Niosomes Functionalized with a Synthetic Carbohydrate Binding Agent for Mannose-Targeted Doxorubicin Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CBA 2
2.1.1. Materials
2.1.2. Compound 3
2.1.3. Compound 4
2.1.4. Compound 6
2.1.5. Compound 7
2.1.6. Compound 8
2.1.7. Compound 9
2.1.8. CBA 2
2.2. Niosomes Preparation and Characterization
2.2.1. Materials
2.2.2. Preparation of Empty Niosomes, Functionalized (NIO-F) or Nonfunctionalized (NIO)
2.2.3. Preparation of Doxorubicin-Loaded Niosomes, Functionalized (NIO-F + DOXO) or Nonfunctionalized (NIO + DOXO)
2.2.4. Characterization of Niosomes
2.2.5. Analytical Method for Doxorubicin Detection
2.2.6. Drug Encapsulation Efficiency (%EE)
2.2.7. Stability in Bovine Serum Albumin (BSA)
2.2.8. In Vitro Drug Release
2.2.9. Stability Studies
2.3. In Vitro Studies
2.3.1. Cell-Culture Conditions
2.3.2. Cell Viability Assay
2.3.3. Apoptosis Determination
3. Results and Discussion
3.1. Design and Synthesis of CBA
3.2. Preparation and Characterization of Empty Nonfunctionalized Niosomes (NIO)
3.3. Preparation and Characterization of Empty Functionalized Niosomes (NIO-F)
3.4. Preparation and Characterization of Drug-Loaded Niosomes, Functionalized (NIO-F + DOXO) or Nonfunctionalized (NIO + DOXO)
3.5. Cell Viability Assay
3.6. Apoptosis Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khoee, S.; Yaghoobian, M. Niosomes: A Novel Approach in Modern Drug Delivery Systems. In Nanostructures for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2017; pp. 207–237. [Google Scholar] [CrossRef]
- Momekova, D.B.; Gugleva, V.E.; Petrov, P.D. Nanoarchitectonics of Multifunctional Niosomes for Advanced Drug Delivery. ACS Omega 2021, 6, 33265–33273. [Google Scholar] [CrossRef]
- Muzzalupo, R.; Mazzotta, E. Do Niosomes Have a Place in the Field of Drug Delivery? Expert Opin. Drug Deliv. 2019, 16, 1145–1147. [Google Scholar] [CrossRef]
- Argenziano, M.; Arpicco, S.; Brusa, P.; Cavalli, R.; Chirio, D.; Dosio, F.; Gallarate, M.; Peira, E.; Stella, B.; Ugazio, E. Developing Actively Targeted Nanoparticles to Fight Cancer: Focus on Italian Research. Pharmaceutics 2021, 13, 1538. [Google Scholar] [CrossRef] [PubMed]
- Aparajay, P.; Dev, A. Functionalized Niosomes as a Smart Delivery Device in Cancer and Fungal Infection. Eur. J. Pharm. Sci. 2022, 168, 106052. [Google Scholar] [CrossRef] [PubMed]
- Böttger, R.; Pauli, G.; Chao, P.-H.; al Fayez, N.; Hohenwarter, L.; Li, S.-D. Lipid-Based Nanoparticle Technologies for Liver Targeting. Adv. Drug Deliv. Rev. 2020, 154–155, 79–101. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.J.; Nie, S. Targeted Cancer Nanotherapy. Mater. Today 2005, 8, 28–33. [Google Scholar] [CrossRef]
- Tavano, L.; Muzzalupo, R. Multi-Functional Vesicles for Cancer Therapy: The Ultimate Magic Bullet. Colloids Surf B Biointerfaces 2016, 147, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Mager, M.D.; LaPointe, V.; Stevens, M.M. Exploring and Exploiting Chemistry at the Cell Surface. Nat. Chem. 2011, 3, 582–589. [Google Scholar] [CrossRef]
- Ghazarian, H.; Idoni, B.; Oppenheimer, S.B. A Glycobiology Review: Carbohydrates, Lectins and Implications in Cancer Therapeutics. Acta Histochem. 2011, 113, 236–247. [Google Scholar] [CrossRef]
- Dube, D.H.; Bertozzi, C.R. Glycans in Cancer and Inflammation—Potential for Therapeutics and Diagnostics. Nat. Rev. Drug Discov. 2005, 4, 477–488. [Google Scholar] [CrossRef]
- Zhang, R.; Qin, X.; Kong, F.; Chen, P.; Pan, G. Improving Cellular Uptake of Therapeutic Entities through Interaction with Components of Cell Membrane. Drug Deliv. 2019, 26, 328–342. [Google Scholar] [CrossRef] [Green Version]
- Gabor, F.; Bogner, E.; Weissenboeck, A.; Wirth, M. The Lectin–Cell Interaction and Its Implications to Intestinal Lectin-Mediated Drug Delivery. Adv. Drug Deliv. Rev. 2004, 56, 459–480. [Google Scholar] [CrossRef]
- De Leoz, M.L.A.; Young, L.J.T.; An, H.J.; Kronewitter, S.R.; Kim, J.; Miyamoto, S.; Borowsky, A.D.; Chew, H.K.; Lebrilla, C.B. High-Mannose Glycans Are Elevated during Breast Cancer Progression. Mol. Cell. Proteom. 2011, 10, M110.002717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, Y.; Kubo, T.; Morimoto, K.; Yanagihara, K.; Seyama, T. High Mannose-Binding Pseudomonas Fluorescens Lectin (PFL) Downregulates Cell Surface Integrin/EGFR and Induces Autophagy in Gastric Cancer Cells. BMC Cancer 2016, 16, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minko, T. Drug Targeting to the Colon with Lectins and Neoglycoconjugates. Adv. Drug Deliv. Rev. 2004, 56, 491–509. [Google Scholar] [CrossRef] [PubMed]
- Sindhura, B.R.; Hegde, P.; Chachadi, V.B.; Inamdar, S.R.; Swamy, B.M. High Mannose N-Glycan Binding Lectin from Remusatia Vivipara (RVL) Limits Cell Growth, Motility and Invasiveness of Human Breast Cancer Cells. Biomed. Pharmacother. 2017, 93, 654–665. [Google Scholar] [CrossRef]
- Mazalovska, M.; Kouokam, J.C. Plant-Derived Lectins as Potential Cancer Therapeutics and Diagnostic Tools. Biomed Res. Int. 2020, 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Balzarini, J. Targeting the Glycans of Glycoproteins: A Novel Paradigm for Antiviral Therapy. Nat. Rev. Microbiol. 2007, 5, 583–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francesconi, O.; Roelens, S. Biomimetic Carbohydrate-Binding Agents (CBAs): Binding Affinities and Biological Activities. ChemBioChem 2019, 20, 1329–1346. [Google Scholar] [CrossRef]
- Gentili, M.; Nativi, C.; Francesconi, O.; Roelens, S. Synthetic Receptors for Molecular Recognition of Carbohydrates. In Carbohydrate Chemistry; Royal Society of Chemistry: London, UK, 2016; Volume 41, pp. 149–186. [Google Scholar] [CrossRef]
- Nativi, C.; Francesconi, O.; Gabrielli, G.; Vacca, A.; Roelens, S. Chiral Diaminopyrrolic Receptors for Selective Recognition of Mannosides, Part 1: Design, Synthesis, and Affinities of Second-Generation Tripodal Receptors. Chem.-A Eur. J. 2011, 17, 4814–4820. [Google Scholar] [CrossRef]
- Ardá, A.; Venturi, C.; Nativi, C.; Francesconi, O.; Gabrielli, G.; Cañada, F.; Jiménez-Barbero, J.; Roelens, S. A Chiral Pyrrolic Tripodal Receptor Enantioselectively Recognizes β-Mannose and β-Mannosides. Chem.-A Eur. J. 2010, 16, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Ardá, A.; Cañada, F.J.; Nativi, C.; Francesconi, O.; Gabrielli, G.; Ienco, A.; Jiménez-Barbero, J.; Roelens, S. Chiral Diaminopyrrolic Receptors for Selective Recognition of Mannosides, Part 2: A 3D View of the Recognition Modes by X-Ray, NMR Spectroscopy, and Molecular Modeling. Chem.-A Eur. J. 2011, 17, 4821–4829. [Google Scholar] [CrossRef] [PubMed]
- Vacca, A.; Francesconi, O.; Roelens, S. BC50: A Generalized, Unifying Affinity Descriptor. Chem. Rec. 2012, 12, 544–566. [Google Scholar] [CrossRef] [PubMed]
- Nativi, C.; Francesconi, O.; Gabrielli, G.; de Simone, I.; Turchetti, B.; Mello, T.; Mannelli, L.D.C.; Ghelardini, C.; Buzzini, P.; Roelens, S. Aminopyrrolic Synthetic Receptors for Monosaccharides: A Class of Carbohydrate-Binding Agents Endowed with Antibiotic Activity versus Pathogenic Yeasts. Chem.-A Eur. J. 2012, 18, 5064–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francesconi, O.; Nativi, C.; Gabrielli, G.; De Simone, I.; Noppen, S.; Balzarini, J.; Liekens, S.; Roelens, S. Antiviral Activity of Synthetic Aminopyrrolic Carbohydrate Binding Agents: Targeting the Glycans of Viral Gp120 to Inhibit HIV Entry. Chem.-A Eur. J. 2015, 21, 10089–10093. [Google Scholar] [CrossRef]
- Park, S.-H.; Choi, Y.P.; Park, J.; Share, A.; Francesconi, O.; Nativi, C.; Namkung, W.; Sessler, J.L.; Roelens, S.; Shin, I. Synthetic Aminopyrrolic Receptors Have Apoptosis Inducing Activity. Chem. Sci. 2015, 6, 7284–7292. [Google Scholar] [CrossRef] [Green Version]
- Sritharan, S.; Sivalingam, N. A Comprehensive Review on Time-Tested Anticancer Drug Doxorubicin. Life Sci. 2021, 278, 119527. [Google Scholar] [CrossRef]
- Di Francesco, M.; Celia, C.; Cristiano, M.C.; d’Avanzo, N.; Ruozi, B.; Mircioiu, C.; Cosco, D.; di Marzio, L.; Fresta, M. Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer. ACS Omega 2021, 6, 2973–2989. [Google Scholar] [CrossRef]
- Maswadeh, H.M.; Aljarbou, A.N.; Alorainy, M.S.; Rahmani, A.H.; Khan, M.A. Coadministration of doxorubicin and etoposide loaded in camel milk phospholipids liposomes showed increased antitumor activity in a murine model. Int. J. Nanomed. 2015, 10, 2847–2855. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Aljarbou, A.N.; Aldebasi, Y.H.; Alorainy, M.S.; Khan, A. Combination of glycosphingosomes and liposomal doxorubicin shows increased activity against dimethyl-α-benzanthracene-induced fibrosarcoma in mice. Int. J. Nanomed. 2015, 10, 6331–6338. [Google Scholar] [CrossRef] [Green Version]
- Tavano, L.; Vivacqua, M.; Carito, V.; Muzzalupo, R.; Caroleo, M.C.; Nicoletta, F. Doxorubicin Loaded Magneto-Niosomes for Targeted Drug Delivery. Colloids Surf B Biointerfaces 2013, 102, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Minamisakamoto, T.; Nishiguchi, S.; Hashimoto, K.; Ogawara, K.; Maruyama, M.; Higaki, K. Sequential Administration of PEG-Span 80 Niosome Enhances Anti-Tumor Effect of Doxorubicin-Containing PEG Liposome. Eur. J. Pharm. Biopharm. 2021, 169, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xia, L.; Jo, A.; Davis, R.M.; Bissel, P.; Ehrich, M.F.; Kingston, D.G.I. Synthesis and Evaluation of Doxorubicin-Loaded Gold Nanoparticles for Tumor-Targeted Drug Delivery. Bioconjug. Chem. 2018, 29, 420–430. [Google Scholar] [CrossRef]
- Bagheri, E.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M.; Ramezani, M. Targeted Delivery and Controlled Release of Doxorubicin to Cancer Cells by Smart ATP-Responsive Y-Shaped DNA Structure-Capped Mesoporous Silica Nanoparticles. J. Mater. Chem. B 2021, 9, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, W.; Huang, Y.; Liu, H.; Marquez, R.; Gibbs, R.B.; Li, J.; Venkataramanan, R.; Xu, L.; Li, S. Targeted Delivery of Doxorubicin by Folic Acid-Decorated Dual Functional Nanocarrier. Mol. Pharm. 2015, 11, 4164–4178. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Nie, H.; Zhang, Y.; Yao, Y.; Maitikabili, A.; Qu, Y.; Shi, S.; Chen, C.; Li, Y. Cell Surface-Specific N-Glycan Profiling in Breast Cancer. PLoS ONE 2013, 8, e72704. [Google Scholar] [CrossRef] [Green Version]
- Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U. Doxorubicin-Induced Cardiotoxicity: An Update on the Molecular Mechanism and Novel Therapeutic Strategies for Effective Management. Biomed. Pharmacother. 2021, 139, 111708. [Google Scholar] [CrossRef]
- Anderson, A.A.; Goetzen, T.; Shackelford, S.A.; Tsank, S. A Convenient One-Step Synthesis of 2-Hydroxy-1,3,5-Benzenetricarbaldehyde. Synth. Commun. 2000, 30, 3227–3232. [Google Scholar] [CrossRef]
- Bragagni, M.; Mennini, N.; Ghelardini, C.; Mura, P. Development and Characterization of Niosomal Formulations of Doxorubicin Aimed at Brain Targeting. J. Pharm. Pharm. Sci. 2012, 15, 184. [Google Scholar] [CrossRef] [Green Version]
- Ingallina, C.; Rinaldi, F.; Bogni, A.; Ponti, J.; Passeri, D.; Reggente, M.; Rossi, M.; Kinsner-Ovaskainen, A.; Mehn, D.; Rossi, F.; et al. Niosomal Approach to Brain Delivery: Development, Characterization and in Vitro Toxicological Studies. Int. J. Pharm. 2016, 511, 969–982. [Google Scholar] [CrossRef]
- Aguilar-Castillo, B.A.; Santos, J.L.; Luo, H.; Aguirre-Chagala, Y.E.; Palacios-Hernández, T.; Herrera-Alonso, M. Nanoparticle Stability in Biologically Relevant Media: Influence of Polymer Architecture. Soft Matter 2015, 11, 7296–7307. [Google Scholar] [CrossRef]
- Maestrelli, F.; González-Rodríguez, M.L.; Rabasco, A.M.; Mura, P. Preparation and Characterisation of Liposomes Encapsulating Ketoprofen–Cyclodextrin Complexes for Transdermal Drug Delivery. Int. J. Pharm. 2005, 298, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Cinci, L.; Luceri, C.; Bigagli, E.; Carboni, I.; Paccosi, S.; Parenti, A.; Guasti, D.; Coronnello, M. Development and Characterization of an in Vitro Model of Colorectal Adenocarcinoma with MDR Phenotype. Cancer Med. 2016, 5, 1279–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigagli, E.; Cinci, L.; D’Ambrosio, M.; Nardini, P.; Portelli, F.; Colucci, R.; Lodovici, M.; Mugelli, A.; Luceri, C. Hydrochlorothiazide Use and Risk of Nonmelanoma Skin Cancers: A Biological Plausibility Study. Oxid. Med. Cell. Longev. 2021, 2021, 6655542. [Google Scholar] [CrossRef] [PubMed]
- Bhupinder, K.; Newton, M.J. Impact of Pluronic F68 vs Tween 80 on fabrication and evaluation of acyclovir SLNs for skin delivery. Recent Patents Drug Deliv. Formul. 2016, 10, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.S.; Chodisetti, S.; Gadag, S.; Nayak, U.Y.; Govindan, S.; Raval, K. Tailoring Solulan C24 Based Niosomes for Transdermal Delivery of Donepezil: In Vitro Characterization, Evaluation of PH Sensitivity, and Microneedle-Assisted Ex Vivo Permeation Studies. J. Drug Deliv. Sci. Technol. 2020, 60, 101945. [Google Scholar] [CrossRef]
- Kumar, G.P.; Rajeshwarrao, P. Nonionic Surfactant Vesicular Systems for Effective Drug Delivery—An Overview. Acta Pharm. Sin. B 2011, 1, 208–219. [Google Scholar] [CrossRef]
- Diskaeva, E.I.; Bazikov, I.A.; Vecher, O.V.; Elbekyan, K.S.; Mecyaceva, L.S. Investigation Ultrasound Influence on the Size of Niosomes Vesicles on the Based of PEG-12 Dimethicone. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 1016–1021. [Google Scholar]
Method | Span:CHL:SOL (% mol) | Mean Size (nm) ± S.D | PDI ±S.D | ζ-Pot (mV) ± S.D |
---|---|---|---|---|
TLE-V | 50:40:10 | 182.2 ± 3.1 | 0.21 ± 0.01 | −37.8 ± 2.7 |
TLE-V | 40:50:10 | 197.4 ± 1.0 | 0.29 ± 0.04 | −39.4 ± 2.3 |
TLE-V | 35:40:25 | 252.0 ± 2.9 | 0.20 ± 0.02 | −15.7 ± 1.0 |
TLE-V | 50:25:25 | 216.2 ± 7.1 | 0.18 ± 0.01 | −19.5 ± 2.6 |
TLE-V | 25:50:25 | 198.8 ± 3.2 | 0.25 ± 0.02 | −17.4 ± 1.2 |
TLE-V | 40:35:25 | 183.0 ± 1.6 | 0.22 ± 0.01 | −19.9 ± 1.6 |
TLE-P | 50:40:10 | 161.2 ± 0.8 | 0.18 ± 0.01 | −27.3± 2.6 |
TLE-P | 40:50:10 | 191.2 ± 4.1 | 0.17 ± 0.01 | −27.0 ± 1.8 |
TLE-P | 35:40:25 | 214.5 ± 1.4 | 0.21 ±0.01 | −15.8 ± 1.7 |
TLE-P | 50:25:25 | 186.6 ± 1.9 | 0.20 ± 0.01 | −18.4 ± 2.7 |
TLE-P | 25:50:25 | 250.4 ± 3.4 | 0.19 ± 0.02 | −15.1 ± 1.1 |
TLE-P | 40:35:25 | 189.1 ± 1.1 | 0.18 ± 0.03 | −17.6 ± 1.7 |
REV-P | 50:40:10 | 160.6 ± 1.5 | 0.21 ± 0.01 | −25.7 ± 1.7 |
REV-P | 40:50:10 | 268.7 ± 2.5 | 0.22 ± 0.02 | −28.3 ± 1.4 |
REV-P | 35:40:25 | 187.6 ± 1.4 | 0.22 ± 0.01 | −16.6 ± 1.3 |
REV-P | 50:25:25 | 123.9 ± 0.4 | 0.19 ± 0.01 | −14.5 ± 0.8 |
REV-P | 25:50:25 | 195.3 ± 3.5 | 0.22 ± 0.01 | −18.9 ± 1.2 |
REV-P | 40:35:25 | 172.8 ± 0.1 | 0.19 ± 0.02 | −14.0 ± 1.1 |
Chloroform inj. | 50:40:10 | 257.9 ± 2.4 | 0.27 ± 0.01 | −14.8 ± 0.5 |
Chloroform inj. | 40:50:10 | 320.9 ± 6.0 | 0.40 ± 0.05 | −15.9 ± 0.8 |
Chloroform inj. | 35:40:25 | 288.2 ± 2.4 | 0.23 ± 0.01 | −11.6 ± 0.1 |
Chloroform inj. | 50:25:25 | 134.7 ± 1.6 | 0.21 ± 0.01 | −17.6 ± 2.3 |
Chloroform inj. | 25:50:25 | 254.0 ± 1.3 | 0.26 ± 0.01 | −16.5 ± 1.9 |
Chloroform inj. | 40:35:25 | 205.1 ± 1.6 | 0.16 ± 0.01 | −15.5 ± 1.7 |
Preparation Method | Span60:CHL:SOL (% mol) | Mean Size (nm) ± S.D | PDI ±S.D | ζ-Potential (mV) ± S.D |
---|---|---|---|---|
TLE-V | 50:40:10 | 159.4 ± 1.2 | 0.16 ± 0.01 | −35.3 ± 8.3 |
TLE-V | 50:25:25 | 127.5 ± 2.3 | 0.16 ± 0.01 | −18.3 ± 3.0 |
TLE-P | 50:40:10 | 152.4± 0.9 | 0.15 ± 0.01 | −25.9 ± 4.8 |
TLE-P | 50:25:25 | 189.7 ± 2.4 | 0.21 ± 0.02 | −18.1 ± 2.2 |
REV-P | 50:40:10 | 150.2 ± 2.0 | 0.15 ± 0.01 | −24.2 ± 1.9 |
REV-P | 50:25:25 | 125.5 ± 0.3 | 0.18 ± 0.01 | −12.6 ± 1.4 |
Chloroform inj. | 50:25:25 | 135.0 ± 0.3 | 0.18 ± 0.01 | −12.6 ± 1.5 |
TLE-V Niosomes | REV-P Niosomes | |||||
---|---|---|---|---|---|---|
Mean Size (nm) ±S.D. | PDI ± S.D. | ζ-Pot (mV) ± S.D. | Mean Size (nm) ±S.D. | PDI ± S.D. | ζ-Pot (mV) ±S.D. | |
Freshly prepared | 147.3 ± 1.4 | 0.28 ± 0.04 | −0.91 ± 0.24 | 170.2 ± 0.8 | 0.23 ± 0.02 | −2.15 ± 0.01 |
After 24 h | 140.1 ± 0.2 | 0.24 ± 0.01 | 0.95 ± 0.02 | 267.0 ± 0.5 | 0.51 ± 0.08 | −0.10 ± 0.15 |
After 72 h | 134.1 ± 1.3 | 0.20 ± 0.11 | 1.66 ± 0.18 | 307.7 ± 0.1 | 0.45 ± 0.01 | −1.87 ± 0.65 |
After 2 weeks | 170.0 ± 5.6 | 0.34 ± 0.03 | 6.34 ± 0.55 | 315.6 ± 4.6 | 0.50 ± 0.03 | −3.10 ± 0.55 |
NIO-F + DOXO | Mean Size (nm) ± S.D. | PDI ± S.D. | ζ-Pot (mV) ± S.D. | %EE |
---|---|---|---|---|
Freshly prepared | 147.3 ± 1.4 | 0.28 ± 0.04 | −0.91 ± 0.24 | 84.7 ± 2.8 |
1 month | 160.0 ± 12.5 | 0.25 ± 0.01 | −4.52 ± 0.33 | 84.1 ± 1.6 |
2 months | 141.0 ± 3.2 | 0.25 ± 0.01 | −0.85 ± 0.65 | 83.5 ± 2.0 |
4 months | 138.6 ± 1.7 | 0.22 ± 0.01 | 24.91 ± 0.94 | 82.1 ± 1.8 |
6 months | 122.0 ± 2.6 | 0.18 ± 0.01 | 30.88 ± 0.37 | 81.0 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burrini, N.; D’Ambrosio, M.; Gentili, M.; Giaquinto, R.; Settimelli, V.; Luceri, C.; Cirri, M.; Francesconi, O. Niosomes Functionalized with a Synthetic Carbohydrate Binding Agent for Mannose-Targeted Doxorubicin Delivery. Pharmaceutics 2023, 15, 235. https://doi.org/10.3390/pharmaceutics15010235
Burrini N, D’Ambrosio M, Gentili M, Giaquinto R, Settimelli V, Luceri C, Cirri M, Francesconi O. Niosomes Functionalized with a Synthetic Carbohydrate Binding Agent for Mannose-Targeted Doxorubicin Delivery. Pharmaceutics. 2023; 15(1):235. https://doi.org/10.3390/pharmaceutics15010235
Chicago/Turabian StyleBurrini, Nastassja, Mario D’Ambrosio, Matteo Gentili, Roberta Giaquinto, Veronica Settimelli, Cristina Luceri, Marzia Cirri, and Oscar Francesconi. 2023. "Niosomes Functionalized with a Synthetic Carbohydrate Binding Agent for Mannose-Targeted Doxorubicin Delivery" Pharmaceutics 15, no. 1: 235. https://doi.org/10.3390/pharmaceutics15010235