Changes in Cardiovascular and Renal Biomarkers Associated with SGLT2 Inhibitors Treatment in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Heart Biomarkers and SGLT2i Treatment
2.1. Circulating Heart Biomarkers and SGLT2i Treatment
2.1.1. Natriuretic Peptides
2.1.2. Troponin
2.1.3. Fibrosis Biomarkers
2.2. Imaging Heart Biomarkers and SGLT2i Treatment
2.2.1. Left Ventricular (LV) Function Parameters
2.2.2. LV Volume Parameters
2.2.3. Left Ventricular Mass (LVM) Parameters
2.2.4. Left Atrial (LA) Parameters
2.2.5. LV Diastolic Function
2.2.6. Right Ventricular (RV) Parameters
2.2.7. Plasma Volume (PV)
3. Renal Biomarkers and SGLT2i Treatment
3.1. Renal Clinical Biomarkers and SGLT2i Treatment
3.2. Renal Circulating Biomarkers and SGLT2i Treatment
3.3. Renal Urinary Biomarkers in Treatment with SGLT2i
4. Vascular Biomarkers and SGLT2i Treatment
4.1. Arterial Stiffness and SGLT2i Treatment
4.1.1. Pulse Wave Velocity (PWV)
4.1.2. Cardio-Ankle Vascular Index (CAVI)
4.2. Endothelial Function and SGLT2i Treatment
4.2.1. Flow-Mediated Dilation (FMD)
4.2.2. Endothelial Peripheral Arterial Tonometry (EndoPAT)
4.3. Carotid Ultrasonography—Carotid Intima-Media Thickness (cIMT) and SGLT2i Treatment
4.4. Ankle-Brachial Index (ABI) and SGLT2i Treatment
4.5. Central Hemodynamics/Wave Reflections and SGLT2i Treatment
4.6. Plasma Biomarkers Related to Vascular Inflammation and SGLT2i Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2019, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Ling, W.; Huang, Y.; Huang, Y.-M.; Fan, R.-R.; Sui, Y.; Zhao, H.-L. Global Trend of Diabetes Mortality Attributed to Vascular Complications, 2000–2016. Cardiovasc. Diabetol. 2020, 19, 182. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen, E.K. The Epidemiology of Diabetic Kidney Disease. Kidney Dial. 2022, 2, 433–442. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of Cardiovascular Disease in Type 2 Diabetes: A Systematic Literature Review of Scientific Evidence from across the World in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, L.; Kalabalik, J. Management of Type-2 Diabetes Mellitus in Adults: Focus on Individualizing Non-Insulin Therapies. Pharm. Ther. 2012, 37, 687–696. [Google Scholar]
- Galaviz, K.I.; Narayan, K.M.V.; Lobelo, F.; Weber, M.B. Lifestyle and the Prevention of Type 2 Diabetes: A Status Report. Am. J. Lifestyle Med. 2018, 12, 4–20. [Google Scholar] [CrossRef]
- Araki, E.; Tanaka, A.; Inagaki, N.; Ito, H.; Ueki, K.; Murohara, T.; Imai, K.; Sata, M.; Sugiyama, T.; Ishii, H.; et al. Diagnosis, Prevention, and Treatment of Cardiovascular Diseases in People with Type 2 Diabetes and Prediabetes―A Consensus Statement Jointly from the Japanese Circulation Society and the Japan Diabetes Society. Circ. J. 2020, 85, 82–125. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Sheahan, K.H.; Wahlberg, E.A.; Gilbert, M.P. An Overview of GLP-1 Agonists and Recent Cardiovascular Outcomes Trials. Postgrad. Med. J. 2020, 96, 156–161. [Google Scholar] [CrossRef]
- Yau, K.; Dharia, A.; Alrowiyti, I.; Cherney, D.Z.I. Prescribing SGLT2 Inhibitors in Patients with CKD: Expanding Indications and Practical Considerations. Kidney Int. Rep. 2022, 7, 1463–1476. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycaemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022, 65, 1925–1966. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Yuan, C.; Chen, G.; Zhang, C.; Wu, X. SGLT2i: Beyond the Glucose-Lowering Effect. Cardiovasc. Diabetol. 2020, 19, 98. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.C.; Stefánsson, B.V.; Jongs, N.; Chertow, G.M.; Greene, T.; Hou, F.F.; McMurray, J.J.V.; Correa-Rotter, R.; Rossing, P.; Toto, R.D.; et al. Effects of Dapagliflozin on Major Adverse Kidney and Cardiovascular Events in Patients with Diabetic and Non-Diabetic Chronic Kidney Disease: A Prespecified Analysis from the DAPA-CKD Trial. Lancet Diabetes Endocrinol. 2021, 9, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Docherty, K.F.; Jhund, P.S.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; DeMets, D.L.; Sabatine, M.S.; Bengtsson, O.; et al. Effects of Dapagliflozin in DAPA-HF According to Background Heart Failure Therapy. Eur. Heart J. 2020, 41, 2379–2392. [Google Scholar] [CrossRef]
- Petrie, M.C.; Verma, S.; Docherty, K.F.; Inzucchi, S.E.; Anand, I.; Belohlávek, J.; Böhm, M.; Chiang, C.-E.; Chopra, V.K.; de Boer, R.A.; et al. Effect of Dapagliflozin on Worsening Heart Failure and Cardiovascular Death in Patients with Heart Failure with and Without Diabetes. JAMA 2020, 323, 1353. [Google Scholar] [CrossRef]
- Cherney, D.Z.I.; Charbonnel, B.; Cosentino, F.; Dagogo-Jack, S.; McGuire, D.K.; Pratley, R.; Shih, W.J.; Frederich, R.; Maldonado, M.; Pong, A.; et al. Effects of Ertugliflozin on Kidney Composite Outcomes, Renal Function and Albuminuria in Patients with Type 2 Diabetes Mellitus: An Analysis from the Randomised VERTIS CV Trial. Diabetologia 2021, 64, 1256–1267. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary. J. Am. Coll. Cardiol. 2019, 74, 1376–1414. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.J.; Tan, T.; Bloom, S.R. Minireview: Glucagon in Stress and Energy Homeostasis. Endocrinology 2012, 153, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Cheeseman, C. Solute Carrier Family 2, Member 9 and Uric Acid Homeostasis. Curr. Opin. Nephrol. Hypertens. 2009, 18, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Santos Cavaiola, T.; Pettus, J. Cardiovascular Effects of Sodium Glucose Cotransporter 2 Inhibitors. Diabetes Metab. Syndr. Obes. 2018, 11, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.; Perkins, B.A.; Soleymanlou, N.; Har, R.; Fagan, N.; Johansen, O.; Woerle, H.-J.; von Eynatten, M.; Broedl, U.C. The Effect of Empagliflozin on Arterial Stiffness and Heart Rate Variability in Subjects with Uncomplicated Type 1 Diabetes Mellitus. Cardiovasc. Diabetol. 2014, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Desai, M.; Jardine, M.; Balis, D.; Meininger, G.; Perkovic, V. Canagliflozin Slows Progression of Renal Function Decline Independently of Glycemic Effects. J. Am. Soc. Nephrol. 2017, 28, 368–375. [Google Scholar] [CrossRef]
- van Bommel, E.J.M.; Muskiet, M.H.A.; Tonneijck, L.; Kramer, M.H.H.; Nieuwdorp, M.; van Raalte, D.H. SGLT2 Inhibition in the Diabetic Kidney—From Mechanisms to Clinical Outcome. Clin. J. Am. Soc. Nephrol. 2017, 12, 700–710. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Xaplanteris, P.; Aboyans, V.; Brodmann, M.; Cífková, R.; Cosentino, F.; de Carlo, M.; Gallino, A.; Landmesser, U.; Laurent, S.; et al. The Role of Vascular Biomarkers for Primary and Secondary Prevention. A Position Paper from the European Society of Cardiology Working Group on Peripheral Circulation. Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis 2015, 241, 507–532. [Google Scholar]
- Wang, T.J. Assessing the Role of Circulating, Genetic, and Imaging Biomarkers in Cardiovascular Risk Prediction. Circulation 2011, 123, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Verma, S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annu. Rev. Physiol. 2021, 83, 503–528. [Google Scholar] [CrossRef]
- Toyama, T.; Neuen, B.L.; Jun, M.; Ohkuma, T.; Neal, B.; Jardine, M.J.; Heerspink, H.L.; Wong, M.G.; Ninomiya, T.; Wada, T.; et al. Effect of SGLT2 Inhibitors on Cardiovascular, Renal and Safety Outcomes in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease: A Systematic Review and Meta-analysis. Diabetes Obes. Metab. 2019, 21, 1237–1250. [Google Scholar] [CrossRef]
- Januzzi, J.L.; Mohebi, R.; Liu, Y.; Sattar, N.; Heerspink, H.J.L.; Tefera, E.; Vaduganathan, M.; Butler, J.; Yavin, Y.; Li, J.; et al. Cardiorenal Biomarkers, Canagliflozin, and Outcomes in Diabetic Kidney Disease: The CREDENCE Trial. Circulation 2023, 148, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Haase, T.; Zeller, T.; Schulte, C. Biomarkers for Heart Failure Prognosis: Proteins, Genetic Scores and Non-Coding RNAs. Front. Cardiovasc. Med. 2020, 7, 601364. [Google Scholar] [CrossRef] [PubMed]
- Maisel, A.S.; Duran, J.M.; Wettersten, N. Natriuretic Peptides in Heart Failure. Heart Fail. Clin. 2018, 14, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.B.; Maisel, A.S. Natriuretic Peptides. J. Am. Coll. Cardiol. 2007, 50, 2357–2368. [Google Scholar] [CrossRef] [PubMed]
- Romero-Cabrera, J.L.; Ankeny, J.; Fernández-Montero, A.; Kales, S.N.; Smith, D.L. A Systematic Review and Meta-Analysis of Advanced Biomarkers for Predicting Incident Cardiovascular Disease among Asymptomatic Middle-Aged Adults. Int. J. Mol. Sci. 2022, 23, 13540. [Google Scholar] [CrossRef]
- Januzzi, J.L.; Zannad, F.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Ferreira, J.P.; Sattar, N.; Verma, S.; Vedin, O.; et al. Prognostic Importance of NT-ProBNP and Effect of Empagliflozin in the EMPEROR-Reduced Trial. J. Am. Coll. Cardiol. 2021, 78, 1321–1332. [Google Scholar] [CrossRef]
- Lee, M.M.Y.; Brooksbank, K.J.M.; Wetherall, K.; Mangion, K.; Roditi, G.; Campbell, R.T.; Berry, C.; Chong, V.; Coyle, L.; Docherty, K.F.; et al. Effect of Empagliflozin on Left Ventricular Volumes in Patients with Type 2 Diabetes, or Prediabetes, and Heart Failure with Reduced Ejection Fraction (SUGAR-DM-HF). Circulation 2021, 143, 516–525. [Google Scholar] [CrossRef]
- Tamaki, S.; Yamada, T.; Watanabe, T.; Morita, T.; Furukawa, Y.; Kawasaki, M.; Kikuchi, A.; Kawai, T.; Seo, M.; Abe, M.; et al. Effect of Empagliflozin as an Add-On Therapy on Decongestion and Renal Function in Patients with Diabetes Hospitalized for Acute Decompensated Heart Failure: A Prospective Randomized Controlled Study. Circ. Heart Fail. 2021, 14, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Belmonte, L.M.; Sanz-Cánovas, J.; Millán-Gómez, M.; Osuna-Sánchez, J.; López-Sampalo, A.; Ricci, M.; Jiménez-Navarro, M.; López-Carmona, M.D.; Bernal-López, M.R.; Barbancho, M.A.; et al. Clinical Benefits of Empagliflozin in Very Old Patients with Type 2 Diabetes Hospitalized for Acute Heart Failure. J. Am. Geriatr. Soc. 2022, 70, 862–871. [Google Scholar] [CrossRef] [PubMed]
- von Lewinski, D.; Kolesnik, E.; Tripolt, N.J.; Pferschy, P.N.; Benedikt, M.; Wallner, M.; Alber, H.; Berger, R.; Lichtenauer, M.; Saely, C.H.; et al. Empagliflozin in Acute Myocardial Infarction: The EMMY Trial. Eur. Heart J. 2022, 43, 4421–4432. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L.; Xu, J.; Li, J.W.; Shaw, W.; Oh, R.; Pfeifer, M.; Butler, J.; Sattar, N.; Mahaffey, K.W.; Neal, B.; et al. Effects of Canagliflozin on Amino-Terminal Pro-B-Type Natriuretic Peptide: Implications for Cardiovascular Risk Reduction. J. Am. Coll. Cardiol. 2020, 76, 2076–2085. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Toyoda, S.; Imai, T.; Shiina, K.; Tomiyama, H.; Matsuzawa, Y.; Okumura, T.; Kanzaki, Y.; Onishi, K.; Kiyosue, A.; et al. Effect of Canagliflozin on N-Terminal pro-Brain Natriuretic Peptide in Patients with Type 2 Diabetes and Chronic Heart Failure According to Baseline Use of Glucose-Lowering Agents. Cardiovasc. Diabetol. 2021, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Martín, E.; López-Aguilera, J.; González-Manzanares, R.; Anguita, M.; Gutiérrez, G.; Luque, A.; Paredes, N.; Oneto, J.; Perea, J.; Castillo, J.C. Impact of Canagliflozin in Patients with Type 2 Diabetes after Hospitalization for Acute Heart Failure: A Cohort Study. J. Clin. Med. 2021, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L.; Butler, J.; Jarolim, P.; Sattar, N.; Vijapurkar, U.; Desai, M.; Davies, M.J. Effects of Canagliflozin on Cardiovascular Biomarkers in Older Adults with Type 2 Diabetes. J. Am. Coll. Cardiol. 2017, 70, 704–712. [Google Scholar] [CrossRef]
- Kusunose, K.; Imai, T.; Tanaka, A.; Dohi, K.; Shiina, K.; Yamada, T.; Kida, K.; Eguchi, K.; Teragawa, H.; Takeishi, Y.; et al. Effects of Canagliflozin on NT-ProBNP Stratified by Left Ventricular Diastolic Function in Patients with Type 2 Diabetes and Chronic Heart Failure: A Sub Analysis of the CANDLE Trial. Cardiovasc. Diabetol. 2021, 20, 186. [Google Scholar] [CrossRef]
- Myhre, P.L.; Vaduganathan, M.; Claggett, B.L.; Miao, Z.M.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; et al. Influence of NT-ProBNP on Efficacy of Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. JACC Heart Fail. 2022, 10, 902–913. [Google Scholar] [CrossRef]
- Akasaka, H.; Sugimoto, K.; Shintani, A.; Taniuchi, S.; Yamamoto, K.; Iwakura, K.; Okamura, A.; Takiuchi, S.; Fukuda, M.; Kamide, K.; et al. Effects of Ipragliflozin on Left Ventricular Diastolic Function in Patients with Type 2 Diabetes and Heart Failure with Preserved Ejection Fraction: The EXCEED Randomized Controlled Multicenter Study. Geriatr. Gerontol. Int. 2022, 22, 298–304. [Google Scholar] [CrossRef]
- Griffin, M.; Rao, V.S.; Ivey-Miranda, J.; Fleming, J.; Mahoney, D.; Maulion, C.; Suda, N.; Siwakoti, K.; Ahmad, T.; Jacoby, D.; et al. Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation 2020, 142, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.; Omar, M.; Kistorp, C.; Poulsen, M.K.; Tuxen, C.; Gustafsson, I.; Køber, L.; Gustafsson, F.; Faber, J.; Fosbøl, E.L.; et al. Twelve Weeks of Treatment with Empagliflozin in Patients with Heart Failure and Reduced Ejection Fraction: A Double-Blinded, Randomized, and Placebo-Controlled Trial. Am. Heart J. 2020, 228, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Hisauchi, I.; Taguchi, I.; Sezai, A.; Toyoda, S.; Tomiyama, H.; Sata, M.; Ueda, S.; Oyama, J.; Kitakaze, M.; et al. Effects of Canagliflozin in Patients with Type 2 Diabetes and Chronic Heart Failure: A Randomized Trial (CANDLE). ESC Heart Fail. 2020, 7, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Carbone, S.; Billingsley, H.E.; Canada, J.M.; Bressi, E.; Rotelli, B.; Kadariya, D.; Dixon, D.L.; Markley, R.; Trankle, C.R.; Cooke, R.; et al. The Effects of Canagliflozin Compared to Sitagliptin on Cardiorespiratory Fitness in Type 2 Diabetes Mellitus and Heart Failure with Reduced Ejection Fraction: The CANA-HF Study. Diabetes Metab. Res. Rev. 2020, 36, e3335. [Google Scholar] [CrossRef] [PubMed]
- Nassif, M.E.; Windsor, S.; Tang, F.; Khariton, Y.; Husain, M.; Inzucchi, S.; McGuire, D.; Pitt, B.; Scirica, B.; Austin, B.; et al. Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients with Heart Failure with Reduced Ejection Fraction: The DEFINE-HF Trial. Circulation 2019, 140, 1463–1476. [Google Scholar] [CrossRef] [PubMed]
- Ejiri, K.; Miyoshi, T.; Kihara, H.; Hata, Y.; Nagano, T.; Takaishi, A.; Toda, H.; Nanba, S.; Nakamura, Y.; Akagi, S.; et al. Effect of Luseogliflozin on Heart Failure with Preserved Ejection Fraction in Patients with Diabetes Mellitus. J. Am. Heart Assoc. 2020, 9, e015103. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Kasama, S.; Yamamoto, M.; Nakano, T.; Ueshima, K.; Morikawa, Y.; Kawata, H.; Yoshihisa, A.; Nakayama, M.; Komatsu, S.; et al. Effect of the Sodium-Glucose Cotransporter 2 Inhibitor Canagliflozin for Heart Failure with Preserved Ejection Fraction in Patients with Type 2 Diabetes. Circ. Rep. 2021, 3, 440–448. [Google Scholar] [CrossRef]
- Parmacek, M.S.; Solaro, R.J. Biology of the Troponin Complex in Cardiac Myocytes. Prog. Cardiovasc. Dis. 2004, 47, 159–176. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Sattar, N.; Xu, J.; Butler, J.; Mahaffey, K.W.; Neal, B.; Shaw, W.; Rosenthal, N.; Pfeifer, M.; Hansen, M.K.; et al. Stress Cardiac Biomarkers, Cardiovascular and Renal Outcomes, and Response to Canagliflozin. J. Am. Coll. Cardiol. 2022, 79, 432–444. [Google Scholar] [CrossRef]
- Packer, M.; Januzzi, J.L.; Ferreira, J.P.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Brueckmann, M.; Jamal, W.; Cotton, D.; et al. Concentration-Dependent Clinical and Prognostic Importance of High-Sensitivity Cardiac Troponin T in Heart Failure and a Reduced Ejection Fraction and the Influence of Empagliflozin: The EMPEROR-Reduced Trial. Eur. J. Heart Fail. 2021, 23, 1529–1538. [Google Scholar] [CrossRef]
- Berg, D.D.; Docherty, K.F.; Sattar, N.; Jarolim, P.; Welsh, P.; Jhund, P.S.; Anand, I.S.; Chopra, V.; de Boer, R.A.; Kosiborod, M.N.; et al. Serial Assessment of High-Sensitivity Cardiac Troponin and the Effect of Dapagliflozin in Patients with Heart Failure with Reduced Ejection Fraction: An Analysis of the DAPA-HF Trial. Circulation 2022, 145, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Phrommintikul, A.; Wongcharoen, W.; Kumfu, S.; Jaiwongkam, T.; Gunaparn, S.; Chattipakorn, S.; Chattipakorn, N. Effects of Dapagliflozin vs. Vildagliptin on Cardiometabolic Parameters in Diabetic Patients with Coronary Artery Disease: A Randomised Study. Br. J. Clin. Pharmacol. 2019, 85, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.; Li, X.; et al. IL-33, an Interleukin-1-like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity 2005, 23, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Figal, D.A.; Januzzi, J.L. The Biology of ST2: The International ST2 Consensus Panel. Am. J. Cardiol. 2015, 115, 3B–7B. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Wu, Y.; Grodin, J.L.; Hsu, A.P.; Hernandez, A.F.; Butler, J.; Metra, M.; Voors, A.A.; Felker, G.M.; Troughton, R.W.; et al. Prognostic Value of Baseline and Changes in Circulating Soluble ST2 Levels and the Effects of Nesiritide in Acute Decompensated Heart Failure. JACC Heart Fail. 2016, 4, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Anand, I.S.; Rector, T.S.; Kuskowski, M.; Snider, J.; Cohn, J.N. Prognostic Value of Soluble ST2 in the Valsartan Heart Failure Trial. Circ. Heart Fail. 2014, 7, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.; Coelho-Filho, O.R.; Verma, S.; Chowdhury, B.; Zuo, F.; Quan, A.; Thorpe, K.E.; Bonneau, C.; Teoh, H.; Gilbert, R.E.; et al. Empagliflozin Reduces Myocardial Extracellular Volume in Patients with Type 2 Diabetes and Coronary Artery Disease. JACC Cardiovasc. Imaging 2021, 14, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- DeLeon-Pennell, K.Y.; Meschiari, C.A.; Jung, M.; Lindsey, M.L. Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Prog. Mol. Biol. Transl. Sci. 2017, 147, 75–100. [Google Scholar] [CrossRef]
- Halade, G.V.; Jin, Y.-F.; Lindsey, M.L. Matrix Metalloproteinase (MMP)-9: A Proximal Biomarker for Cardiac Remodeling and a Distal Biomarker for Inflammation. Pharmacol. Ther. 2013, 139, 32–40. [Google Scholar] [CrossRef]
- Blankstein, R. Introduction to Noninvasive Cardiac Imaging. Circulation 2012, 125, e267–e271. [Google Scholar] [CrossRef]
- Fonseca, C.G.; Dissanayake, A.M.; Doughty, R.N.; Whalley, G.A.; Gamble, G.D.; Cowan, B.R.; Occleshaw, C.J.; Young, A.A. Three-Dimensional Assessment of Left Ventricular Systolic Strain in Patients with Type 2 Diabetes Mellitus, Diastolic Dysfunction, and Normal Ejection Fraction. Am. J. Cardiol. 2004, 94, 1391–1395. [Google Scholar] [CrossRef] [PubMed]
- von Lewinski, D.; Tripolt, N.J.; Sourij, H.; Pferschy, P.N.; Oulhaj, A.; Alber, H.; Gwechenberger, M.; Martinek, M.; Seidl, S.; Moertl, D.; et al. Ertugliflozin to Reduce Arrhythmic Burden in ICD/CRT Patients (ERASe-Trial)—A Phase III Study. Am. Heart J. 2022, 246, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gallego, C.G.; Vargas-Delgado, A.P.; Requena-Ibanez, J.A.; Garcia-Ropero, A.; Mancini, D.; Pinney, S.; Macaluso, F.; Sartori, S.; Roque, M.; Sabatel-Perez, F.; et al. Randomized Trial of Empagliflozin in Nondiabetic Patients with Heart Failure and Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2021, 77, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.; Omar, M.; Ali, M.; Frederiksen, P.H.; Kistorp, C.; Tuxen, C.; Andersen, C.F.; Larsen, J.H.; Ersbøll, M.K.; Køber, L.; et al. The Effect of Empagliflozin on Contractile Reserve in Heart Failure: Prespecified Sub-Study of a Randomized, Double-Blind, and Placebo-Controlled Trial. Am. Heart J. 2022, 250, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Soga, F.; Tatsumi, K.; Mochizuki, Y.; Sano, H.; Toki, H.; Matsumoto, K.; Shite, J.; Takaoka, H.; Doi, T.; et al. Positive Effect of Dapagliflozin on Left Ventricular Longitudinal Function for Type 2 Diabetic Mellitus Patients with Chronic Heart Failure. Cardiovasc. Diabetol. 2020, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Suhrs, H.E.; Nilsson, M.; Bové, K.B.; Zander, M.; Prescott, E. Effect of Empagliflozin on Coronary Microvascular Function in Patients with Type 2 Diabetes Mellitus-A Randomized, Placebo-Controlled Cross-over Study. PLoS ONE 2022, 17, e0263481. [Google Scholar] [CrossRef] [PubMed]
- Bonora, B.M.; Vigili De Kreutzenberg, S.; Avogaro, A.; Fadini, G.P. Effects of the SGLT2 Inhibitor Dapagliflozin on Cardiac Function Evaluated by Impedance Cardiography in Patients with Type 2 Diabetes. Secondary Analysis of a Randomized Placebo-Controlled Trial. Cardiovasc. Diabetol. 2019, 18, 106. [Google Scholar] [CrossRef] [PubMed]
- Connelly, K.A.; Mazer, C.D.; Puar, P.; Teoh, H.; Wang, C.-H.; Mason, T.; Akhavein, F.; Chang, C.-W.; Liu, M.-H.; Yang, N.-I.; et al. Empagliflozin and Left Ventricular Remodeling in People Without Diabetes: Primary Results of the EMPA-HEART 2 CardioLink-7 Randomized Clinical Trial. Circulation 2022, 147, 284–295. [Google Scholar] [CrossRef]
- Brown, A.J.M.; Gandy, S.; McCrimmon, R.; Houston, J.G.; Struthers, A.D.; Lang, C.C. A Randomized Controlled Trial of Dapagliflozin on Left Ventricular Hypertrophy in People with Type Two Diabetes: The DAPA-LVH Trial. Eur. Heart J. 2020, 41, 3421–3432. [Google Scholar] [CrossRef]
- Verma, S.; Mazer, C.D.; Yan, A.T.; Mason, T.; Garg, V.; Teoh, H.; Zuo, F.; Quan, A.; Farkouh, M.E.; Fitchett, D.H.; et al. Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease. Circulation 2019, 140, 1693–1702. [Google Scholar] [CrossRef]
- Singh, J.S.S.; Mordi, I.R.; Vickneson, K.; Fathi, A.; Donnan, P.T.; Mohan, M.; Choy, A.M.J.; Gandy, S.; George, J.; Khan, F.; et al. Dapagliflozin Versus Placebo on Left Ventricular Remodeling in Patients with Diabetes and Heart Failure: The REFORM Trial. Diabetes Care 2020, 43, 1356–1359. [Google Scholar] [CrossRef] [PubMed]
- Omar, M.; Jensen, J.; Ali, M.; Frederiksen, P.H.; Kistorp, C.; Videbæk, L.; Poulsen, M.K.; Tuxen, C.D.; Möller, S.; Gustafsson, F.; et al. Associations of Empagliflozin with Left Ventricular Volumes, Mass, and Function in Patients with Heart Failure and Reduced Ejection Fraction. JAMA Cardiol. 2021, 6, 836. [Google Scholar] [CrossRef] [PubMed]
- Rau, M.; Thiele, K.; Hartmann, N.-U.K.; Schuh, A.; Altiok, E.; Möllmann, J.; Keszei, A.P.; Böhm, M.; Marx, N.; Lehrke, M. Empagliflozin Does Not Change Cardiac Index nor Systemic Vascular Resistance but Rapidly Improves Left Ventricular Filling Pressure in Patients with Type 2 Diabetes: A Randomized Controlled Study. Cardiovasc. Diabetol. 2021, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Eickhoff, M.K.; Olsen, F.J.; Frimodt-Møller, M.; Diaz, L.J.; Faber, J.; Jensen, M.T.; Rossing, P.; Persson, F. Effect of Dapagliflozin on Cardiac Function in People with Type 2 Diabetes and Albuminuria—A Double Blind Randomized Placebo-Controlled Crossover Trial. J. Diabetes Complicat. 2020, 34, 107590. [Google Scholar] [CrossRef] [PubMed]
- Oldgren, J.; Laurila, S.; Åkerblom, A.; Latva-Rasku, A.; Rebelos, E.; Isackson, H.; Saarenhovi, M.; Eriksson, O.; Heurling, K.; Johansson, E.; et al. Effects of 6 Weeks of Treatment with Dapagliflozin, a Sodium-glucose Co-transporter-2 Inhibitor, on Myocardial Function and Metabolism in Patients with Type 2 Diabetes: A Randomized, Placebo-controlled, Exploratory Study. Diabetes Obes. Metab. 2021, 23, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Nakai, H.; Takeuchi, M.; Nishikage, T.; Lang, R.M.; Otsuji, Y. Subclinical Left Ventricular Dysfunction in Asymptomatic Diabetic Patients Assessed by Two-Dimensional Speckle Tracking Echocardiography: Correlation with Diabetic Duration. Eur. J. Echocardiogr. 2009, 10, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.C.T.; Delgado, V.; Bertini, M.; van der Meer, R.W.; Rijzewijk, L.J.; Shanks, M.; Nucifora, G.; Smit, J.W.A.; Diamant, M.; Romijn, J.A.; et al. Findings from Left Ventricular Strain and Strain Rate Imaging in Asymptomatic Patients with Type 2 Diabetes Mellitus. Am. J. Cardiol. 2009, 104, 1398–1401. [Google Scholar] [CrossRef] [PubMed]
- Frimodt-Møller, K.E.; Olsen, F.J.; Biering-Sørensen, S.R.; Lassen, M.C.H.; Møgelvang, R.; Schnohr, P.; Jensen, G.; Gislason, G.; Marcus, G.M.; Biering-Sørensen, T. Regional Longitudinal Strain Patterns According to Left Ventricular Hypertrophy in the General Population. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1436–1444. [Google Scholar] [CrossRef]
- Nesti, L.; Pugliese, N.R.; Sciuto, P.; Trico, D.; Dardano, A.; Baldi, S.; Pinnola, S.; Fabiani, I.; di Bello, V.; Natali, A. Effect of Empagliflozin on Left Ventricular Contractility and Peak Oxygen Uptake in Subjects with Type 2 Diabetes without Heart Disease: Results of the EMPA-HEART Trial. Cardiovasc. Diabetol. 2022, 21, 181. [Google Scholar] [CrossRef]
- Gamaza-Chulián, S.; Díaz-Retamino, E.; González-Testón, F.; Gaitero, J.C.; Castillo, M.J.; Alfaro, R.; Rodríguez, E.; González-Caballero, E.; Martín-Santana, A. Effect of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors on Left Ventricular Remodelling and Longitudinal Strain: A Prospective Observational Study. BMC Cardiovasc. Disord. 2021, 21, 456. [Google Scholar] [CrossRef]
- Konstam, M.A.; Kramer, D.G.; Patel, A.R.; Maron, M.S.; Udelson, J.E. Left Ventricular Remodeling in Heart Failure. JACC Cardiovasc. Imaging 2011, 4, 98–108. [Google Scholar] [CrossRef]
- Leache, L.; Gutiérrez-Valencia, M.; Finizola, R.M.; Infante, E.; Finizola, B.; Pardo Pardo, J.; Flores, Y.; Granero, R.; Arai, K.J. Pharmacotherapy for Hypertension-Induced Left Ventricular Hypertrophy. Cochrane Database Syst. Rev. 2021, 2021, CD012039. [Google Scholar] [CrossRef]
- Shim, C.Y.; Seo, J.; Cho, I.; Lee, C.J.; Cho, I.-J.; Lhagvasuren, P.; Kang, S.-M.; Ha, J.-W.; Han, G.; Jang, Y.; et al. Randomized, Controlled Trial to Evaluate the Effect of Dapagliflozin on Left Ventricular Diastolic Function in Patients with Type 2 Diabetes Mellitus. Circulation 2021, 143, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Abhayaratna, W.P.; Seward, J.B.; Appleton, C.P.; Douglas, P.S.; Oh, J.K.; Tajik, A.J.; Tsang, T.S.M. Left Atrial Size. J. Am. Coll. Cardiol. 2006, 47, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.K.; Dahl, J.S.; Henriksen, J.E.; Hey, T.M.; Høilund-Carlsen, P.F.; Beck-Nielsen, H.; Møller, J.E. Left Atrial Volume Index. J. Am. Coll. Cardiol. 2013, 62, 2416–2421. [Google Scholar] [CrossRef]
- Park, J.-H.; Marwick, T.H. Use and Limitations of E/e’ to Assess Left Ventricular Filling Pressure by Echocardiography. J. Cardiovasc. Ultrasound 2011, 19, 169. [Google Scholar] [CrossRef]
- Matsutani, D.; Sakamoto, M.; Kayama, Y.; Takeda, N.; Horiuchi, R.; Utsunomiya, K. Effect of Canagliflozin on Left Ventricular Diastolic Function in Patients with Type 2 Diabetes. Cardiovasc. Diabetol. 2018, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Sarak, B.; Verma, S.; David Mazer, C.; Teoh, H.; Quan, A.; Gilbert, R.E.; Goodman, S.G.; Bami, K.; Coelho-Filho, O.R.; Ahooja, V.; et al. Impact of Empagliflozin on Right Ventricular Parameters and Function among Patients with Type 2 Diabetes. Cardiovasc. Diabetol. 2021, 20, 200. [Google Scholar] [CrossRef] [PubMed]
- Ahlgrim, C.; Birkner, P.; Seiler, F.; Grundmann, S.; Bode, C.; Pottgiesser, T. Estimated Plasma Volume Status Is a Modest Predictor of True Plasma Volume Excess in Compensated Chronic Heart Failure Patients. Sci. Rep. 2021, 11, 24235. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Shimabukuro, M.; Teragawa, H.; Okada, Y.; Takamura, T.; Taguchi, I.; Toyoda, S.; Tomiyama, H.; Ueda, S.; Higashi, Y.; et al. Reduction of Estimated Fluid Volumes Following Initiation of Empagliflozin in Patients with Type 2 Diabetes and Cardiovascular Disease: A Secondary Analysis of the Placebo-Controlled, Randomized EMBLEM Trial. Cardiovasc. Diabetol. 2021, 20, 105. [Google Scholar] [CrossRef]
- Reed, J. Impact of Sodium–Glucose Cotransporter 2 Inhibitors on Blood Pressure. Vasc. Health Risk Manag. 2016, 12, 393–405. [Google Scholar] [CrossRef]
- Emdin, C.A.; Rahimi, K.; Neal, B.; Callender, T.; Perkovic, V.; Patel, A. Blood Pressure Lowering in Type 2 Diabetes. JAMA 2015, 313, 603. [Google Scholar] [CrossRef] [PubMed]
- Lastra, G.; Syed, S.; Kurukulasuriya, L.R.; Manrique, C.; Sowers, J.R. Type 2 Diabetes Mellitus and Hypertension. Endocrinol. Metab. Clin. North. Am. 2014, 43, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Rezaie, P.; Gao, H.; Kengne, A.P. Effect of Sodium-Glucose Cotransport-2 Inhibitors on Blood Pressure in People with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of 43 Randomized Control Trials with 22 528 Patients. J. Am. Heart Assoc. 2017, 6, e004007. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.; Bailey, C.; Rigney, U.; Blak, B.; Kok, M.; Emmas, C. Dapagliflozin Therapy for Type 2 Diabetes in Primary Care: Changes in HbA1c, Weight and Blood Pressure over 2 Years Follow-Up. Prim. Care Diabetes 2017, 11, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Perseghin, G.; Solini, A. The EMPA-REG Outcome Study: Critical Appraisal and Potential Clinical Implications. Cardiovasc. Diabetol. 2016, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Idzerda, N.M.A.; Stefansson, B.V.; Pena, M.J.; Sjostrom, D.C.; Wheeler, D.C.; Heerspink, H.J.L. Prediction of the Effect of Dapagliflozin on Kidney and Heart Failure Outcomes Based on Short-Term Changes in Multiple Risk Markers. Nephrol. Dial. Transplant. 2020, 35, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, A.; Yokokawa, H.; Sanada, H.; Naito, T. Changes in Levels of Biomarkers Associated with Adipocyte Function and Insulin and Glucagon Kinetics During Treatment with Dapagliflozin Among Obese Type 2 Diabetes Mellitus Patients. Drugs R. D 2016, 16, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M.K.; Heinzel, A.; Mayer, G. Canagliflozin Reduces Inflammation and Fibrosis Biomarkers: A Potential Mechanism of Action for Beneficial Effects of SGLT2 Inhibitors in Diabetic Kidney Disease. Diabetologia 2019, 62, 1154–1166. [Google Scholar] [CrossRef]
- Sen, T.; Li, J.; Neuen, B.L.; Neal, B.; Arnott, C.; Parikh, C.R.; Coca, S.G.; Perkovic, V.; Mahaffey, K.W.; Yavin, Y.; et al. Effects of the SGLT2 Inhibitor Canagliflozin on Plasma Biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS Trial. Diabetologia 2021, 64, 2147–2158. [Google Scholar] [CrossRef]
- Dekkers, C.C.J.; Petrykiv, S.; Laverman, G.D.; Cherney, D.Z.; Gansevoort, R.T.; Heerspink, H.J.L. Effects of the SGLT-2 Inhibitor Dapagliflozin on Glomerular and Tubular Injury Markers. Diabetes Obes. Metab. 2018, 20, 1988–1993. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sridhar, V.S.; Lovblom, L.E.; Lytvyn, Y.; Burger, D.; Burns, K.; Brinc, D.; Lawler, P.R.; Cherney, D.Z.I. Markers of Kidney Injury, Inflammation, and Fibrosis Associated with Ertugliflozin in Patients with CKD and Diabetes. Kidney Int. Rep. 2021, 6, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Darawshi, S.; Yaseen, H.; Gorelik, Y.; Faor, C.; Szalat, A.; Abassi, Z.; Heyman, S.N.; Khamaisi, M. Biomarker Evidence for Distal Tubular Damage but Cortical Sparing in Hospitalized Diabetic Patients with Acute Kidney Injury (AKI) While on SGLT2 Inhibitors. Ren. Fail. 2020, 42, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S. A More Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation. Ann. Intern. Med. 1999, 130, 461. [Google Scholar] [CrossRef] [PubMed]
- Choosongsang, P.; Soonthornpun, S. Overestimation of Glomerular Filtration Rate Calculated from Creatinine as Compared with Cystatin C in Patients with Type 2 Diabetes Receiving Sodium-glucose Cotransportor 2 Inhibitors. Diabet. Med. 2022, 39, e14659. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, H.; Kameda, H.; Yamashita, K.; Nakamura, A.; Kurihara, Y. Protective Effect of Sodium–Glucose Cotransporter 2 Inhibitors in Patients with Rapid Renal Function Decline, Stage G3 or G4 Chronic Kidney Disease and Type 2 Diabetes. J. Diabetes Investig. 2019, 10, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Scholtes, R.A.; Muskiet, M.H.A.; van Baar, M.J.B.; Hesp, A.C.; Greasley, P.J.; Hammarstedt, A.; Karlsson, C.; Hallow, K.M.; Danser, A.H.J.; Heerspink, H.J.L.; et al. The Adaptive Renal Response for Volume Homeostasis During 2 Weeks of Dapagliflozin Treatment in People with Type 2 Diabetes and Preserved Renal Function on a Sodium-Controlled Diet. Kidney Int. Rep. 2022, 7, 1084–1092. [Google Scholar] [CrossRef]
- Harding, A.L.; Bediaga, N.; Galligan, A.; Colman, P.G.; Fourlanos, S.; Wentworth, J.M. Factors That Predict Glycaemic Response to Sodium-glucose Linked Transporter (SGLT) Inhibitors. Intern. Med. J. 2021, 51, 515–519. [Google Scholar] [CrossRef]
- Osonoi, T.; Gouda, M.; Kubo, M.; Arakawa, K.; Hashimoto, T.; Abe, M. Effect of Canagliflozin on Urinary Albumin Excretion in Japanese Patients with Type 2 Diabetes Mellitus and Microalbuminuria: A Pilot Study. Diabetes Technol. Ther. 2018, 20, 681–688. [Google Scholar] [CrossRef]
- Kobayashi, K.; Toyoda, M.; Kaneyama, N.; Hatori, N.; Furuki, T.; Sakai, H.; Takihata, M.; Umezono, T.; Ito, S.; Suzuki, D.; et al. Relation between Blood Pressure Management and Renal Effects of Sodium-Glucose Cotransporter 2 Inhibitors in Diabetic Patients with Chronic Kidney Disease. J. Diabetes Res. 2019, 2019, 9415313. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Toyoda, M.; Hatori, N.; Furuki, T.; Sakai, H.; Umezono, T.; Ito, S.; Suzuki, D.; Takeda, H.; Minagawa, F.; et al. Blood Pressure after Treatment with Sodium–Glucose Cotransporter 2 Inhibitors Influences Renal Composite Outcome: Analysis Using Propensity Score-matched Models. J. Diabetes Investig. 2021, 12, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Tofte, N.; Lindhardt, M.; Adamova, K.; Bakker, S.J.L.; Beige, J.; Beulens, J.W.J.; Birkenfeld, A.L.; Currie, G.; Delles, C.; Dimos, I.; et al. Early Detection of Diabetic Kidney Disease by Urinary Proteomics and Subsequent Intervention with Spironolactone to Delay Progression (PRIORITY): A Prospective Observational Study and Embedded Randomised Placebo-Controlled Trial. Lancet Diabetes Endocrinol. 2020, 8, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of Cardiovascular Events and All-Cause Mortality with Arterial Stiffness. A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, E.; Loutradis, C.; Tzatzagou, G.; Kotsa, K.; Zografou, I.; Minopoulou, I.; Theodorakopoulou, M.P.; Tsapas, A.; Karagiannis, A.; Sarafidis, P. Dapagliflozin Decreases Ambulatory Central Blood Pressure and Pulse Wave Velocity in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Hypertens. 2021, 39, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Solini, A.; Giannini, L.; Seghieri, M.; Vitolo, E.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. Dapagliflozin Acutely Improves Endothelial Dysfunction, Reduces Aortic Stiffness and Renal Resistive Index in Type 2 Diabetic Patients: A Pilot Study. Cardiovasc. Diabetol. 2017, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Sezai, A.; Sekino, H.; Unosawa, S.; Taoka, M.; Osaka, S.; Tanaka, M. Canagliflozin for Japanese Patients with Chronic Heart Failure and Type II Diabetes. Cardiovasc. Diabetol. 2019, 18, 76. [Google Scholar] [CrossRef]
- Katakami, N.; Mita, T.; Yoshii, H.; Shiraiwa, T.; Yasuda, T.; Okada, Y.; Torimoto, K.; Umayahara, Y.; Kaneto, H.; Osonoi, T.; et al. Effect of Tofogliflozin on Arterial Stiffness in Patients with Type 2 Diabetes: Prespecified Sub-Analysis of the Prospective, Randomized, Open-Label, Parallel-Group Comparative UTOPIA Trial Shimomura 1 and On Behalf of the UTOPIA Study Investigators. Cardiovasc. Diabetol. 2021, 20, 4. [Google Scholar] [CrossRef]
- Striepe, K.; Jumar, A.; Ott, C.; Karg, M.V.; Schneider, M.P.; Kannenkeril, D.; Schmieder, R.E. Effects of the Selective Sodium-Glucose Cotransporter 2 Inhibitor Empagliflozin on Vascular Function and Central Hemodynamics in Patients with Type 2 Diabetes Mellitus. Circulation 2017, 136, 1167–1169. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Pavlidis, G.; Thymis, J.; Birba, D.; Kalogeris, A.; Kousathana, F.; Kountouri, A.; Balampanis, K.; Parissis, J.; Andreadou, I.; et al. Effects of Glucagon-like Peptide-1 Receptor Agonists, Sodium-Glucose Cotransporter-2 Inhibitors, and Their Combination on Endothelial Glycocalyx, Arterial Function, and Myocardial Work Index in Patients with Type 2 Diabetes Mellitus after 12-Month Treatment. J. Am. Heart Assoc. 2020, 9, e015716. [Google Scholar] [CrossRef]
- Solini, A.; Seghieri, M.; Giannini, L.; Biancalana, E.; Parolini, F.; Rossi, C.; Dardano, A.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature. J. Clin. Endocrinol. Metab. 2019, 104, 4253–4263. [Google Scholar] [CrossRef] [PubMed]
- Kario, K.; Okada, K.; Murata, M.; Suzuki, D.; Yamagiwa, K.; Abe, Y.; Usui, I.; Tsuchiya, N.; Iwashita, C.; Harada, N.; et al. Effects of Luseogliflozin on Arterial Properties in Patients with Type 2 Diabetes Mellitus: The Multicenter, Exploratory LUSCAR Study. J. Clin. Hypertens. 2020, 22, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.J.; Sanchez, M.J.; Sanchez, R.A. Diabetic Patients with Essential Hypertension Treated with Amlodipine: Blood Pressure and Arterial Stiffness Effects of Canagliflozin or Perindopril. J. Hypertens. 2019, 37, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Saiki, A.; Ohira, M.; Yamaguchi, T.; Nagayama, D.; Shimizu, N.; Shirai, K.; Tatsuno, I. New Horizons of Arterial Stiffness Developed Using Cardio-Ankle Vascular Index (CAVI). J. Atheroscler. Thromb. 2020, 27, 732–748. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Miura, S. Effects of Sodium-Glucose Cotransporter 2 Inhibitor on Vascular Endothelial and Diastolic Function in Heart Failure with Preserved Ejection Fraction―Novel Prospective Cohort Study. Circ. Rep. 2019, 1, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Bekki, M.; Tahara, N.; Tahara, A.; Igata, S.; Honda, A.; Sugiyama, Y.; Nakamura, T.; Sun, J.; Kumashiro, Y.; Matsui, T.; et al. Switching Dipeptidyl Peptidase-4 Inhibitors to Tofogliflozin, a Selective Inhibitor of Sodium-Glucose Cotransporter 2 Improve Arterial Stiffness Evaluated by Cardio-Ankle Vascular Index in Patients with Type 2 Diabetes: A Pilot Study. Curr. Vasc. Pharmacol. 2019, 17, 411–420. [Google Scholar] [CrossRef]
- Lekakis, J.; Abraham, P.; Balbarini, A.; Blann, A.; Boulanger, C.M.; Cockcroft, J.; Cosentino, F.; Deanfield, J.; Gallino, A.; Ikonomidis, I.; et al. Methods for Evaluating Endothelial Function: A Position Statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur. J. Cardiovasc. Prev. Rehabil. 2011, 18, 775–789. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Adamopoulou, E.; Pyrpyris, N.; Sakalidis, A.; Leontsinis, I.; Manta, E.; Mantzouranis, E.; Beneki, E.; Soulaidopoulos, S.; Konstantinidis, D.; et al. The Effect of SGLT2 Inhibitors on the Endothelium and the Microcirculation: From Bench to Bedside and Beyond. Eur. Heart J. Cardiovasc. Pharmacother. 2023. [Google Scholar] [CrossRef]
- Kapadia, P.; Bikkina, P.; Landicho, M.A.; Parekh, S.; Haas, M.J.; Mooradian, A.D. Effect of Anti-Hyperglycemic Drugs on Endoplasmic Reticulum (ER) Stress in Human Coronary Artery Endothelial Cells. Eur. J. Pharmacol. 2021, 907, 174249. [Google Scholar] [CrossRef]
- Sawada, T.; Uzu, K.; Hashimoto, N.; Onishi, T.; Takaya, T.; Shimane, A.; Taniguchi, Y.; Yasaka, Y.; Ohara, T.; Kawai, H. Empagliflozin’s Ameliorating Effect on Plasma Triglycerides: Association with Endothelial Function Recovery in Diabetic Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2020, 27, 644–656. [Google Scholar] [CrossRef]
- Sposito, A.C.; Breder, I.; Soares, A.A.S.; Kimura-Medorima, S.T.; Munhoz, D.B.; Cintra, R.M.R.; Bonilha, I.; Oliveira, D.C.; Breder, J.C.; Cavalcante, P.; et al. Dapagliflozin Effect on Endothelial Dysfunction in Diabetic Patients with Atherosclerotic Disease: A Randomized Active-Controlled Trial. Cardiovasc. Diabetol. 2021, 20, 74. [Google Scholar] [CrossRef]
- Irace, C.; Cutruzzolà, A.; Parise, M.; Fiorentino, R.; Frazzetto, M.; Gnasso, C.; Casciaro, F.; Gnasso, A. Effect of Empagliflozin on Brachial Artery Shear Stress and Endothelial Function in Subjects with Type 2 Diabetes: Results from an Exploratory Study. Diab Vasc. Dis. Res. 2020, 17, 1479164119883540. [Google Scholar] [CrossRef]
- Correale, M.; Mazzeo, P.; Mallardi, A.; Leopizzi, A.; Tricarico, L.; Fortunato, M.; Magnesa, M.; Tucci, S.; Maiellaro, P.; Pastore, G.; et al. Switch to SGLT2 Inhibitors and Improved Endothelial Function in Diabetic Patients with Chronic Heart Failure. Cardiovasc. Drugs Ther. 2022, 36, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Shigiyama, F.; Kumashiro, N.; Miyagi, M.; Ikehara, K.; Kanda, E.; Uchino, H.; Hirose, T. Effectiveness of Dapagliflozin on Vascular Endothelial Function and Glycemic Control in Patients with Early-Stage Type 2 Diabetes Mellitus: DEFENCE Study. Cardiovasc. Diabetol. 2017, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Zainordin, N.A.; Hatta, S.F.W.M.; Shah, F.Z.M.; Rahman, T.A.; Ismail, N.; Ismail, Z.; Ghani, R.A. Effects of Dapagliflozin on Endothelial Dysfunction in Type 2 Diabetes with Established Ischemic Heart Disease (EDIFIED). J. Endocr. Soc. 2020, 4, bvz017. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Jinnouchi, H.; Kurinami, N.; Hieshima, K.; Yoshida, A.; Jinnouchi, K.; Nishimura, H.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; et al. The SGLT2 Inhibitor Dapagliflozin Significantly Improves the Peripheral Microvascular Endothelial Function in Patients with Uncontrolled Type 2 Diabetes Mellitus. Intern. Med. 2018, 57, 2147–2156. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Shimabukuro, M.; MacHii, N.; Teragawa, H.; Okada, Y.; Shima, K.R.; Takamura, T.; Taguchi, I.; Hisauchi, I.; Toyoda, S.; et al. Effect of Empagliflozin on Endothelial Function in Patients with Type 2 Diabetes and Cardiovascular Disease: Results from the Multicenter, Randomized, Placebo- Controlled, Double-Blind EMBLEM Trial. Diabetes Care 2019, 42, E159–E161. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Mita, T.; Maeda, N.; Sato, Y.; Watada, H.; Shimomura, I. Evaluation of the Effect of Tofogliflozin on the Tissue Characteristics of the Carotid Wall-a Sub-Analysis of the UTOPIA Trial. Cardiovasc. Diabetol. 2022, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Sata, M.; Okada, Y.; Teragawa, H.; Eguchi, K.; Shimabukuro, M.; Taguchi, I.; Matsunaga, K.; Kanzaki, Y.; Yoshida, H.; et al. Effect of Ipragliflozin on Carotid Intima-Media Thickness in Patients with Type 2 Diabetes: A Multicenter, Randomized, Controlled Trial. Eur. Heart J. Cardiovasc. Pharmacother. 2023, 9, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Townsend, R.R.; Davies, M.J.; Vijapurkar, U.; Ren, J. Effects of Canagliflozin, a Sodium Glucose Co-Transporter 2 Inhibitor, on Blood Pressure and Markers of Arterial Stiffness in Patients with Type 2 Diabetes Mellitus: A Post Hoc Analysis. Cardiovasc. Diabetol. 2017, 16, 29. [Google Scholar] [CrossRef]
- Chilton, R.; Tikkanen, I.; Cannon, C.P.; Crowe, S.; Woerle, H.J.; Broedl, U.C.; Johansen, O.E. Effects of Empagliflozin on Blood Pressure and Markers of Arterial Stiffness and Vascular Resistance in Patients with Type 2 Diabetes. Diabetes Obes. Metab. 2015, 17, 1180–1193. [Google Scholar] [CrossRef]
- Nedosugova, L.V.; Markina, Y.V.; Bochkareva, L.A.; Kuzina, I.A.; Petunina, N.A.; Yudina, I.Y.; Kirichenko, T.V. Inflammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines 2022, 10, 1168. [Google Scholar] [CrossRef]
- Scisciola, L.; Cataldo, V.; Taktaz, F.; Fontanella, R.A.; Pesapane, A.; Ghosh, P.; Franzese, M.; Puocci, A.; De Angelis, A.; Sportiello, L.; et al. Anti-Inflammatory Role of SGLT2 Inhibitors as Part of Their Anti-Atherosclerotic Activity: Data from Basic Science and Clinical Trials. Front. Cardiovasc. Med. 2022, 9, 1008922. [Google Scholar] [CrossRef]
- Inoue, T.; Kato, T.; Uchida, T.; Sakuma, M.; Nakajima, A.; Shibazaki, M.; Imoto, Y.; Saito, M.; Hashimoto, S.; Hikichi, Y.; et al. Local Release of C-Reactive Protein from Vulnerable Plaque or Coronary Arterial Wall Injured by Stenting. J. Am. Coll. Cardiol. 2005, 46, 239–245. [Google Scholar] [CrossRef]
- Norja, S.; Nuutila, L.; Karhunen, P.J.; Goebeler, S. C-Reactive Protein in Vulnerable Coronary Plaques. J. Clin. Pathol. 2006, 60, 545–548. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peppa, M.; Manta, A.; Mavroeidi, I.; Asimakopoulou, A.; Syrigos, A.; Nastos, C.; Pikoulis, E.; Kollias, A. Changes in Cardiovascular and Renal Biomarkers Associated with SGLT2 Inhibitors Treatment in Patients with Type 2 Diabetes Mellitus. Pharmaceutics 2023, 15, 2526. https://doi.org/10.3390/pharmaceutics15112526
Peppa M, Manta A, Mavroeidi I, Asimakopoulou A, Syrigos A, Nastos C, Pikoulis E, Kollias A. Changes in Cardiovascular and Renal Biomarkers Associated with SGLT2 Inhibitors Treatment in Patients with Type 2 Diabetes Mellitus. Pharmaceutics. 2023; 15(11):2526. https://doi.org/10.3390/pharmaceutics15112526
Chicago/Turabian StylePeppa, Melpomeni, Aspasia Manta, Ioanna Mavroeidi, Athina Asimakopoulou, Alexandros Syrigos, Constantinos Nastos, Emmanouil Pikoulis, and Anastasios Kollias. 2023. "Changes in Cardiovascular and Renal Biomarkers Associated with SGLT2 Inhibitors Treatment in Patients with Type 2 Diabetes Mellitus" Pharmaceutics 15, no. 11: 2526. https://doi.org/10.3390/pharmaceutics15112526
APA StylePeppa, M., Manta, A., Mavroeidi, I., Asimakopoulou, A., Syrigos, A., Nastos, C., Pikoulis, E., & Kollias, A. (2023). Changes in Cardiovascular and Renal Biomarkers Associated with SGLT2 Inhibitors Treatment in Patients with Type 2 Diabetes Mellitus. Pharmaceutics, 15(11), 2526. https://doi.org/10.3390/pharmaceutics15112526