139. [Google Scholar] [CrossRef]
- Batool, M.; Khurshid, S.; Qureshi, Z.; Daoush, W.M. Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chem. Pap. 2021, 75, 893–907. [Google Scholar] [CrossRef]
- Kumar, N.H.K.; Mohana, N.C.; Nuthan, B.R.; Ramesha, K.P.; Rakshith, D.; Geetha, N.; Satish, S. Phyto-mediated synthesis of zinc oxide nanoparticles using aqueous plant extract of Ocimum americanum and evaluation of its bioactivity. SN Appl. Sci. 2019, 1, 651. [Google Scholar] [CrossRef]
- Madan, H.R.; Sharma, S.C.; Udayabhanu; Suresh, D.; Vidya, Y.S.; Nagabhushana, H.; Rajanaik, H.; Anantharaju, K.S.; Prashantha, S.C.; Sadananda-Maiya, P. Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: Their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 152, 404–416. [Google Scholar] [CrossRef]
- Chauhan, A.; Verma, R.; Kumari, S.; Sharma, A.; Shandilya, P.; Li, X.; Batoo, K.M.; Imran, A.; Kulshrestha, S.; Kumar, R. Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci. Rep. 2020, 10, 7881. [Google Scholar] [CrossRef]
- Sharma, S.C. ZnO nano-flowers from Carica papaya milk: Degradation of Alizarin Red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Optik 2016, 127, 6498–6512. [Google Scholar] [CrossRef]
- Kahsay, M.H.; Tadesse, A.; RamaDevi, D.; Belachew, N.; Basavaiah, K. Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Adv. 2019, 9, 36967–36981. [Google Scholar] [CrossRef]
- Pal, S.; Mondal, S.; Maity, J.; Mukherjee, R. Synthesis and Characterization of ZnO Nanoparticles using Moringa oleifera Leaf Extract: Investigation of Photocatalytic and Antibacterial Activity. Int. J. Nanosci. Nanotechnol. 2018, 14, 111–119. [Google Scholar]
- Jayappa, M.D.; Ramaiah, C.K.; Kumar, M.A.P.; Suresh, D.; Prabhu, A.; Devasya, R.P.; Sheikh, S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: Characterization and their applications. Appl. Nanosci. 2020, 10, 3057–3074. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Ahmad, P.; Khandaker, M.U.; Modafer, Y.; Almukhlifi, H.A.; Bazaid, A.S.; Aldarhami, A.; Alanazi, A.M.; Jefri, O.A.; Uddin, M.; et al. Biologically Reduced Zinc Oxide Nanosheets Using Phyllanthus emblica Plant Extract for Antibacterial and Dye Degradation Studies. J. Chem. 2023, 2023, 3971686. [Google Scholar] [CrossRef]
- Chandrasekar, L.P.; Sethuraman, B.D.; Subramani, M.; Mohandos, S. Green synthesised ZnO nanoparticles from Plectranthus amboinicus plant extract: Removal of Safranin-O and Malachite green dyes & anti-bacterial activity. Int. J. Environ. Anal. Chem. 2023, 1–18. [Google Scholar] [CrossRef]
- Ahmed, S.; Chaudhry, S.A.; Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B Biol. 2017, 166, 272–284. [Google Scholar] [CrossRef]
- Gur, T.; Meydan, I.; Seckin, H.; Bekmezci, M.; Sen, F. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ. Res. 2022, 204, 111897. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Yaseen, T.; Zahra, S.A.; Shahbaz, A.; Shah, S.A.; Uddin, S.; Ma, X.; Raouf, B.; Kanwal, S.; et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 2021, 11, 20988. [Google Scholar] [CrossRef]
- Chikkanna, M.M.; Neelagund, S.E.; Rajashekarappa, K.K. Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Appl. Sci. 2019, 1, 117. [Google Scholar] [CrossRef]
- Yazdanian, M.; Rostamzadeh, P.; Rahbar, M.; Alam, M.; Abbasi, K.; Tahmasebi, E.; Tebyaniyan, H.; Ranjbar, R.; Seifalian, A.; Yazdanian, A. The potential application of green-synthesized metal nanoparticles in dentistry: A comprehensive review. Bioinorg. Chem. Appl. 2022, 2022, 2311910. [Google Scholar] [CrossRef]
- Verma, A.; Mehata, M.S. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 2016, 9, 109–115. [Google Scholar] [CrossRef]
- Thatoi, P.; Kerry, R.G.; Gouda, S.; Das, G.; Pramanik, K.; Thatoi, H.; Patra, J.K. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B Biol. 2016, 3, 163. [Google Scholar] [CrossRef] [PubMed]
- Vimala, K.; Sundarraj, S.; Paulpandi, M.; Vengatesan, S.; Kannan, S. Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem. 2014, 49, 160–172. [Google Scholar] [CrossRef]
- Supraja, N.; Prasad, T.; Gandhi, A.D.; Anbumani, D.; Kavitha, P.; Babujanarthanam, R. Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholaris stem bark extract mediated ZnONPs. Biochem. Biophys. Rep. 2018, 14, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sonia, S.; Ruckmani, K.; Sivakumar, M. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: A potent nanocosmeceutical application. Mater. Sci. Eng. C 2017, 79, 581–589. [Google Scholar]
- Manjari, B.; Singh, D.P. Green synthesis of zinc oxide nanoparticles by Pseudomonas aeruginosa and their broad-spectrum antimicrobial effects. J. Pure Appl. Microbiol. 2018, 12, 2123–2134. [Google Scholar]
- Al-Kurdy, M.J.; Al-Khuzaie, M.G.A.; Abbas, G.A.; Al Dulaimi, Z.M.H. Green synthesis and characterization of zinc oxide nanoparticles using black currant extracts. AIP Conf. Proc. 2023, 1, 2776. [Google Scholar]
- Narayanan, K.B.; Sakthivel, N. Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater. Charact. 2010, 61, 1232–1238. [Google Scholar] [CrossRef]
- Darvish, M.; Ajji, A. Effect of Polyethylene Film Thickness on the Antimicrobial Activity of Embedded Zinc Oxide Nanoparticles. ACS Omega 2021, 6, 26201–26209. [Google Scholar] [CrossRef]
- Halbus, A.F.; Horozov, T.S.; Paunov, V.N. Surface-Modified Zinc Oxide Nanoparticles for Antialgal and Antiyeast Applications. ACS Appl. Nano Mater. 2020, 3, 440–451. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Le, T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. J. Agric. Food Chem. 2018, 66, 11209–11220. [Google Scholar] [CrossRef]
- Morowvat, M.H.; Kazemi, K.; Jaberi, M.A.; Amini, A.; Gholami, A. Biosynthesis and Antimicrobial Evaluation of Zinc Oxide Nanoparticles Using Chlorella vulgaris Biomass against Multidrug-Resistant Pathogens. Materials 2023, 16, 842. [Google Scholar] [CrossRef]
- Bahari, N.; Hashim, N.; Abdan, K.; Md Akim, A.; Maringgal, B.; Al-Shdifat, L. Role of Honey as a Bifunctional Reducing and Capping/Stabilizing Agent: Application for Silver and Zinc Oxide Nanoparticles. Nanomaterials 2023, 13, 1244. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; You, Q.; Zhang, J. Green synthesis of antibacterial LFL-ZnO using L. plantarum fermentation liquid assisted by ultrasound-microwave. J. Alloys Compd. 2023, 947, 169697. [Google Scholar] [CrossRef]
- Ravi, A.; Nandayipurath, V.V.T.; Rajan, S.; Salim, S.A.; Khalid, N.K.; Aravindakumar, C.T.; Krishnankutty, R.E. Effect of zinc oxide nanoparticle supplementation on the enhanced production of surfactin and iturin lipopeptides of endophytic Bacillus sp. Fcl1 and its ameliorated antifungal activity. Microb. Pathog. 2020, 149, 104528. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825–1834. [Google Scholar] [CrossRef]
- Jin, S.-E.; Jin, H.-E. Antimicrobial Activity of Zinc Oxide Nano/Microparticles and Their Combinations against Pathogenic Microorganisms for Biomedical Applications: From Physicochemical Characteristics to Pharmacological Aspects. Nanomaterials 2021, 11, 263. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.S.; Cho, H.S.; Rha, D.S.; Kim, J.M.; Park, J.D.; Choi, B.S.; Lim, R.; Chang, H.K.; Chung, Y.H.; et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2008, 20, 575–583. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.F.F.; Coimbra, J.S.R.; De Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Kalpana, V.N.; Devi Rajeswari, V. A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorg. Chem. Appl. 2018, 2018, 3569758. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 2017, 43, 3940–3961. [Google Scholar] [CrossRef]
- Sportelli; Chiara, M.; Picca, R.A.; Cioffi, N. Recent advances in the synthesis and characterization of nano-antimicrobials. TrAC Trends Anal. Chem. 2016, 84, 131–138. [Google Scholar] [CrossRef]
- Halbus, A.F.; Tommy, S. Colloid particle formulations for antimicrobial applications. Adv. Colloid Interface Sci. 2017, 249, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef]
- Lipovsky, A.; Nitzan, Y.; Gedanken, A.; Lubart, R. Antifungal activity of ZnO nanoparticles--the role of ROS mediated cell injury. Nanotechnology 2011, 22, 105101. [Google Scholar] [CrossRef]
- Arakha, M.; Saleem, M.; Mallick, B.C.; Jha, S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep. 2015, 5, 9578. [Google Scholar] [CrossRef]
- Da-Silva, B.L.; Abuçafy, M.P.; Manaia, E.B.; Oshiro, J.A., Jr.; Chiari-Andréo, B.G.; Pietro, R.C.R.; Chiavacci, L.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomed. 2019, 14, 9395. [Google Scholar] [CrossRef]
- Jeyabharathi, S.; Chandramohan, S.; Naveenkumar, S.; Sundar, K.; Muthukumaran, A. Synergistic effects of herbal zinc oxide nanoparticles (ZnONPs) and its anti-hyperglycemic and anti-bacterial effects. Mater. Today Proc. 2021, 36, 390–396. [Google Scholar] [CrossRef]
- Obeizi, Z.; Benbouzid, H.; Ouchenane, S.; Yılmaz, D.; Culha, M.; Bououdina, M. Biosynthesis of Zinc Oxide Nanoparticles from Essential Oil of Eucalyptus globulus with Antimicrobial and Anti-Biofilm Activities. Mater. Today Commun. 2020, 25, 225164972. [Google Scholar] [CrossRef]
Microbes Used for Synthesis | Synthesis Method | Optimum Synthesis Conditions (Salt Concentration, Temperature, Incubation Time) | Size (nm, Nanoparticles/Crystallite) | Shape | Target Pathogens | Reference |
---|---|---|---|---|---|---|
Paraclostridium benzoelyticum | Extra cellular | 0.1 M zinc nitrate, 80 °C for 24 h | 50 (Average) | Spherical and rectangular | Helicobacter suis, H. felis, H. bizzozeronii, H. salomonis | [15] |
Aspergillus sp. | Extra cellular | 0.1 N zinc acetate, 40 °C for 6 h | 80–100 | Sphere shape | Escherchia coli, Pseudomonas aeruginosa, Salmonella typhi | [3] |
Pseudomonas aeruginosa | Extra cellular | 2 mM zinc acetate, 35 ± 2 °C for 24 h | 14.9 ± 3.5 | Spherical | Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans | [44] |
Lactobacillus spp. | Intracellular | 500 mM zinc salt, 37 °C for 24 h | 32 (Average) | Spherical | Clostridium difficile, E. coli, Clostridium perfringens, S. typhi, Aspergillus flavus, C. albicans | [8] |
Marinobacter sp. 2C8 and Vibrio sp. VLA | Extra cellular | 0.1 M zinc sulfate, 30 °C for 24 h | 10.2–20.3 | Spherical | E. coli, P. aeruginosa, Listeria innocua, S. aureus, Bacillus subtilis | [35] |
Bacillus cereus RNT6 | Extra cellular | 0.1 zinc sulfate, 80 °C for 15 min | 21–35 | Spherical | Burkholderia glumae, B. gladioli | [42] |
Lactobacillus plantarum TA4 | Extra and intracellular | 500 mM zinc salt, 24 h at 37 °C | 152.8–613.5 | Flower pattern | E. coli, Salmonella sp., S. aureus, S. epidermidis | [13] |
Endophytic fungus Alternaria tenuissima | Extra cellular | 2 mM zinc sulphate, at room temperature for 20 min | 10–30 | Spherical | P. aeruginosa, Klebsiella pneumoniae, E. coli, S. aureus | [24] |
Pseudomonas putida | Combine of intra and extracellular | 100 mg zinc nitrate into 100 mL culture solution, 24 h at 37 °C | 44.5 (Average) | Spherical | Pseudomonas otitidis, Enterococcus faecalis, Acinetobacter baumannii, P. oleovorans, B. cereus | [45] |
Aeromonas hydrophila | Intracellular | Zinc salt, 37 °C, for 24 h | 57.7 (Average) | Spherical | P. aeruginosa, Aspergillus flavus | [46] |
Bacillus megaterium | Intracellular | Zinc nitrate solution, 37 °C for 48 h | 45–95 | Rod and cubic | Helicobacter pylori | [47] |
Halomonas elongate | Extracellular | Zinc chloride, 37 °C for one week | 18.1 ± 8.9 | Multiform | E. coli, S. aureus | [48] |
Lactobacillus paracasei LB3 | Intracellular | Zinc nitrate solution, 37 °C for 24 h | 1179 ± 137 | Spherical | S. aureus, Acetinobacter baumannii | [49] |
Lactobacillus sporogens | Extracellular | 0.1 M zinc sulfate, 37 °C for 24 h | 145.7 (Average) | Hexagonal | S. aureus | [50] |
Rhodococcus pyridinivorans NT2b | Extracellular | 0.1 M zinc sulfate, 30 °C for 72 h | 100–120 | Roughly spherical | S. epidermidis | [51] |
Sphingobacterium thalpophilum | Extracellular | Zinc nitrate solution, 37 °C for 24 h | 40 (Average) | Triangle | P. aeruginosa, Enterobacter aerogens | [52] |
Staphylococcus aureus | Extracellular | zinc acetate solution (1 mM), 37 °C. | 10–50 | Acicular | S. aureus | [53] |
Streptomyces sp. | Extracellular | Zinc chloride solution, 28 °C for 7 days | 20–50 | Spherical | E. coli, B. subtilis | [54] |
Pichia kudriavzevii | Extracellular | zinc acetate solution, 35 °C for 36 h | 10–61 | Hexagonal wurtzite | B. subtilis, S. epidermidis, S. aurous, E. coli, Serratia marcescens | [55] |
Pichia fermentas JA2 | Extracellular | 1 mM zinc nitrate, 28 °C for 96 h | NA | Smooth and elongated | P. aeruginosa | [56] |
Aspergillus fumigatus JCF | Extracellular | 1.0 mM zinc sulfate, 32 °C for 96 h | 60–80 | Spherical | K. pneumoniae, P. aeruginosa, E. coli, S. aureus, B. subtilis | [57] |
Aspergillus niger | Extracellular | 5 mM Zinc nitrate, 32 °C for 48 h | 61 ± 0.65 | Spherical | E. coli, S. aureus | [58] |
Aspergillus terreus | Extracellular | Zinc salt solution, 32 °C for 4 days | 54.8–82.6 | Spherical | A. niger, A. fumigatus, A. aculeatus | [59] |
Plant | Used Part | Optimum Synthesis Conditions (Salt Concentration, Temperature, Incubation Time) | Size (nm, Nanoparticles/Crystallite) | Shape | Target Pathogens | Reference |
---|---|---|---|---|---|---|
Punica granatum | Peel extract | 5 mM Zinc acetate, room temperature for overnight | 10–45 | Spherical | Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Candida albicans | [63] |
Cassia siamea | Leaf extract | 1.0 mM zinc nitrate, heated for 3 to 4 h | 13 (Average) | Spherical, oval, spheroidal | Pseudomonas aeruginosa, Chromobacterium violaceum | [14] |
Cinnamon and bay | Leaves | Zinc salt, room temperature for 24 h | ~10, 18.5 and ~30 (Average) | Spherical | Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae | [9] |
Allium sativum, Zingiber officinale | Bulb extract, root extract | Zinc acetate solution, 50 °C for 2 h | 19.8, 21.9 and 23.9 (Average) | Wurtzite | Escherichia coli, Pseudomonas putida, Staphylococcus aureus, Streptococcus pyogenes | [2] |
Pisonia Alba | Leaf extract | 0.1 M zinc acetate, 70 °C for 2 h | Aggregated | NA | Staphylococcus aureus, Klebsiella pneumoniae | [36] |
Sargassum muticum | Plant extract | 5 mM zinc nitrate, 70 °C for 20 min and room temperature for 2 h | 15–50 | Wurtzite hexagonal | Bacillus flexus, Bacillus filamentosus, Acinetobacter baumannii, Pseudomonas stutzeri | [68] |
Punica granatum peel and coffee ground | Plant extract | 10 mM zinc acetate, 1 h at 70 °C | 118.6, 115.7 and 111.2 (Average) | Nanorod | Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter aerogenes | [69] |
Myrica esculenta | Fruits extract | 0.5 M zinc acetate, 40 °C for 2 h | 31.7 (Average) | NA | Fusarium oxysporum, Staphylococcus aureus, Pseudomonas aeruginosa, Rosellinia necatrix, Escherichia coli | [23] |
Gardenia thailandica triveng | Leaves | Zinc acetate solution, 70 °C for 30 min, room temperature for 1 h | 37.4 (Average) | Spherical | Pseudomonas aeruginosa clinical isolates | [64] |
Cocos nucifera | Extract | 1 M zinc nitrate, 4 h at ambient temperature | 28–59 | Rock shaped | S. aureus, E. coli, B. subtilis, K. pneumoniae | [70] |
Clitoria ternatea | Flower extract | 0.1 M zinc nitrate, 4 h at 80 °C | 40–81 | Rod | S. aureus, E. coli | [71] |
Carica papaya | Leaf extract | 0.1 M Zinc acetate, 4 h at 80 °C | 15–50 | Semi-spherical | Rosellinia necatrix, Sclerotinia sclerotiorum, Fusarium spp. | [65] |
Tagetes erecta | Flower extract | 1.5 mM zinc nitrate, 24 h at 60 °C | 30–50 | Spherical | E. coli, S. aureus | [72] |
Spinacea oleracea | Extract | Aqueous zinc acetate solution, 24 h at 60 °C | 13.0 (Average) | granular | Pseudomonas aeruginosa | [73] |
Salvia officinalis | Leaf extract | 0.1 M zinc nitrate, 4 h at 50 °C | 26.1 (Average) | Wurtzite hexagonal | Candida albicans isolates | [62] |
Orange | Peel extract | 1 M zinc nitrate, 2 h at room temperature | 20–60 | cubic | Pseudomonas aeruginosa, B. subtilis | [66] |
Phoenix dactylifera | Waste | 5 g zinc nitrate in 50 mL of extract, 30 min at room temperature | 30 (Average) | Spherical | Streptococcus pyogenes, Pseudomonas aeruginosa, Staphylococcus aureus | [38] |
Brassica rapa | Leaf extract | Zinc nitrate solution, 4 h at 80 °C | 27.5 (Average) | Irregular | Micrococcus luteus, Enterobacter aerogenes | [74] |
Red Paprika | Aqueous plant extract | 2 M Zinc acetate, 6 h at room temperature | 70–80 | Rod | S. enterica. | [75] |
Aloe barbadense | Leaf extract | 10 mM zinc nitrate, 60 °C | 44 (Average) | Quasi-hexagonal | Bacillus subtilis, Bacillus licheniformis, Klebsiella pneumonia, Escherichia coli, Candida albicans, Aspergillus niger | [76] |
Geranium robertianum | Flower extract | 10 mM zinc acetate, 2 h at room temperature | 40 (Average) | Irregular | Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus isolates | [67] |
Ocimum americanum | Plant extract | 1 mM zinc nitrate, 1 h at 60 °C | 21 (Average) | Spherical | B. cereus, Staphylococcus aureus, Klebsiella pneumonia, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi, Candida albicans, Xanthomonas citri, Aspergillus parasiticus | [77] |
Azadirachta indica | Leaves | Zinc nitrate solution, boiled at 350 ± 10 °C for 4 min | 9–38 | Hexagonal | Klebsiella aerogenes and Staphylococcus aureus | [78] |
Cannabis sativa | Leaf | Zinc acetate solution, 80 °C for 12 h | 34–38 | Spherical | Escherichia coli, Klebsiella pneumonia, MRSA, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus | [79] |
Carica papaya | Latex | Zinc nitrate solution, 37 °C for 36 h | 11–26 | Hexagonal | Pseudomonas aeruginosa and Staphylococcus aureus compared to Klebsiella aerogenes and Pseudomonas desmolyticum | [80] |
Dolichos lablab L. | Leaf | Zinc acetate solution, incubated 70 °C for 1 h | 29 (Average) | Hexagonal | Bacillus pumilus and Sphingomonas paucimobilis | [81] |
Tabernaemontana divaricata | Green leaf | Zinc nitrate solution, 80 °C until precipitation. | 20–50 | Spherical | Salmonella paratyphi, Escherichia coli and Staphylococcus aureus | [41] |
Moringa oleifera (drumstick) | Leaves | Zinc acetate solution, 24 °C for 1 h | 52 (Average) | Hexagonal wurtzite | Bacillus subtilis and Escherichia coli | [82] |
Mussaenda frondosa | Leaf/stem | Zinc nitrate solution, 400 °C for 10–30 min | 5–20 | Spherical | Staphylococcus aureus and Bacillus subtilis | [83] |
Phyllanthus emblica | Plant extract | Zinc chloride solution, 90 °C for 2 h | Aggregated | square-shaped | S. pyogenes, S. aureus, S. typhi and E. coli | [84] |
Plectranthus amboinicus | Plant extract | Zinc sulfate solution, room temperature for 2 h | Aggregated | Irregular aggregated nanoflakes | S. aureus and E. coli | [85] |
Characterization Technique | Principle | Advantage | Reference |
---|---|---|---|
UV-visible spectrophotometry | Measures absorbance of light | Rapid and nondestructive | [97] |
X-ray diffraction (XRD) | Measures crystal structure and size | Provides detailed crystallographic information | [62] |
Scanning electron microscope (SEM) | Provides surface morphology and size | High resolution imaging | [98] |
Transmission electron microscope (TEM) | Provides detailed information on size, shape and structure | High resolution imaging and analysis of individual particles | [62] |
Fourier transform infrared spectroscopy (FTIR) | Measures functional groups on the nanoparticle surface | Provides information on surface chemistry | [97] |
Dynamic light scattering (DLS) | Measures particle size distribution | Rapid and nondestructive | [97] |
Zeta potential analyzer | Measures the surface charge of particles in solution | Provides information on particle stability | [97] |
Treated Pathogenic Microbes | Mode of Action | References |
---|---|---|
H. suis, H. felis, H. bizzozeronii, H. salomonis | Lead to the damage of cell wall, cell membrane and DNA, mitochondrial dysfunction, apoptosis, generation of reactive oxygen species and, finally, cell death. | [15] |
S. aureus, E. coli, B. subtilis, P. aeruginosa, C. albicans. | Inhibit different metabolic functions including cell metabolisms, transportation, enzyme activity, etc.; generate reactive oxygen species and lead to the death of cell. | [44] |
S. aureus, E. coli, E. faecalis, S. enteritidis, K. pneumoniae, P. aeruginosa, A. baumannii, S. typhimurium, C. albicans | Damage of cell membrane and DNA, leakage of intracellular molecules, denaturation of enzymes and proteins, inhibition of protein synthesis, generation of reactive oxygen species. | [121] |
Burkholderia glumae, B. gladioli | Damage cell membrane, proteins, ribosome, and cytoplasmic materials; produce reactive oxygen species and cause leakage of genetic materials, resulting cell death. | [42] |
E. coli, Salmonella sp., S. aureus, S. epidermidis | Damage the cell membrane, cause leakage of intracellular materials and generate reactive oxygen species, which lead to the death of the cell. | [13] |
S. aureus, K. pneumoniae | Generation of reactive oxygen species, DNA damage, protein denaturation and mitochondrial dysfunction. | [36] |
P. aeruginosa, C. violaceum | Attach to cell membrane, break membrane permeability, release Zn ions, generate reactive oxygen species. | [14] |
E. coli, P. putida, S. aureus, S. pyogenes | Interact with cell membrane, produce reactive oxygen species, damage cell wall, DNA, protein and iron. | [2] |
B. flexus, B. filamentosus, A. baumannii, P. stutzeri | Damage of cell wall, inhibition of cellular metabolism and respiration, destruction of DNA and inactivation of protein. | [68] |
C. albicans | Disrupt and deform the cell wall and cell membrane and inhibit the production of ergosterol, which lead to cell death. | [62] |
S. pyogenes, P. aeruginosa, S. aureus | Production of significant oxygen reactive species including hydroxyl radicals, superoxides and hydrogen peroxide. | [38] |
F. oxysporum, S. aureus, P. aeruginosa, R. necatrix, E. coli | Damage cell membrane, generate reactive oxygen species, damage DNA, denature protein, cause ribosomal destabilization and mitochondrial dysfunction, which lead to the death of cell. | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huq, M.A.; Apu, M.A.I.; Ashrafudoulla, M.; Rahman, M.M.; Parvez, M.A.K.; Balusamy, S.R.; Akter, S.; Rahman, M.S. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023, 15, 2634. https://doi.org/10.3390/pharmaceutics15112634
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics. 2023; 15(11):2634. https://doi.org/10.3390/pharmaceutics15112634
Chicago/Turabian StyleHuq, Md. Amdadul, Md. Aminul Islam Apu, Md. Ashrafudoulla, Md. Mizanur Rahman, Md. Anowar Khasru Parvez, Sri Renukadevi Balusamy, Shahina Akter, and Md. Shahedur Rahman. 2023. "Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications" Pharmaceutics 15, no. 11: 2634. https://doi.org/10.3390/pharmaceutics15112634
APA StyleHuq, M. A., Apu, M. A. I., Ashrafudoulla, M., Rahman, M. M., Parvez, M. A. K., Balusamy, S. R., Akter, S., & Rahman, M. S. (2023). Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics, 15(11), 2634. https://doi.org/10.3390/pharmaceutics15112634