Oligonucleotide Solid Nucleolipid Nanoparticles against Antibiotic Resistance of ESBL-Producing Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Synthesis and Purification of Oligonucleotides
2.3. Preparations of Ion Pairs, CFX–DOTAU and ONα Nanoparticles (NP)
Nanoprecipitation Technique
2.4. Characterization of Ion Pairs, CFX–DOTAU and ONα NP
2.4.1. IR Analysis of Ion Pair and Raw Materials
2.4.2. X-ray Diffraction Analysis
2.4.3. Analysis of CFX and DOTAU Content for Yield and Molar Ratio Determination
2.4.4. Characterization of NP Size, Polydispersity Index (PDI) and Zeta Potential
2.4.5. TEM Analysis
2.4.6. Stability of ONα NP upon Dilution
2.5. MIC Determination of NP in ESBL-Producing E. coli
2.6. Statistical Analysis
3. Results and Discussion
3.1. CFX DOTAU Ion Pair Formation
3.2. Preparation of CFX–DOTAU NP and ONα NP
3.3. Evaluation of Antibacterial Effect on ESBL-Producing E. coli
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Antimicrobial resistance: Global Report on Surveillance. Bull. World Health Organ. 2014, 61, 383–394. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling drug-resistant infections globally: Final report and recommendations. Rev. Antimicrob. Resist. 2016, 1–84. [Google Scholar] [CrossRef]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Priority List of Antibiotic-Resistant Batceria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Arpin, C.; Quentin, C.; Grobost, F.; Cambau, E.; Robert, J.; Dubois, V.; Coulange, L.; André, C. Nationwide survey of extended-spectrum β-lactamase-producing Enterobacteriaceae in the French community setting. J. Antimicrob. Chemother. 2009, 63, 1205–1214. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Jones, M.E.; Mayfield, D.C.; Thornsberry, C.; Sahm, D.F. Ceftriaxone activity against Gram-positive and Gram-negative pathogens isolated in US clinical microbiology laboratories from 1996 to 2000: Results from The Surveillance Network (TSN) Database-USA. Int. J. Antimicrob. Agents 2002, 19, 413–426. [Google Scholar] [CrossRef]
- Assessment Report for Rocephin and Associated Names; EMA Comitee for Medicinal Products for Human Use: London, UK, 2014; Volume EMA/144854.
- Tewabe, A.; Marew, T.; Birhanu, G. The contribution of nano-based strategies in overcoming ceftriaxone resistance: A literature review. Pharmacol. Res. Perspect. 2021, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chua, K.Y.L.; Stewardson, A.J. Individual and community predictors of urinary ceftriaxone-resistant Escherichia coli isolates, Victoria, Australia. Antimicrob. Resist. Infect. Control 2019, 8, 1–12. [Google Scholar] [CrossRef]
- Levy, S.B.; Bonnie, M. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Levy, S.B. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updates 2000, 3, 303–311. [Google Scholar] [CrossRef]
- Ejim, L.; Farha, M.A.; Falconer, S.B.; Wildenhain, J.; Coombes, B.K.; Tyers, M.; Brown, E.D.; Wright, G.D. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol. 2011, 7, 348–350. [Google Scholar] [CrossRef]
- Moellering, C.R. Antibiotic Resistance: Lessons for the Future. Clin. Infect. Dis. 1998, 27, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Reardon, S. Bacterial arms race revs up. Nature 2015, 521, 402–403. [Google Scholar] [CrossRef] [PubMed]
- Braine, T. Race against time to develop new antibiotics. Bull. World Health Organ. 2011, 89, 88–89. [Google Scholar] [CrossRef]
- Freire-Moran, L.; Aronsson, B.; Manz, C.; Gyssens, I.C.; So, A.D.; Monnet, D.L.; Cars, O. Critical shortage of new antibiotics in development against multidrug-resistant bacteria—Time to react is now. Drug Resist. Updates 2011, 14, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 2011, 9, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013, 65, 1803–1815. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar Arya, D.; Dua, M.; Chhatwal, G.S.; Johri, A.K. Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin. Drug Deliv. 2012, 9, 1325–1332. [Google Scholar] [CrossRef]
- Abed, N.; Couvreur, P. Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections. Int. J. Antimicrob. Agents 2014, 43, 485–496. [Google Scholar] [CrossRef]
- Saúde, A.C.M.; Cherobim, M.D.; Amaral, A.C.; Dias, S.C.; Franco, O.L. Nanoformulated Antibiotics: The Next Step for Pathogenic Bacteria Control. Curr. Med. Chem. 2013, 20, 1232–1240. [Google Scholar] [CrossRef]
- Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156, 128–145. [Google Scholar] [CrossRef]
- Kalhapure, R.S.; Mocktar, C.; Sikwal, D.R.; Sonawane, S.J.; Kathiravan, M.K.; Skelton, A.; Govender, T. Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles. Colloids Surf. B Biointerfaces 2014, 117, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Kavruk, M.; Celikbicak, O.; Ozalp, V.C.; Borsa, B.A.; Hernandez, F.J.; Bayramoglu, G.; Salih, B.; Aricag, M.Y. Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chem. Commun. 2015, 51, 8492–8495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Pornpattananangkul, D.; Hu, J.C.-M.; Huang, C.-M. Development of Nanoparticles for Antimicrobial Drug Delivery. Curr. Med. Chem. 2010, 17, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv. Pharm. Bull. 2015, 5, 305–313. [Google Scholar] [CrossRef]
- Oumzil, K.; Ramin, M.A.; Lorenzato, C.; Hémadou, A.; Laroche, J.; Jacobin-Valat, M.J.; Mornet, S.; Roy, C.E.; Kauss, T.; Gaudin, K.; et al. Solid Lipid Nanoparticles for Image-Guided Therapy of Atherosclerosis. Bioconjug. Chem. 2016, 27, 569–575. [Google Scholar] [CrossRef]
- Benizri, S.; Ferey, L.; Alies, B.; Mebarek, N.; Vacher, G.; Appavoo, A.; Staedel, C.; Gaudin, K.; Barthélémy, P. Nucleoside-Lipid-Based Nanocarriers for Sorafenib Delivery. Nanoscale Res. Lett. 2018, 13, 17. [Google Scholar] [CrossRef]
- Sully, E.K.; Geller, B.L. Antisense antimicrobial therapeutics. Curr. Opin. Microbiol. 2016, 33, 47–55. [Google Scholar] [CrossRef]
- Xue, X.Y.; Mao, X.G.; Zhou, Y.; Chen, Z.; Hu, Y.; Hou, Z.; Li, M.K.; Meng, J.R.; Luo, X.X. Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 745–758. [Google Scholar] [CrossRef]
- Streicher, L.M. Exploring the future of infectious disease treatment in a post-antibiotic era: A comparative review of alternative therapeutics. J. Glob. Antimicrob. Resist. 2021, 24, 285–295. [Google Scholar] [CrossRef]
- Pifer, R.; Greenberg, D.E. Antisense antibacterial compounds. Transl. Res. 2020, 223, 89–106. [Google Scholar] [CrossRef]
- Horwitz, M.A.; Harth, G.; Dillon, B.J.; Maslesa-Galic, S. Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity againts tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl. Acad. Sci. USA 2000, 97, 13853–13858. [Google Scholar] [CrossRef] [PubMed]
- Fillion, P.; Desjardins, A.; Sayasith, K.; Lagacé, J. Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides. Biochim. Biophys. Acta-Biomembr. 2001, 1515, 44–54. [Google Scholar] [CrossRef]
- Readman, J.B.; Dickson, G.; Coldham, N.G. Translational inhibition of CTX-M extended spectrum β-lactamase in clinical strains of Escherichia coli by synthetic antisense oligonucleotides partially restores sensitivity to cefotaxime. Front. Microbiol. 2016, 7, 313. [Google Scholar] [CrossRef]
- Kauss, T.; Arpin, C.; Bientz, L.; Vinh Nguyen, P.; Vialet, B.; Benizri, S.; Barthélémy, P. Lipid oligonucleotides as a new strategy for tackling the antibiotic resistance. Sci. Rep. 2020, 10, 1054. [Google Scholar] [CrossRef] [PubMed]
- Readman, J.B.; Dickson, G.; Coldham, N.G. Tetrahedral DNA Nanoparticle Vector for Intracellular Delivery of Targeted Peptide Nucleic Acid Antisense Agents to Restore Antibiotic Sensitivity. Nucleic Acid Ther. 2017, 27, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Jia, B.; Shi, Y.; Wang, Q.; Yu, H.; Li, Z. DNA Nanodevice as a Co-delivery Vehicle of Antisense Oligonucleotide and Silver Ions for Selective Inhibition of Bacteria Growth. ACS Appl. Mater. Interfaces 2021, 13, 47987–47995. [Google Scholar] [CrossRef] [PubMed]
- Sully, E.K.; Geller, B.L.; Li, L.; Moody, C.M.; Bailey, S.M.; Moore, A.L.; Wong, M.; Nordmann, P.; Daly, S.M.; Sturge, C.R.; et al. Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo. J. Antimicrob. Chemother. 2017, 72, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Popella, L.; Jung, J.; Popova, K.; Urica-Mitic´, S.; Barquist, L.; Vogel, J. Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics. Nucleic Acids Res. 2021, 49, 4705–4724. [Google Scholar] [CrossRef]
- Frank-Kamenetsky, M.; Grefhorst, A.; Anderson, N.N.; Racie, T.S.; Bramlage, B.; Akinc, A.; Butler, D.; Charisse, K.; Dorkin, R.; Fan, Y.; et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA 2008, 105, 11915–11920. [Google Scholar] [CrossRef]
- Zelphati, O.; Szoka, F.C. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA 1996, 93, 11493–11498. [Google Scholar] [CrossRef]
- Meng, J.; Wang, H.; Hou, Z.; Chen, T.; Fu, J.; Ma, X.; He, G.; Xue, X.; Jia, M.; Luo, X. Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA. Antimicrob. Agents Chemother. 2009, 53, 2871–2878. [Google Scholar] [CrossRef] [PubMed]
- Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Nanomedicine based approaches for the delivery of siRNA in cancer. J. Intern. Med. 2010, 267, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Howard, K.A.; Rahbek, U.L.; Liu, X.; Damgaard, C.K.; Glud, S.Z.; Andersen, M.; Hovgaard, M.B.; Schmitz, A.; Nyengaard, J.R.; Besenbacher, F.; et al. RNA Interference in Vitro and in Vivo Using a Novel Chitosan/siRNA Nanoparticle System. Mol. Ther. 2006, 14, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Minakuchi, Y.; Takeshita, F.; Kosaka, N.; Sasaki, H.; Yamamoto, Y.; Kouno, M.; Honma, K.; Nagahara, S.; Hanai, K.; Sano, A.; et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 2004, 32, D109–D111. [Google Scholar] [CrossRef] [PubMed]
- Heidel, J.D.; Yu, Z.; Liu, J.Y.-C.; Rele, S.M.; Liang, Y.; Zeidan, R.K.; Kornbrust, D.J.; Davis, M.E. Administration in non-human primates of escalating intravenous doses of targted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. USA 2007, 104, 5715–5721. [Google Scholar] [CrossRef] [PubMed]
- Chabaud, P.; Camplo, M.; Payet, D.; Serin, G.; Moreau, L.; Barthélémy, P.; Grinstaff, M.W. Cationic nucleoside lipids for gene delivery. Bioconjug. Chem. 2006, 17, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Khiati, S.; Pierre, N.; Andriamanarivo, S.; Grinstaff, M.W.; Arazam, N.; Nallet, F.; Navailles, L.; Barthélémy, P. Anionic Nucleotide Lipids for “In Vitro” DNA Transfection. Bioconjug. Chem. 2009, 20, 1765–1772. [Google Scholar] [CrossRef]
- Gaudin, K.; Langlois, M.; Kauss, T.; Phoeung, T.; Arrachart, S.; Demartini, A.; Gaziello, F. In Vitro Ceftriaxone Stability at New-borns ’ Rectal PH Assessed by UV and HPLC Methods. Pharm. Anal. Acta 2015, 6, 1–5. [Google Scholar] [CrossRef]
- Ferey, L.; Slabi, S.A.; Roy, C.-E.; Barthelemy, P.; Gaudin, K. Chromatographic study of nucleoside-lipids by RP-UHPLC-DAD_CAD. Anal. Bioanal. Chem. 2018, 410, 7711–7721. [Google Scholar] [CrossRef]
- EUCAST; CASFM. CASFM/EUCAST V2.0 Mai 2019—Recommendation. Available online: https://www.sfm-microbiologie.org/2019/05/06/casfm-eucast-2019-v2/ (accessed on 18 November 2021).
- Lee, S.; Kim, S.K.; Lee, D.Y.; Chae, S.Y.; Byun, Y. Pharmacokinetics of a New, Orally Available Ceftriaxone Formulation in Physical Complexation with a Cationic Analogue of Bile Acid in Rats. Antimicrob. Agents Chemother. 2006, 50, 1869–1871. [Google Scholar] [CrossRef]
- Jeon, O.; Hwang, S.R.; Al-hilal, T.A.; Park, J.W.; Moon, H.T.; Lee, S.; Park, J.H. Oral Delivery of Ionic Complex of Ceftriaxone with Bile Acid Derivative in Non-human Primates. Pharm. Res. 2013, 30, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Thanassoulas, A.; Barthélémy, P.; Navailles, L.; Sigaud, G. From nucleobases to nucleolipids: An ITC approach on the thermodynamics of their interactions in aqueous solutions. J. Phys. Chem. B 2014, 118, 6570–6585. [Google Scholar] [CrossRef] [PubMed]
- Simeone, L.; Irace, C.; Di Pascale, A.; Ciccarelli, D.; D’Errico, G.; Montesarchio, D. Synthesis, self-aggregation and bioactivity properties of a cationic aminoacyl surfactant, based on a new class of highly functionalized nucleolipids. Eur. J. Med. Chem. 2012, 57, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Vialet, B.; Gissot, A.; Delzor, R.; Barthelemy, P. Controlling G-quadruplex formation via lipid modification of oligonucleotide sequences. Chem. Commun. 2017, 3, 11560–11563. [Google Scholar] [CrossRef] [PubMed]
- Baillet, J.; Desvergnes, V.; Hamoud, A.; Latxague, L.; Barthélémy, P. Lipid and Nucleic Acid Chemistries: Combining the Best of Both Worlds to Construct Advanced Biomaterials. Adv. Mater. 2018, 1705078, 1–24. [Google Scholar] [CrossRef]
- Karaki, S.; Benizri, S.; Mejías, R.; Baylot, V. Lipid-oligonucleotide conjugates improve cellular uptake and e ffi ciency of TCTP-antisense in castration-resistant prostate cancer. J. Control. Release 2017, 258, 1–9. [Google Scholar] [CrossRef]
- Aleksić, M.M.; Savić, V.; Popović, G.V.; Burić, N.; Kapetanović, V. Acidity constants of cefetamet, cefotaxime and ceftriaxone; the effect of the substituent at C3 position. J. Pharm. Biomed. Anal. 2005, 39, 752–756. [Google Scholar] [CrossRef]
- Ceftriaxone|C18H18N8O7S3—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ceftriaxone (accessed on 18 November 2021).
- European Pharmacopoeia. Ceftriaxone sodium (Ceftriaxonum natricum). In EDQM; Monograph 0991 in European Pharmacopoeia ed. 10.6; European Pharmacopoeia: Strasbourg, France, 2021; pp. 2136–2137. [Google Scholar]
- Lee, S.; Kim, S.K.; Lee, D.Y.; Park, K.; Kumar, T.S.; Chae, S.Y.; Byun, Y. Cationic analog of deoxycholate as an oral delivery carrier for ceftriaxone. J. Pharm. Sci. 2005, 94, 2541–2548. [Google Scholar] [CrossRef]
- Kauss, T.; Gaubert, A.; Tabaran, L.; Tonelli, G.; Phoeung, T.; Langlois, M.-H.; White, N.; Cartwright, A.; Gomes, M.; Gaudin, K. Development of rectal self-emulsifying suspension of a moisture-labile water-soluble drug. Int. J. Pharm. 2018, 536, 283–291. [Google Scholar] [CrossRef]
- Ba, B.; Gaudin, K.; Désiré, A.; Phoeung, T.; Langlois, M.-H.; Behl, C.R.; Unowsky, J.; Patel, I.H.; Malick, A.W.; Gomes, M.; et al. Ceftriaxone Absorption Enhancement for Noninvasive Administration as an Alternative to Injectable Solutions. Antimicrob. Agents Chemother. 2018, 62, e01170-18. [Google Scholar] [CrossRef]
- Kauss, T.; Langlois, M.-H.; Guyonnet-Dupérat, A.; Phoeung, T.; Xie, X.Y.; Cartwright, A.; White, N.; Gomes, M.; Gaudin, K. Development of Rectodispersible Tablets and Granulate Capsules for the Treatment of Serious Neonatal Sepsis in Developing Countries. J. Pharm. Sci. 2019, 108, 2805–2813. [Google Scholar] [CrossRef] [PubMed]
- Nuthanakanti, A. Cytidine and ribothymidine nucleolipids synthesis, organogelation, and selective anion and metal ion responsiveness. New J. Chem. 2019, 43, 13447–13456. [Google Scholar] [CrossRef]
- Wang, H.; Meng, J.; Jia, M.; Ma, X.; He, G.; Yu, J.; Wang, R.; Bai, H.; Hou, Z.; Luo, X. oprM as a new target for reversion of multidrug resistance in Pseudomonas aeruginosa by antisense phosphorothioate oligodeoxynucleotides. FEMS Immunol. Med. Microbiol. 2010, 60, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Bai, H.; Jia, M.; Ma, X.; Hou, Z.; Xue, X.; Zhou, Y.; Luo, X. Restoration of antibiotic susceptibility in fluoroquinolone-resistant Escherichia coli by targeting acrB with antisense phosphorothioate oligonucleotide encapsulated in novel anion liposome. J. Antibiot. (Tokyo) 2012, 65, 129–134. [Google Scholar] [CrossRef] [PubMed]
Weight Ratio CFX–DOTAU | Molar Ratio CFX–DOTAU | Ion Pair Yield (%) |
---|---|---|
1:1 | 1.3:1 | 68.9 ± 5.0 |
1:1.3 | 1:1 | 80.4 ± 3.7 |
1.9:1 | 2.3:1 | 32.6 ± 3.2 |
Chemical Group Considered | DOTAU (cm−1) | CFX (cm−1) | Ion Pair (cm−1) |
---|---|---|---|
C=N—OCH3 | 1533 | 1536 | |
C=N—OCH3 | 1533 | 1536 | |
C=N | 1498 | 1500 | |
C=N | 1602 | 1602 | |
N-(C=O)-N | 1690 | 1690 | |
CH2 | 1462 | 1464 | |
CH3 | 1380 | 1382 |
V Methanol (µL) | V Water (mL) | Size ± SD (nm) | ZP ± SD (mV) | PDI ± SD | NP Yield (%) |
---|---|---|---|---|---|
300 | 10 | 150.1 ± 1.0 | 44.5 ± 6.5 | 0.141 ± 0.010 | 64 |
500 | 10 | 123.3 ± 0.7 | 39.4 ± 3.9 | 0.169 ± 0.004 | 64 |
300 | 5 | 137.4 ± 2.3 | 34.7 ± 1.3 | 0.127 ± 0.010 | 57 |
Formulation | Mean Size ± SD (nm) | Mean PDI ± SD | Mean Zeta ± SD (mV) |
---|---|---|---|
CFX–DOTAU NP | 157.6 ± 7.6 | 0.160 ± 0.050 | 35.9 ± 3.0 |
ONα NP | 187.1 ± 21.1 | 0.191 ± 0.065 | −45.8 ± 11.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, P.V.; Aubry, C.; Boudaoud, N.; Gaubert, A.; Langlois, M.-H.; Marchivie, M.; Gaudin, K.; Arpin, C.; Barthélémy, P.; Kauss, T. Oligonucleotide Solid Nucleolipid Nanoparticles against Antibiotic Resistance of ESBL-Producing Bacteria. Pharmaceutics 2022, 14, 299. https://doi.org/10.3390/pharmaceutics14020299
Nguyen PV, Aubry C, Boudaoud N, Gaubert A, Langlois M-H, Marchivie M, Gaudin K, Arpin C, Barthélémy P, Kauss T. Oligonucleotide Solid Nucleolipid Nanoparticles against Antibiotic Resistance of ESBL-Producing Bacteria. Pharmaceutics. 2022; 14(2):299. https://doi.org/10.3390/pharmaceutics14020299
Chicago/Turabian StyleNguyen, Phuoc Vinh, Clémentine Aubry, Narimane Boudaoud, Alexandra Gaubert, Marie-Hélène Langlois, Mathieu Marchivie, Karen Gaudin, Corinne Arpin, Philippe Barthélémy, and Tina Kauss. 2022. "Oligonucleotide Solid Nucleolipid Nanoparticles against Antibiotic Resistance of ESBL-Producing Bacteria" Pharmaceutics 14, no. 2: 299. https://doi.org/10.3390/pharmaceutics14020299
APA StyleNguyen, P. V., Aubry, C., Boudaoud, N., Gaubert, A., Langlois, M.-H., Marchivie, M., Gaudin, K., Arpin, C., Barthélémy, P., & Kauss, T. (2022). Oligonucleotide Solid Nucleolipid Nanoparticles against Antibiotic Resistance of ESBL-Producing Bacteria. Pharmaceutics, 14(2), 299. https://doi.org/10.3390/pharmaceutics14020299