Pharmacokinetic–Pharmacodynamic Modeling of Midazolam in Pediatric Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classification of the Study
2.2. Patients
Sample Size
2.3. Samples
2.4. Data Collection
2.5. Population PK Analysis
2.6. Building the Model
2.6.1. Structural Model
2.6.2. Interindividual and Error Models
2.7. Population PK-PD Analysis
2.8. Model Evaluation
2.9. Statistical Analysis
3. Results
3.1. Method for MDZ Quantification in Dried Blood Spots
3.2. Patient Data
3.3. Midazolam Concentrations and Degree of Sedation Depth
3.4. Pharmacokinetic Model
3.5. MDZ Pharmacodynamic Model
3.6. Pharmacokinetic-Pharmacodynamic Model (PK-PD)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, S.W.; Jin, Y.; Lim, H.; Lee, J.; Lee, K.H. Effect of Intramuscular Midazolam Premedication on Patient Satis-faction in Women Undergoing General Anaesthesia: A Randomised Control Trial. BMJ Open 2022, 12, e059915. [Google Scholar] [CrossRef]
- Olkkola, K.T.; Ahonen, J. Midazolam and Other Benzodiazepines. Handb. Exp. Pharmacol. 2008, 182, 335–360. [Google Scholar] [CrossRef]
- Young, T.; Magnum, B. Neofax: A Manual of Drugs Used in Neonatal Care, 24th ed.; Thomson Reuters: Toronto, ON, Canada, 2011. [Google Scholar]
- Sun, G.C.; Hsu, M.C.; Chia, Y.Y.; Chen, P.Y.; Shaw, F.Z. Effects of Age and Gender on Intravenous Midazolam Premedication: A Randomized Double-Blind Study. Br. J. Anaesth. 2008, 101, 632–639. [Google Scholar] [CrossRef]
- Oriolo Estrada, R.; Sanabria Negrín, J.; Oriolo Pérez, L. Eficacia Del Midazolam Contra La Ansiedad En Niños de 1-3 Años Sometidos a Cirugía (Effectiveness of Midazolam against Anxiety in Children Aged 1 to 3 Years Old Who Underwent Surgery). Rev. Cienc. Médicas 2014, 18, 388–400. [Google Scholar]
- Zaporowska-Stachowiak, I.; Szymański, K.; Oduah, M.-T.; Stachowiak-Szymczak, K.; Łuczak, J.; Sopata, M. Mid-azolam: Safety of Use in Palliative Care. Biomed. Pharmacother. 2019, 114, 108838. [Google Scholar] [CrossRef] [PubMed]
- Flores-Pérez, C.; Moreno-Rocha, L.A.; Chávez-Pacheco, J.L.; Noguez-Méndez, N.A.; Flores-Pérez, J.; Alcántara-Morales, M.F.; Cortés-Vásquez, L.; Sarmiento-Argüello, L. Sedation Level with Midazolam: A Pediatric Surgery Approach. Saudi Pharm. J. 2022, 30, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.; Eriksson, L.; Fleisher, L.; Wiener-Kronish, J.; Cohen, N.; Young, W. Miller’s Anesthesia, 8th ed.; Miller, R., Cohen, N., Eriksson, L., Fleisher, L., Wiener-Kronish, J., Young, W., Eds.; Elsevier Health Sciences: Philadelphia, PA, USA, 2014; Volume 1, ISBN 0323280110/9780323280112. [Google Scholar]
- Link, B.; Haschke, M.; Wenk, M.; Krähenbühl, S. Determination of Midazolam and Its Hydroxy Metabolites in Human Plasma and Oral Fluid by Liquid Chromatography/Electrospray Ionization Ion Trap Tandem Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2007, 21, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Reves, J.G.; Fragen, R.J.; Vinik, H.R.; Greenblatt, D.J. Midazolam: Pharmacology and Uses. Anesthesiology 1985, 62, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Brussee, J.M.; Krekels, E.H.J.; Calvier, E.A.M.; Palić, S.; Rostami-Hodjegan, A.; Danhof, M.; Barrett, J.S.; de Wildt, S.N.; Knibbe, C.A.J. A Pediatric Covariate Function for CYP3A-Mediated Midazolam Clearance Can Scale Clear-ance of Selected CYP3A Substrates in Children. AAPS J. 2019, 21, 81. [Google Scholar] [CrossRef]
- Oldenhof, H.; de Jong, M.; Steenhoek, A.; Janknegt, R. Clinical Pharmacokinetics of Midazolam in Intensive Care Patients, a Wide Interpatient Variability? Clin. Pharmacol. Ther. 1988, 43, 263–269. [Google Scholar] [CrossRef]
- Greenblatt, D.; Shader, R.; Divoll, M.; Harmatz, J. Benzodiazepines: A Summary of Pharmacokinetic Properties. Br. J. Clin. Pharmacol. 1981, 11, 11S–16S. [Google Scholar] [CrossRef]
- Prommer, E. Midazolam: An Essential Palliative Care Drug. Palliat. Care Soc. Pr. 2020, 14, 263235241989552. [Google Scholar] [CrossRef] [PubMed]
- Lingamchetty, T.; Hosseini, S.; Saadabadi, A. Midazolam; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Pérez-Urizar, J.; Granados-Soto, V.; Flores-Murrieta, F.J.; Castañeda-Hernández, G. Pharmacokinetic-Pharmacodynamic Modeling: Why? Arch. Med. Res. 2000, 31, 539–545. [Google Scholar] [CrossRef]
- Sadean, M.R.; Glass, P.S.A. Pharmacokinetic-Pharmacodynamic Modeling in Anesthesia, Intensive Care and Pain Medicine. Curr. Opin. Anaesthesiol. 2009, 22, 463–468. [Google Scholar] [CrossRef]
- Barker, C.I.S.; Standing, J.F.; Kelly, L.E.; Hanly Faught, L.; Needham, A.C.; Rieder, M.J.; de Wildt, S.N.; Offringa, M. Pharmacokinetic Studies in Children: Recommendations for Practice and Research. Arch. Dis. Child. 2018, 103, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Venitz, J. Pharmacokinetic-Pharmacodynamic Modeling of Reversible Drug Effects. In Handbook of Pharmacokinetic/Pharmacodynamic Correlation; Derendorf, H., Hochhaus, G., Eds.; CRC Press: New York, NY, USA, 2019; ISBN 9780429276965. [Google Scholar]
- Koopmans, R.; Dingemanse, J.; Danhof, M.; Horsten, G.P.M.; van Boxtel, C.J. Pharmacokinetic-Pharmacodynamic Modeling of Midazolam Effects on the Human Central Nervous System. Clin. Pharmacol. Ther. 1988, 44, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Mandema, J.W.; Tuk, B.; Van Steveninck, A.L.; Breirner, D.D.; Cohen, A.F.; Danhof, M. Pharmacokinet-ic-Pharmacodynamic Modeling of the Central Nervous System Effects of Midazolam and Its Main Metabolite a-Hvdroxvmidazolarn In. Clin. Pharmacol. Ther. 1992, 51, 715–728. [Google Scholar] [CrossRef]
- Louizos, C.; Yáñez, J.A.; Forrest, M.L.; Davies, N.M. Understanding the Hysteresis Loop Conundrum in Pharma-cokinetic/Pharmacodynamic Relationships. J. Pharm. Pharm. Sci. 2014, 17, 34–91. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.H.; Kim, M.H.; Lee, J.J.; Choi, S.J.; Gwak, M.S.; Lee, A.R.; Park, M.N.; Joo, H.S.; Choi, J.H. The Effect of Midazolam Dose and Age on the Paradoxical Midazolam Reaction in Korean Pediatric Patients. Korean J. Anesth. 2013, 65, 9–13. [Google Scholar] [CrossRef] [PubMed]
- De Cock, R.F.W.; Piana, C.; Krekels, E.H.J.; Danhof, M.; Allegaert, K.; Knibbe, C.A.J. The Role of Population PK-PD Modelling in Paediatric Clinical Research. Eur. J. Clin. Pharmacol. 2011, 67, S5–S16. [Google Scholar]
- Flores Pérez, C.; Flores Pérez, J.; Peña Morales, G.; Delgado Vergara, K.; Juárez Olguín, H. Therapeutic Monitoring of Midazolam: An Approach to Adequate Sedation in Critically Ill Pediatric Patients. In Advances in Health and Disease; Duncan, L.T., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2019; Volume 9, pp. 201–206. ISBN 978-1-53614-793-3. [Google Scholar]
- Vermeulen, E.; van den Anker, J.N.; Della Pasqua, O.; Hoppu, K.; van der Lee, J.H. How to Optimise Drug Study Design: Pharmacokinetics and Pharmacodynamics Studies Introduced to Paediatricians. J. Pharm. Pharmacol. 2017, 69, 439–447. [Google Scholar] [CrossRef]
- Flores-Pérez, C.; Flores-Pérez, J.; Moreno-Rocha, L.A.; Chávez-Pacheco, J.L.; Noguez-Méndez, N.A.; Ramírez-Mendiola, B.; Sánchez-Maza, Y.; Sarmiento-Argüello, L. Influence of Age and Sex on the Pharmacokinetics of Midazolam and the Depth of Sedation in Pediatric Patients Undergoing Minor Surgeries. Pharmaceutics 2023, 15, 440. [Google Scholar] [CrossRef] [PubMed]
- Mak, P.H.K.; Campbell, R.C.H.; Irwin, M.G. The ASA Physical Status Classification: Inter-Observer Consistency. Anaesth. Intensive Care 2002, 30, 633–640. [Google Scholar] [CrossRef]
- Covidien AG Índice Biespectral (BIS). Available online: https://www.medtronic.com/covidien/en-us/products/brain-monitoring.html (accessed on 26 October 2018).
- Diario Oficial de la Federación. Norma Oficial Mexicana NOM-220-SSA1-2016, Instalación y Operación de La Farmacovigilancia. Available online: http://dof.gob.mx/nota_detalle.php?codigo=5490830&fecha=19/07/2017 (accessed on 12 December 2018).
- Chan, P.L.S.; Jacqmin, P.; Lavielle, M.; McFadyen, L.; Weatherley, B. The Use of the SAEM Algorithm in MONO-LIX Software for Estimation of Population Pharmacokinetic-Pharmacodynamic-Viral Dynamics Parameters of Maraviroc in Asymptomatic HIV Subjects. J. Pharmacokinet. Pharmacodyn. 2011, 38, 41–61. [Google Scholar] [CrossRef]
- Kuhn, E.; Lavielle, M. Maximum Likelihood Estimation in Nonlinear Mixed Effects Models. Comput. Stat. Data Anal. 2005, 49, 1020–1038. [Google Scholar] [CrossRef]
- Holford, N.H.G.; Sheiner, L.B. Understanding the Dose-Effect Relationship. Clin. Pharmacokinet. 1981, 6, 429–453. [Google Scholar] [CrossRef]
- Flores-Pérez, C.; Flores-Pérez, J.; Zárate-Castañón, P.; López, S.L.; Rivera-Espinosa, L.; Juárez-Olguín, H.; Díaz-García, L. A Reliable HPLC Method for Monitoring Midazolam Plasma Levels in Critically Ill Pediatric Patients. Curr. Pharm. Anal. 2018, 14, 306–311. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Charts BMI-for-Age: 2 to 5 Years (Percentiles). Available online: https://www.who.int/toolkits/child-growth-standards/standards/body-mass-index-for-age-bmi-for-age (accessed on 10 October 2022).
- Centro Para el Control de Enfermedades (CDC). Acerca Del Índice de Masa Corporal Para Niños y Adolescentes. Available online: https://www.cdc.gov/healthyweight/spanish/assessing/bmi/childrens_bmi/acerca_indice_masa_corporal_ninos_adolescentes.html (accessed on 11 October 2022).
- Woolsey, S.J.; Beaton, M.D.; Choi, Y.H.; Dresser, G.K.; Gryn, S.E.; Kim, R.B.; Tirona, R.G. Relationships between Endogenous Plasma Biomarkers of Constitutive Cytochrome P450 3A Activity and Single-Time-Point Oral Midazolam Microdose Phenotype in Healthy Subjects. Basic. Clin. Pharmacol. Toxicol. 2016, 118, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J.T. Factors and Mechanisms for Pharma-cokinetic Differences between Pediatric Population and Adults. Pharmaceutics 2011, 3, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Clack, S.L.; Chea, F.H.; Tayong, M.; Barker, S. Can Bispectral Index (Bis) of Eec Be Useful in Assessing Sedation in Icu Patients? J. Clin. Monit. 1996, 12, 465. [Google Scholar]
- Simmons, L.E.; Riker, R.R.; Prato, B.S.; Fraser, G.L. Assessing Sedation during Intensive Care Unit Mechanical Ventilation with the Bispectral Index and the Sedation-Agitation Scale. Crit. Care Med. 1999, 27, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Triltsch, A.; Spies, C.; Lenhart, A.; Witt, M.; Welte, M. Biespectral Index (BIS) Correlates with Ramsay Sedation Scores in Neurosurgical ICU Patients. Proc. Anesthesiol. 1999, 91, A295. [Google Scholar]
- Flores-Pérez, C.; Flores-Pérez, J.; de Jesús Castillejos López, M.; Chávez-Pacheco, J.L.; Tejada-Gutiérrez, K.M.; Aquino-Gálvez, A.; Torres-Espíndola, L.M. Sex and Age Influence on Association of CYP450 Polymorphism with Midazolam Levels in Critically Ill Children. Diagnostics 2022, 12, 2797. [Google Scholar] [CrossRef] [PubMed]
- van Groen, B.D.; Vaes, W.H.; Park, B.K.; Krekels, E.H.J.; van Duijn, E.; Kõrgvee, L.T.; Maruszak, W.; Grynkiewicz, G.; Garner, R.C.; Knibbe, C.A.J.; et al. Dose-Linearity of the Pharmacokinetics of an Intravenous [14C]Midazolam Microdose in Children. Br. J. Clin. Pharmacol. 2019, 85, 2332–2340. [Google Scholar] [CrossRef]
- Brussee, J.M.; Yu, H.; Krekels, E.H.J.; Palić, S.; Brill, M.J.E.; Barrett, J.S.; Rostami-Hodjegan, A.; de Wildt, S.N.; Knibbe, C.A.J. Characterization of Intestinal and Hepatic CYP3A-Mediated Metabolism of Midazolam in Children Using a Physiological Population Pharmacokinetic Modelling Approach. Pharm. Res. 2018, 35, 182. [Google Scholar] [CrossRef]
- Salonen, M.; Kanto, J.; Iisalo, E.; Himberg, J.J. Midazolam as an Induction Agent in Children: A Pharmacokinetic and Clinical Study. Anesth. Analg. 1987, 66, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Altamimi, M.I.; Sammons, H.; Choonara, I. Inter-Individual Variation in Midazolam Clearance in Children. Arch. Dis. Child. 2015, 100, 95–100. [Google Scholar] [CrossRef]
- Dundee, J.W.; Halliday, N.J.; Harper, K.W.; Brogden, R.N. Midazolam: A Review of Its Pharmacological Properties and Therapeutic Use. Drugs 1984, 28, 519–543. [Google Scholar] [CrossRef] [PubMed]
- Marçon, F.; Guittet, C.; Manso, M.A.; Burton, I.; Granier, L.A.; Jacqmin, P.; Dupont, H. Population Pharmacokinetic Evaluation of ADV6209, an Innovative Oral Solution of Midazolam Containing Cyclodextrin. Eur. J. Pharm. Sci. 2018, 114, 46–54. [Google Scholar] [CrossRef]
- Daly, A.K. Significance of the Minor Cytochrome P450 3A Isoforms. Clin. Pharmacokinet. 2006, 45, 13–31. [Google Scholar] [PubMed]
- Flores-Pérez, C.; Castillejos-López, M.D.J.; Chávez-Pacheco, J.L.; Dávila-Borja, V.M.; Flores-Pérez, J.; Zárate-Castañón, P.; Acosta-Bastidas, M.; Cruz-Escobar, J.; Torres-Espíndola, L.M. The Rs776746 Variant of CYP3A5 Is Associated with Intravenous Midazolam Plasma Levels and Higher Clearance in Critically Ill Mexican Paediatric Patients. J. Clin. Pharm. Ther. 2021, 46, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Lin, Y.S.; McConn, D.J.; Calamia, J.C.; Totah, R.A.; Isoherranen, N.; Glodowski, M.; Thummel, K.E. Evidence of Significant Contribution from CYP3A5 to Hepatic Drug Metabolism. Drug Metab. Dispos. 2004, 32, 1434–1445. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Goldstein, J.A. Functionally Defective or Altered CYP3A4 and CYP3A5 Single Nucleotide Polymor-phisms and Their Detection with Genotyping Tests. Pharmacogenomics 2005, 6, 357–371. [Google Scholar] [CrossRef]
- Westlind, A.; Löfberg, L.; Tindberg, N.; Andersson, T.B.; Ingelman-Sundberg, M. Interindividual Differences in Hepatic Expression of CYP3A4: Relationship to Genetic Polymorphism in the 5′-Upstream Regulatory Region. Biochem. Biophys. Res. Commun. 1999, 259, 201–205. [Google Scholar] [CrossRef]
- Wojnowski, L.; Kamdem, L.K. Clinical Implications of CYP3A Polymorphisms. Expert. Opin. Drug Metab. Toxicol. 2006, 2, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Harper, K.W.; Collier, P.S.; Dundee, J.W.; Elliott, P.; Halliday, N.J.; Lowry, K.G. Age and Nature of Operation Influence the Pharmacokinetics of Midazolam. Br. J. Anaesth. 1985, 57, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.N.; Miller, J.L.; Hagemann, T.M. Sedation and Analgesia in Critically Ill Children. AACN Adv. Crit. Care 2012, 23, 415–434. [Google Scholar] [CrossRef]
- Bennett, C.; Voss, L.J.; Barnard, J.P.M.; Sleigh, J.W. Practical Use of the Raw Electroencephalogram Waveform during General Anesthesia: The Art and Science. Anesth. Analg. 2009, 109, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Jeleazcov, C.; Ihmsen, H.; Schmidt, J.; Ammon, C.; Schwilden, H.; Schüttler, J.; Fechner, J. Pharmacodynamic Modelling of the Bispectral Index Response to Propofol-Based Anaesthesia during General Surgery in Children. Br. J. Anaesth. 2008, 100, 509–516. [Google Scholar] [CrossRef]
- Coté, C.J.; Cohen, I.T.; Suresh, S.; Rabb, M.; Rose, J.B.; Craig Weldon, B.; Davis, P.J.; Bikhazi, G.B.; Karl, H.W.; Hummer, K.A.; et al. A Comparison of Three Doses of a Commercially Prepared Oral Midazolam Syrup in Children. Anesth. Analg. 2002, 94, 37–43. [Google Scholar] [CrossRef]
- Fraone, G.; Wilson, S.; Casamassimo, P.S.; Ii, J.W.; Pulido, A.M. The Effect of Orally Administered Midazolam on Children of Threeage Groups during Restorative Dental Care. Pediatr. Dent. 1999, 21, 236–242. [Google Scholar]
- Cary, J.; Hein, K.; Dell, R. Theophylline Disposition in Adolescents with Asthma. Ther. Drug Monit. 1991, 13, 309–313. [Google Scholar] [CrossRef]
- Vaughns, J.D.; Conklin, L.S.; Long, Y.; Zheng, P.; Faruque, F.; Green, D.J.; van den Anker, J.N.; Burckart, G.J. Obesity and Pediatric Drug Development. J. Clin. Pharmacol. 2018, 58, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Beierle, I.; Meibohm, B.; Derendorf, H. Gender Differences in Pharmacokinetics and Pharmacodynamics. Int. J. Clin. Pharmacol. Ther. 1999, 37, 529–547. [Google Scholar]
- Kennedy, M.J. Hormonal Regulation of Hepatic Drug-Metabolizing Enzyme Activity during Adolescence. Clin. Pharmacol. Ther. 2008, 84, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.H.; Schoeller, D.A.; Kotake, A.N.; Flores, C.; Hay, D. The Effect of Age, Gender, and Sexual Maturation on the Caffeine Breath Test. Dev. Pharmacol. Ther. 1986, 9, 375–388. [Google Scholar] [CrossRef]
- Finkelstein, J.W. The Effect of Developmental Changes in Adolescence on Drug Disposition. J. Adolesc. Health 1994, 15, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.K.; Davis, P.J.; Del Dear, G.; Ginsberg, B.; Mcgowan, F.X.; Stiller, R.D.; Henson, L.G.; Huffman, C.; Muir, K.T. Pharmacokinetics of Remifentanil in Anesthetized Pediatric Patients Undergoing Elective Surgery or Diagnostic Procedures. Anesth. Analg. 2001, 93, 1393–1401. [Google Scholar] [CrossRef]
- Buchanan, F.F.; Myles, P.S.; Cicuttini, F. Patient Sex and Its Influence on General Anaesthesia. Anaesth. Intensive Care 2009, 37, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.B.; Jia, Y.P.; Liang, Z.H.; Zhou, R.; Zheng, J.Q. Effect of Continuous Infusion of Midazolam on Immune Function in Pediatric Patients after Surgery. Genet. Mol. Res. 2015, 14, 10007–10014. [Google Scholar] [CrossRef] [PubMed]
- Nordt, S.P.; Clark, R.F. Midazolam: A Review of Therapeutic Uses and Toxicity. J. Emerg. Med. 1997, 15, 357–365. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 97) |
---|---|
Patients (n) | |
Preschoolers | 26 |
Schoolchildren | 40 |
Adolescents | 31 |
Sex (male/female) | |
Preschoolers | 19/7 |
Schoolchildren | 22/18 |
Adolescents | 18/13 |
Age (years) * | |
Preschoolers | 4 (3–5) |
Schoolchildren | 10 (8–12) |
Adolescents | 15 (14–17) |
BMI (kg/m2) * | |
Preschoolers | 15.45 (13.9–17.3) |
Schoolchildren | 18.9 (16.1–21.8) |
Adolescents | 22.2 (19.75–24.1) |
ASA n (%) | |
I | 67 (69.1%) |
II | 30 (30.9%) |
Diagnostics n (%) | |
Appendicitis | 10 (10.3%) |
Cryptorchidism | 10 (10.3%) |
Microtia | 7 (7.2%) |
Septal deviation | 4 (4.1%) |
Varicocele | 3 (3.1%) |
Breast fibroadenoma | 3 (3.1%) |
Cleft lip | 2 (2.1%) |
Others | 58 (59.8%) |
Parameters | Value | RSE (%) | |
---|---|---|---|
Cl (mL/min) | 0.48 | 148 | |
V1 (mL) | 23.59 | 138 | |
Q (mL/min) | 5091.62 | 147 | |
V2 (mL) | 6792.42 | 16.3 | |
Standard Deviation of the Random Effects | |||
Value | CV (%) | RSE (%) | |
ω2Cl (CV%) | 2.66 | 3463.22 | 22.3 |
ω2V1 (CV%) | 2.86 | 5971.61 | 32.3 |
ω2Q (CV%) | 1.86 | 552.3 | 39.3 |
ω2V2 (CV%) | 1.26 | 196.59 | 8.38 |
Value | RSE (%) | ||
---|---|---|---|
E0 | 57.63 | 2.17 | |
Imax | 0.088 | 0.036 | |
IC50 | 13.57 | 30.01 | |
Standard Deviation of the Random Effects | |||
Value | CV (%) | RSE (%) | |
ω2E0 (CV%) | 0.19 | 19.58 | 12.4 |
ω2Imax (CV%) | 0.78 | 90.84 | 26.1 |
ω2IC50 (CV%) | 2.99 | 8796.01 | 32.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Pérez, C.; Moreno-Rocha, L.A.; Chávez-Pacheco, J.L.; Noguez-Méndez, N.A.; Flores-Pérez, J.; Ortiz-Marmolejo, D.; Sarmiento-Argüello, L.A. Pharmacokinetic–Pharmacodynamic Modeling of Midazolam in Pediatric Surgery. Pharmaceutics 2023, 15, 2565. https://doi.org/10.3390/pharmaceutics15112565
Flores-Pérez C, Moreno-Rocha LA, Chávez-Pacheco JL, Noguez-Méndez NA, Flores-Pérez J, Ortiz-Marmolejo D, Sarmiento-Argüello LA. Pharmacokinetic–Pharmacodynamic Modeling of Midazolam in Pediatric Surgery. Pharmaceutics. 2023; 15(11):2565. https://doi.org/10.3390/pharmaceutics15112565
Chicago/Turabian StyleFlores-Pérez, Carmen, Luis Alfonso Moreno-Rocha, Juan Luis Chávez-Pacheco, Norma Angélica Noguez-Méndez, Janett Flores-Pérez, Delfina Ortiz-Marmolejo, and Lina Andrea Sarmiento-Argüello. 2023. "Pharmacokinetic–Pharmacodynamic Modeling of Midazolam in Pediatric Surgery" Pharmaceutics 15, no. 11: 2565. https://doi.org/10.3390/pharmaceutics15112565
APA StyleFlores-Pérez, C., Moreno-Rocha, L. A., Chávez-Pacheco, J. L., Noguez-Méndez, N. A., Flores-Pérez, J., Ortiz-Marmolejo, D., & Sarmiento-Argüello, L. A. (2023). Pharmacokinetic–Pharmacodynamic Modeling of Midazolam in Pediatric Surgery. Pharmaceutics, 15(11), 2565. https://doi.org/10.3390/pharmaceutics15112565