Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems
Abstract
:1. Introduction
2. Herbal Medicinal Compounds
3. Nanoemulsions of Essential Oils
3.1. Isolated Components of Essential Oils
3.2. Essential Oils and Plant Extracts
4. Essential Oils Encapsulated in Liposomes
4.1. Isolated Components of Essential Oils
4.2. Essential Oils and Plant Extracts
5. Essential Oils Encapsulated in Solid Lipid Nanoparticles
5.1. Isolated Components of Essential Oils
5.2. Essential Oils and Plant Extracts
6. Essential Oils Encapsulated in Nanostructured Lipid Carriers
6.1. Isolated Components of Essential Oils
6.2. Essential Oils
7. Essential Oils and Their Components with Anticancer Activity
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wermuth, C.; Aldous, D.; Raboisson, P.; Rognan, D. The Practice of Medicinal Chemistry, 4th ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Blass, B. Basic Principles of Drug Discovery and Development, 2nd ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, Netherlands, 2021. [Google Scholar]
- Jampilek, J.; Dolezal, M.; Opletalova, V.; Hartl, J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006, 13, 117–129. [Google Scholar] [CrossRef]
- Jampilek, J. Design and discovery of new antibacterial agents: Advances, perspectives, challenges. Curr. Med. Chem. 2018, 25, 4972–5006. [Google Scholar] [CrossRef]
- Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.F.; Zhong, W.Z. Drug design and discovery: Principles and applications. Molecules 2017, 22, 279. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J. Drug repurposing to overcome microbial resistance. Drug Discov. Today 2022, 27, 2028–2041. [Google Scholar] [CrossRef]
- Plackett, B. Why big pharma has abandoned antibiotics. Nature 2020, 586, 50–52. [Google Scholar] [CrossRef]
- Kerns, E.H.; Di, L. Drug-Like Properties: Concepts, Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Culen, M.; Rezacova, A.; Jampilek, J.; Dohnal, J. Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small intestine. J. Pharm. Sci. 2013, 102, 2995–3017. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; The International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Jampilek, J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014, 21, 4347–4373. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J. Design of antimalarial agents based on natural products. Curr. Org. Chem. 2017, 21, 1824–1846. [Google Scholar] [CrossRef]
- Kushkevych, I.; Kollar, P.; Ferreira, A.L.; Palma, D.; Duarte, A.; Lopes, M.M.; Bartos, M.; Pauk, K.; Imramovsky, A.; Jampilek, J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016, 14, 125–130. [Google Scholar] [CrossRef]
- Pospisilova, S.; Kos, J.; Michnova, H.; Kapustikova, I.; Strharsky, T.; Oravec, M.; Moricz, A.M.; Bakonyi, J.; Kauerova, T.; Kollar, P.; et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018, 19, 2318. [Google Scholar] [CrossRef] [Green Version]
- Kralova, K.; Jampilek, J. Responses of medicinal and aromatic plants to engineered nanoparticles. Appl. Sci. 2021, 11, 1813. [Google Scholar] [CrossRef]
- Lu, F.; Wang, D.; Li, R.L.; He, L.Y.; Ai, L.; Wu, C.J. Current strategies and technologies for finding drug targets of active components from traditional Chinese medicine. Front. Biosci. 2021, 26, 572–589. [Google Scholar]
- Khan, A.W.; Farooq, M.; Haseeb, M.; Choi, S. Role of plant-derived active constituents in cancer treatment and their mechanisms of action. Cells 2022, 11, 1326. [Google Scholar] [CrossRef]
- Cernikova, A.; Jampilek, J. Structure modification of drugs influencing their bioavailability and therapeutic effect. Chem. Listy 2014, 108, 7–16. [Google Scholar]
- Fahr, A. Voigt’s Pharmaceutical Technology, 12th ed.; John Wiley & Sons: New York, NY, USA, 2018. [Google Scholar]
- Williams, R.O.; Taft, D.R.; McConville, J.T. Advanced Drug Formulation Design to Optimize Therapeutic Outcomes; Informa Healtcare: New York, NY, USA, 2008. [Google Scholar]
- Vargason, A.M.; Anselmo, A.C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021, 5, 951–967. [Google Scholar] [CrossRef] [PubMed]
- Varban, D.; Zahan, M.; Pop, C.R.; Socaci, S.; Stefan, R.; Crisan, I.; Bota, L.E.; Miclea, I.; Musca, A.S.; Deac, A.M.; et al. Physicochemical characterization and prospecting biological activity of some authentic transylvanian essential oils: Lavender, sage and basil. Metabolites 2022, 12, 962. [Google Scholar] [CrossRef]
- Semeniuc, C.A.; Socaciu, M.-I.; Socaci, S.A.; Mureșan, V.; Fogarasi, M.; Rotar, A.M. Chemometric comparison and classification of some essential oils extracted from plants belonging to Apiaceae and Lamiaceae families based on their chemical composition and biological activities. Molecules 2018, 23, 2261. [Google Scholar] [CrossRef] [Green Version]
- Murarikova, A.; Tazky, A.; Neugebauerova, J.; Plankova, A.; Jampilek, J.; Mucaji, P.; Mikus, P. Characterization of essential oil composition in different basil species and pot cultures by a GC-MS method. Molecules 2017, 22, 1221. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A.K. Essential Oils and their application in food safety. Front. Sustain. Food Syst. 2021, 5, 653420. [Google Scholar] [CrossRef]
- Demetzos, C. Pharmaceutical Nanotechnology, Fundamentals and Practical Applications; Springer: Singapore, 2016. [Google Scholar]
- Placha, D.; Jampilek, J. Graphenic materials for biomedical applications. Nanomaterials 2019, 9, 1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jampilek, J.; Kralova, K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials 2021, 14, 1059. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J.; Kralova, K. Advances in biologically applicable graphene-based 2D nanomaterials. Int. J. Mol. Sci. 2022, 23, 6253. [Google Scholar] [CrossRef]
- El-Sayed, A.; Kamel, M. Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. 2020, 27, 19200–19213. [Google Scholar] [CrossRef]
- Kher, C.; Kumar, S. The application of nanotechnology and nanomaterials in cancer diagnosis and treatment: A review. Cureus 2022, 14, 29059. [Google Scholar] [CrossRef]
- National Nanotechnology Initiative. Available online: www.nano.gov (accessed on 18 October 2022).
- European Commission. Definition of a Nanomaterial. Available online: http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm (accessed on 18 October 2022).
- Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm, J. 2018, 26, 64–70. [Google Scholar] [CrossRef]
- Verma, V.; Ryan, K.M.; Padrela, L. Production and isolation of pharmaceutical drug nanoparticles. Int. J. Pharm. 2021, 603, 120708. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Mazdaei, M.; Asare-Addo, K. A mini-review of nanocarriers in drug delivery systems. Br. J. Pharm. 2022, 7, 780. [Google Scholar] [CrossRef]
- Nanotechnology—New Name—Old Science. Lubrizol Life Science: Cleveland, OH, USA. 2020. Available online: https://lubrizolcdmo.com/technical-briefs/nanotechnology-new-name-old-science (accessed on 18 October 2022).
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef] [Green Version]
- Torchilin, V. Handbook of Materials for Nanomedicine: Metal-Based and Other Nanomaterials; Jenny Stanford Publishing: Singapore; Taylor and Francis: Singapore, 2020. [Google Scholar]
- Torchilin, V. Handbook of Materials for Nanomedicine: Polymeric Nanoparticles; Jenny Stanford Publishing: Singapore; Taylor and Francis: Singapore, 2020. [Google Scholar]
- Vaculikova, E.; Grunwaldova, V.; Kral, V.; Dohnal, J.; Jampilek, J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules 2012, 17, 13221–13234. [Google Scholar] [CrossRef]
- Jampilek, J.; Kos, J.; Kralova, K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials 2019, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Jampilek, J.; Kralova, K. Potential of nanonutraceuticals in increasing immunity. Nanomaterials 2020, 10, 2224. [Google Scholar] [CrossRef]
- Placha, D.; Jampilek, J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics 2021, 13, 642019. [Google Scholar] [CrossRef]
- Jampilek, J.; Placha, D. Advances in use of nanomaterials for musculoskeletal regeneration. Pharmaceutics 2021, 13, 1994. [Google Scholar] [CrossRef]
- Jampilek, J.; Kralova, K. Advances in nanostructures for antimicrobial therapy. Materials 2022, 15, 2388. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J.; Kralova, K.; Campos, E.V.R.; Fraceto, L.F. Bio-based nanoemulsion formulations applicable in agriculture, medicine and food industry. In Nanobiotechnology in Bioformulations; Prasad, R., Kumar, V., Kumar, M., Choudhary, D.K., Eds.; Springer: Cham, Germany, 2019; pp. 33–84. [Google Scholar]
- Jampilek, J.; Kralova, K. Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In Nanobiomaterials: Applications in Drug Delivery; Sharma, A.K., Keservani, R.K., Kesharwani, R.K., Eds.; CRC Press: Warentown, NJ, USA, 2018; pp. 131–208. [Google Scholar]
- Jampilek, J.; Kralova, K. Natural biopolymeric nanoformulations for brain drug delivery. In Nanocarriers for Brain Targetting: Principles and Applications; Keservani, R.K., Sharma, A.K., Kesharwani, R.K., Eds.; Apple Academic Press: Warentown, NJ, USA; CRC Press: Warentown, NJ, USA, 2019; pp. 131–203. [Google Scholar]
- Besseling, R.; Arribas-Bueno, R.; Damen, M.; Wijgergangs, J.; Hermes, M.; Gerich, A. Lipid-Based Nanoparticles: Manufacturing and Inline Size Characterization. AzoNano. 2021. Available online: https://www.azonano.com/article.aspx?ArticleID=5646 (accessed on 6 November 2022).
- Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm. 2017, 6, 37–56. [Google Scholar] [CrossRef]
- Musielak, E.; Feliczak-Guzik, A.; Nowak, I. Synthesis and potential applications of lipid nanoparticles in medicine. Materials 2022, 15, 682. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, G.; Shaik, A.A.; Kulkarni, N.S.; Gupta, V. The preparation of lipid-based drug delivery system using melt extrusion. Drug Discov. Today. 2020, 25, 1930–1943. [Google Scholar] [CrossRef] [PubMed]
- Duong, V.A.; Nguyen, T.T.L.; Maeng, H.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules 2020, 25, 4781. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.X. Lipid nanoparticles for drug delivery. Adv. Biomed. Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Carvalho, B.G.; Ceccato, B.T.; Michelon, M.; Han, S.W.; de la Torre, L.G. Advanced microfluidic technologies for lipid nano-microsystems from synthesis to biological application. Pharmaceutics 2022, 14, 141. [Google Scholar] [CrossRef]
- Matsuura-Sawada, Y.; Maeki, M.; Nishioka, T.; Niwa, A.; Yamauchi, J.; Mizoguchi, M.; Wada, K.; Tokeshi, M. Microfluidic device-enabled mass production of lipid-based nanoparticles for applications in nanomedicine and cosmetics. ACS Appl. Nano Mater. 2022, 5, 7867–7876. [Google Scholar] [CrossRef]
- Junnuthula, V.; Kolimi, P.; Nyavanandi, D.; Sampathi, S.; Vora, L.K.; Dyawanapelly, S. Polymeric Micelles for Breast Cancer Therapy: Recent Updates, Clinical Translation and Regulatory Considerations. Pharmaceutics 2022, 14, 1860. [Google Scholar] [CrossRef]
- Leong, E.W.X.; Ge, R. Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines 2022, 10, 2179. [Google Scholar] [CrossRef]
- Matei, A.M.; Caruntu, C.; Tampa, M.; Georgescu, S.R.; Matei, C.; Constantin, M.M.; Constantin, T.V.; Calina, D.; Ciubotaru, D.A.; Badarau, I.A.; et al. Applications of nanosized-lipid-based drug delivery systems in wound care. Appl. Sci. 2021, 11, 4915. [Google Scholar] [CrossRef]
- Boyuklieva, R.; Pilicheva, B. Micro- and nanosized carriers for nose-to-brain drug delivery in neurodegenerative disorders. Biomedicines 2022, 10, 1706. [Google Scholar] [CrossRef]
- Su, S.; Kang, P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics 2020, 12, 837. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Smith, Z.L.; Wang, Y.; Butterworth, S.; Tirella, A. Sustained drug release from smart nanoparticles in cancer therapy: A Comprehensive review. Micromachines 2022, 13, 1623. [Google Scholar] [CrossRef]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef] [Green Version]
- Halwani, A.A. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022, 14, 106. [Google Scholar] [CrossRef]
- Jampilek, J.; Kralova, K. Green and food-grade nanoemulsion: A novel nutraceutical and phytochemical delivery concept. In Bio-based Nano-emulsions for Agri-Food Applications; Abd-Elsalam, K.A., Murugan, K., Eds.; Elsevier: Amsterdam, Netherlands, 2022; pp. 15–46. [Google Scholar]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Osbourn, A.E.; Lanzotti, V. Plant-derived Natural Products: Synthesis, Function, and Application; Springer: New York, NY, USA, 2009. [Google Scholar]
- Sarker, S.; Nahar, L. Medicinal Natural Products: A Disease-Focused Approach; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Health Benefits of Essential Oils. Available online: https://www.webmd.com/diet/health-benefits-essential-oils#1 (accessed on 5 November 2022).
- Agatonovic-Kustrin, S.; Kustrin, E.; Morton, D.W. Essential oils and functional herbs for healthy aging. Neural Regen Res. 2019, 14, 441–445. [Google Scholar] [CrossRef]
- Blowman, K.; Magalhaes, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer properties of essential oils and other natural products. Evid. Based Complement. Alternat. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef]
- National Institutes of Health; National Cancer Institute. Aromatherapy With Essential Oils (PDQ®)–Health Professional Version. Available online: https://www.cancer.gov/about-cancer/treatment/cam/hp/aromatherapy-pdq (accessed on 5 November 2022).
- Elkordy, A.A.; Haj-Ahmad, R.R.; Awaad, A.S.; Zaki, R.M. An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. J. Drug Deliv. Sci. Technol. 2021, 63, 102459. [Google Scholar] [CrossRef]
- Severino, P.; Andreani, T.; Chaud, M.V.; Benites, C.I.; Pinho, S.C.; Souto, E.B. Essential oils as active ingredients of lipid nanocarriers for chemotherapeutic use. Curr. Pharm. Biotechnol. 2015, 16, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mirza, M.A.; Naseef, P.P.; Kuruniyan, M.S.; Zakir, F.; Aggarwal, G. Exploring the potential of natural product-based nanomedicine for maintaining oral health. Molecules 2022, 27, 1725. [Google Scholar] [CrossRef]
- Silva, B.I.M.; Nascimento, E.A.; Silva, C.J.; Silva, T.G.; Aguiar, J.S. Anticancer activity of monoterpenes: A systematic review. Mol. Biol. Rep. 2021, 48, 5775–5785. [Google Scholar] [CrossRef]
- Baena-Aristizabal, C.M.; Mora-Huertas, C.E. Micro, nano and molecular novel delivery systems as carriers for herbal materials. J. Colloid Sci. Biotechnol. 2013, 2, 263–297. [Google Scholar] [CrossRef]
- Verma, M.; Deep, A.; Nandal, R.; Shinmar, P.; Kaushik, D. Novel drug delivery system for cancer management: A review. Curr. Cancer Ther. Rev. 2016, 12, 253–272. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Sadeer, N.; Edoo, M.; Venugopala, K.N. The potential application of novel drug delivery systems for phytopharmaceuticals and natural extracts current status and future perspectives. Mini Rev. Med. Chem. 2021, 21, 2729–2744. [Google Scholar] [CrossRef] [PubMed]
- Solans, C.; Izquierdo, P.; Nolla, J.; Garcia-Celma, A.M.J. Nano-emulsions. Curr. Opin. Colloid. Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Shah, P.; Bhalodia, D.; Shelat, P. Nanoemulsion: A pharmaceutical review. Sys. Rev. Pharm. 2010, 1, 24–32. [Google Scholar] [CrossRef]
- Becher, P. Emulsions: Theory and Practice, 3rd ed.; American Chemical Society: Washington, DC, USA, 2001. [Google Scholar]
- Slomkowski, S.; Aleman, J.V.; Gilbert, R.G.; Hess, M.; Horie, K.; Jones, R.G.; Kubisa, P.; Meisel, I.; Mormann, W.; Penczek, S.; et al. Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 2229–2259. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Filho, J.G.; Miranda, M.; Ferreira, M.D.; Plotto, A. Nanoemulsions as edible coatings: A potential strategy for fresh fruits and vegetables preservation. Foods 2021, 10, 2438. [Google Scholar] [CrossRef] [PubMed]
- AbouAitah, K.; Lojkowski, W. Nanomedicine as an emerging technology to foster application of essential oils to fight cancer. Pharmaceuticals 2022, 15, 793. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar] [CrossRef]
- Wilson, R.J.; Li, Y.; Yang, G.; Zhao, C.X. Nanoemulsions for drug delivery. Particuology 2022, 64, 85–97. [Google Scholar] [CrossRef]
- Tayeb, H.H.; Sainsbury, F. Nanoemulsions in drug delivery: Formulation to medical application. Nanomedicine 2018, 13, 2507–2525. [Google Scholar] [CrossRef]
- Patel, J.K.; Pathak, Y.V. Emerging Technologies for Nanoparticle Manufacturing; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Garcia, C.R.; Malik, M.H.; Biswas, S.; Tam, V.H.; Rumbaugh, K.P.; Li, W.; Liu, X.L. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater. Sci. 2022, 10, 633–653. [Google Scholar] [CrossRef]
- Saha, S.; D’souza, D.; Londhe, V.Y. Exploring the concepts of various nano-formulations loaded with herbal drugs moieties against breast cancer using PRISMA analysis. J. Drug Deliv. Sci. Technol. 2021, 66, 102865. [Google Scholar] [CrossRef]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 2019, 6, 26. [Google Scholar] [CrossRef]
- Khan, I.; Bahuguna, A.; Kumar, P.; Bajpai, V.K.; Kang, S.C. In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci. Rep. 2018, 8, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragab, T.I.M.; Zoheir, K.M.A.; Mohamed, N.A.; El Gendy, A.G.; Abd-ElGawad, A.M.; Abdelhameed, M.F.; Farrag, A.R.H.; Elshamy, A.I. Cytoprotective potentialities of carvacrol and its nanoemulsion against cisplatin-induced nephrotoxicity in rats: Development of nano-encapsulation form. Heliyon 2022, 8, e09198. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Bahuguna, A.; Bhardwaj, M.; Khaket, T.P.; Kang, S.C. Carvacrol nanoemulsion evokes cell cycle arrest, apoptosis induction and autophagy inhibition in doxorubicin resistant-A549 cell line. Artif. Cells Nanomed. Biotechnol. 2018, 46, 664–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhavan-Mahdavi, S.; Sadeghi, R.; Esfanjani, A.F.; Hedayati, S.; Shaddel, R.; Dima, C.; Malekjani, N.; Boostani, S.; Jafari, S.M. Nanodelivery systems for d-limonene; techniques and applications. Food Chem. 2022, 384, 132479. [Google Scholar] [CrossRef] [PubMed]
- Alhakamy, N.A.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Aldawsari, H.M.; Okbazghi, S.Z.; Alfaleh, M.A.; Abdulaal, W.H.; Neamatallah, T.; Al-hejaili, O.D.; Fahmy, U.A. Green nanoemulsion stabilized by in situ self-assembled natural oil/native cyclodextrin complexes: An eco-friendly approach for enhancing anticancer activity of costunolide against lung cancer cells. Pharmaceutics 2022, 14, 227. [Google Scholar] [CrossRef]
- Alghamdi, R.S.; Alkhatib, M.H.; Balamash, K.S.; Khojah, S.M. Apoptotic effect of bleomycin formulated in cinnamon oil nanoemulsion on HeLa cervical cancer cells. Asian J. Pharm. Sci. 2020, 14, 356–361. [Google Scholar]
- AlMotwaa, S.M.; Alkhatib, M.H.; Alkreathy, H.M. Nanoemulsion-based camphor oil carrying ifosfamide: Preparation, characterization, and in-vitro evaluation in cancer cells. Int. J. Pharm. Sci. Rev. Res. 2019, 10, 2018–2026. [Google Scholar]
- Khatamian, N.; Tabrizi, M.H.; Ardalan, P.; Yadamani, S.; Maragheh, A.D. Synthesis of Carum carvi essential oil nanoemulsion, the cytotoxic effect, and expression of caspase 3 gene. J. Food Biochem. 2019, 43, e12956. [Google Scholar] [CrossRef]
- Nirmala, M.J.; Durai, L.; Rao, K.A.; Nagarajan, R. Ultrasonic nanoemulsification of Cuminum cyminum essential oil and its applications in medicine. Int. J. Nanomed. 2020, 15, 795–807. [Google Scholar] [CrossRef] [Green Version]
- Asgari, H.T.; Es-haghi, A.; Karimi, E. Anti-angiogenic, antibacterial, and antioxidant activities of nanoemulsions synthesized by Cuminum cyminum L. tinctures. J. Food Meas. Charact. 2021, 15, 3649–3659. [Google Scholar] [CrossRef]
- Afshari, H.S.T.; Tabrizi, M.H.; Ardalan, T.; Anoushirvani, N.J.; Mahdizadeh, R. Anethum graveolens essential oil nanoemulsions (AGEO-NE) as an exclusive apoptotic inducer in human lung adenocarcinoma (A549) cells. Nutr. Cancer 2022, 74, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Issa, L.; Al-Kharouf, O.; Jaber, R.; Hreash, F. Development of Coriandrum sativum oil nanoemulgel and evaluation of its antimicrobial and anticancer activity. Biomed. Res. Int. 2021, 2021, 5247816. [Google Scholar] [CrossRef] [PubMed]
- Azani, H.; Tabrizi, M.H.; Neamati, A.; Khadem, F.; Khatamian, N. The Ferula assa-foetida essential oil nanoemulsion (FAEO-NE) as the selective, apoptotic, and anti-angiogenic anticancer compound in human MCF-7 breast cancer cells and murine mammary tumor models. Nutr. Cancer 2021, 74, 2196–2206. [Google Scholar] [CrossRef] [PubMed]
- Nosrat, T.; Tabrizi, M.H.; Etminan, A.; Irani, M.; Zarei, B.; Rahmati, A. In vitro and in vivo anticancer activity of Ferula gummosa essential oil nanoemulsions (FGEO-NE) for the colon cancer treatment. J. Polym. Environ. 2022, 30, 4166–4177. [Google Scholar] [CrossRef]
- Bashlouei, S.G.; Karimi, E.; Zareian, M.; Oskoueian, E.; Shakeri, M. Heracleum persicum essential oil nanoemulsion: A nanocarrier system for the delivery of promising anticancer and antioxidant bioactive agents. Antioxidants 2022, 11, 831. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, M.J.; Durai, L.; Gopakunnar, V.; Nagarajan, R. Preparation of celery essential oil-based nanoemulsion by ultrasonication and evaluation of its potential anticancer and antibacterial activity. Int. J. Nanomed. 2020, 15, 7651–7666. [Google Scholar] [CrossRef]
- Perumalsamy, H.; Shanmugam, R.; Kim, J.R.; Anandapadmanaban, G.; Huq, M.A.; Dua, K.; Chellappan, D.K.; Yoon, T.H.; Balusamy, S.R. Nanoemulsion and encapsulation strategy of hydrophobic oregano essential oil increased human prostate cancer cell death via apoptosis by attenuating lipid metabolism. Bioinorg. Chem. Appl. 2022, 2022, 9569226. [Google Scholar] [CrossRef]
- Ali, H.; Al-Khalifa, A.R.; Aouf, A.; Boukhebti, H.; Farouk, A. Effect of nanoencapsulation on volatile constituents, and antioxidant and anticancer activities of Algerian Origanum glandulosum Desf. essential oil. Sci. Rep. 2020, 10, 2812. [Google Scholar] [CrossRef] [Green Version]
- Abedinpour, N.; Ghanbariasad, A.; Taghinezhad, A.; Osanloo, M. Preparation of nanoemulsions of Mentha piperita essential oil and investigation of their cytotoxic effect on human breast cancer lines. Bionanoscience 2021, 11, 428–436. [Google Scholar] [CrossRef]
- Nirmala, M.J.; Durai, L.; Anusha, G.S.; Nagarajan, R. Thyroid cancer cells and as an antibacterial agent in Staphylococcus aureus. Bionanoscience 2021, 11, 1017–1029. [Google Scholar] [CrossRef]
- Tubtimsri, S.; Limmatvapirat, C.; Limsirichaikul, S.; Akkaramongkolporn, P.; Inoue, Y.; Limmatvapirat, S. Fabrication and characterization of spearmint oil loaded nanoemulsions as cytotoxic agents against oral cancer cell. Asian J. Pharm. Sci. 2018, 13, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Ovidi, E.; Masci, V.L.; Taddei, A.R.; Paolicelli, P.; Petralito, S.; Trilli, J.; Mastrogiovanni, F.; Tiezzi, A.; Casadei, M.A.; Giacomello, P.; et al. Chemical investigation and screening of anti-proliferative activity on human cell lines of pure and nano-formulated lavandin essential oil. Pharmaceuticals 2020, 13, 352. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F.; Jamali, T.; Kavoosi, G.; Ardestani, S.K.; Vahdati, S.N. Stabilization of Zataria essential oil with pectin-based nanoemulsion for enhanced cytotoxicity in monolayer and spheroid drug-resistant breast cancer cell cultures and deciphering its binding mode with gDNA. Int. J. Biol. Macromol. 2020, 164, 3645–3655. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F.; Behboudi, H.; Salehi, E.; Ardestani, S.K.; Piroozmand, F.; Kavoosi, G. Apple pectin-based Zataria multiflora essential oil (ZEO) nanoemulsion: An approach to enhance ZEO DNA damage induction in breast cancer cells as in vitro and in silico studies reveal. Front. Pharmacol. 2022, 13, 946161. [Google Scholar] [CrossRef]
- Aouf, A.; Ali, H.; Al-Khalifa, A.R.; Mahmoud, K.F.; Farouk, A. Influence of nanoencapsulation using high-pressure homogenization on the volatile constituents and anticancer and antioxidant activities of Algerian Saccocalyx satureioides Coss. et Durieu. Molecules 2020, 25, 4756. [Google Scholar] [CrossRef]
- Al-Otaibi, W.A.; AlMotwaa, S.M. Oxaliplatin-loaded nanoemulsion containing Teucrium polium L. essential oil induces apoptosis in colon cancer cell lines through ROS-mediated pathway. Drug Deliv. 2022, 29, 2190–2205. [Google Scholar] [CrossRef]
- Furtado, C.D.M.; de Faria, F.S.E.V.; Azevedo, R.B.; Py-Daniel, K.; Camara, A.L.D.; da Silva, J.R.; Oliveira, E.D.; Rodriguez, A.F.R.; Degterev, I.A. Tectona grandis leaf extract, free and associated with nanoemulsions, as a possible photosensitizer of mouse melanoma B16 cell. J. Photochem. Photobiol. B Biol. 2017, 167, 242–248. [Google Scholar] [CrossRef]
- Mansour, K.A.; El-Neketi, M.; Lahloub, M.F.; Elbermawi, A. An approach to enhance their cytotoxic and antiviral effects. Molecules 2022, 27, 3639. [Google Scholar] [CrossRef]
- AlMotwaa, S.M.; Al-Otaibi, W.A. Formulation design, statistical optimization and in vitro biological activities of nano-emulsion containing essential oil from cotton-lavender (Santolina chamaecyparissus L.). J. Drug Deliv. Sci. Technol. 2022, 75, 103664. [Google Scholar] [CrossRef]
- AlMotwaa, S.M.; Al-Otaibi, W.A. Gemcitabine-loaded nanocarrier of essential oil from Pulicaria crispa: Preparation, optimization, and in vitro evaluation of anticancer activity. Pharmaceutics 2022, 14, 1336. [Google Scholar] [CrossRef]
- Keykhasalar, R.; Tabrizi, M.H.; Ardalan, P.; Khatamian, N. The apoptotic, cytotoxic, and antiangiogenic impact of Linum usitatissimum seed essential oil nanoemulsions on the human ovarian cancer cell line A2780. Nutr. Cancer 2021, 73, 2388–2396. [Google Scholar] [CrossRef] [PubMed]
- Irani, M.; Tabrizi, M.H.; Ardalan, T.; Nosrat, T. Artemisia vulgaris essential oil nanoemulsions (AVEO-NE), a novel anti-angiogenic agent and safe apoptosis inducer in MCF-7 human cancer cells. Inorg. Nano-Met. Chem. 2022, 52, 417–428. [Google Scholar]
- Al Sarayrah, A.K.; Al Tarawneh, R.Z.; Nasr, M.; Ebada, S.S. Comparative study of the efficacy of different Artemisia cina extracts and their nanoparticulated forms against A549 lung cancer cell line. Pharm. Chem. J. 2020, 54, 938–942. [Google Scholar] [CrossRef]
- Roozitalab, G.; Yousefpoor, Y.; Abdollahi, A.; Safari, M.; Rasti, F.; Osanloo, M. Antioxidative, anticancer, and antibacterial activities of a nanoemulsion-based gel containing Myrtus communis L. essential oil. Chem. Pap. 2022, 76, 4261–4271. [Google Scholar] [CrossRef]
- Abadi, A.V.M.; Karimi, E.; Oskoueian, E.; Mohammad, G.R.K.S.; Shafaei, N. Chemical investigation and screening of anti-cancer potential of Syzygium aromaticum L. bud (clove) essential oil nanoemulsion. 3Biotech 2022, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, M.J.; Durai, L.; Gopakumar, V.; Nagarajan, R. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. Int. J. Nanomed. 2019, 14, 6439–6450. [Google Scholar] [CrossRef] [Green Version]
- Abd-Rabou, A.A.; Edris, A.E. Frankincense essential oil nanoemulsion specifically induces lung cancer apoptosis and inhibits survival pathways. Cancer Nanotechnol. 2022, 13, 22. [Google Scholar] [CrossRef]
- Panyajai, P.; Chueahongthong, F.; Viriyaadhammaa, N.; Nirachonkul, W.; Tima, S.; Chiampanichayakul, S.; Anuchapreeda, S.; Okonogi, S. Anticancer activity of Zingiber ottensii essential oil and its nanoformulations. PLoS ONE 2022, 17, e0262335. [Google Scholar] [CrossRef]
- Weerapol, Y.; Manmuan, S.; Chaothanaphat, N.; Okonogi, S.; Limmatvapirat, C.; Limmatvapirat, S.; Tubtimsri, S. Impact of fixed oil on Ostwald ripening of anti-oral cancer nanoemulsions loaded with Amomum kravanh essential oil. Pharmaceutics 2022, 14, 938. [Google Scholar] [CrossRef]
- Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem. 2016, 31, 449–455. [Google Scholar] [CrossRef]
- Abd-Rabou, A.A.; Edris, A.E. Cytotoxic, apoptotic, and genetic evaluations of Nigella sativa essential oil nanoemulsion against human hepatocellular carcinoma cell lines. Cancer Nanotechnol. 2021, 12, 28. [Google Scholar] [CrossRef]
- Tabassum, H.; Ahmad, I.Z. Evaluation of the anticancer activity of sprout extract-loaded nanoemulsion of N-sativa against hepatocellular carcinoma. J. Microencapsul. 2018, 35, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Arazmjoo, S.; Es-haghi, A.; Mahmoodzadeh, H. Evaluation of anti- cancer and antioxidant properties of nanoemulsions synthesized by Nigella sativa L. tincture. Nanomed J. 2021, 8, 57–64. [Google Scholar]
- Karkanrood, M.V.; Tabrizi, M.H.; Ardalan, T.; Soltani, M.; Khadem, F.; Nosrat, T.; Moeini, S. Pistacia atlantica fruit essential oil nanoemulsions (PAEO-NE), an effective antiangiogenic therapeutic and cell-dependent apoptosis inducer on A549 human lung cancer cells. Inorg. Nano-Met. Chem. 2022. [Google Scholar] [CrossRef]
- Khatamian, N.; Soltani, M.; Shadan, B.; Neamati, A.; Tabrizi, M.H.; Hormozi, B. Pinus morrisonicola needles essential oil nanoemulsions as a novel strong antioxidant and anticancer agent. Inorg. Nano-Met. 2022, 52, 253–261. [Google Scholar] [CrossRef]
- Navaei Shoorvarzi, S.; Shahraki, F.; Shafaei, N.; Karimi, E.; Oskoueian, E. Citrus aurantium L. bloom essential oil nanoemulsion: Synthesis, characterization, cytotoxicity, and its potential health impacts on mice. J. Food Biochem. 2020, 44, e13181. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.R.F.; Schuh, R.S.; Jacques, A.L.B.; Augustin, O.A.; Bordignon, S.A.L.; Dias, D.O.; Kelmann, R.G.; Koester, L.S.; Gehring, M.P.; Morrone, F.B. Citotoxic activity evaluation of essential oils and nanoemulsions of Drimys angustifolia and D. brasiliensis on human glioblastoma (U-138 MG) and human bladder carcinoma (T24) cell lines in vitro. Rev. Bras. Farmacogn. 2013, 23, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Javanshir, A.; Karimi, E.; Maragheh, A.D.; Tabrizi, M.H. The antioxidant and anticancer potential of Ricinus communis L. essential oil nanoemulsions. J. Food Meas. Charact. 2020, 14, 1356–1365. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Filipczak, N.; Pan, J.; Yalamarty, S.S.K.; Torchilin, V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22. [Google Scholar] [CrossRef]
- Andra, V.V.S.N.L.; Pammi, S.V.N.; Bhatraju, L.V.K.P.; Ruddaraju, L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience 2022, 12, 274–291. [Google Scholar] [CrossRef] [PubMed]
- Tatipamula, V.B.; Kukavica, B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem. Funct. 2021, 39, 926–944. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Vihol, D.; Mehta, B.; Shah, D.V.; Patel, M.; Vora, L.K.; Pereira-Silva, M.; Paiva-Santos, A.C. Phytochemical-loaded liposomes for anticancer therapy: An updated review. Nanomedicine 2022, 17, 547–568. [Google Scholar] [CrossRef] [PubMed]
- Jahadi, M.; Keighobadi, K.; Azimzadeh, B.; Keivani, H.; Khosravi-Darani, K. Liposomes as herbal compound carriers: An updated review. Curr. Nutr. Food Sci. 2021, 17, 790–797. [Google Scholar] [CrossRef]
- Ba, Z.Z.; Zheng, Y.P.; Zhang, H.; Sun, X.Y.; Lin, D.H. Potential anti-cancer activity of furanodiene. Chin. J. Cancer Res. 2009, 21, 154–158. [Google Scholar] [CrossRef]
- Han, N.; Shi, Q.; Wang, X.P.; Huang, X.Y.; Ruan, M.Y.; Ren, L.H.; Lang, X.X.; Wu, K.; Du, S.Y. Liposome co-loaded with beta-elemene and IR780 for combined chemo-phototherapy. J. Drug Deliv. Sci. Technol. 2022, 68, 103122. [Google Scholar] [CrossRef]
- Celia, C.; Trapasso, E.; Locatelli, M.; Navarra, M.; Ventura, C.A.; Wolfram, J.; Carafa, M.; Morittu, V.M.; Britti, D.; Di Marzio, L.; et al. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids Surf. B Biointerfaces. 2013, 112, 548–553. [Google Scholar] [CrossRef]
- Emtiazi, H.; Sharif, A.S.; Hemati, M.; Haghiralsadat, B.F.; Pardakhti, A. Comparative study of nano-liposome and nano-niosome for delivery of Achillea millefolium essential oils: Development, optimization, characterization and their cytotoxicity effects on cancer cell lines and antibacterial activity. Chem. Biodivers. 2022, 19, e202200397. [Google Scholar] [CrossRef]
- Kryeziu, T.L.; Haloci, E.; Loshaj-Shala, A.; Bagci, U.; Oral, A.; Stefkov, G.J.; Zimmer, A.; Basholli-Salihu, M. Nanoencapsulation of Origanum vulgare essential oil into liposomes with anticancer potential. Pharmazie 2022, 77, 172–178. [Google Scholar]
- Salari, S.; Salari, R. Nanoliposomal system of rosemary essential oil made by specific human cell phospholipids and evaluation of its anti-cancer properties. Appl. Nanosci. 2019, 9, 2085–2089. [Google Scholar] [CrossRef]
- Bohlooli, S.; Fathi, P. Nanoliposomal formulation of Agrostemma githago aqueous extract shows enhanced cytotoxic effect on gastric cancer cell line. Nanomed. J. 2015, 2, 21–28. [Google Scholar]
- Batool, S.; Asad, M.J.; Arshad, M.; Ahmed, W.; Sohail, M.F.; Abbasi, S.W.; Ahmad, S.; Saleem, R.S.Z.; Ahmed, M.S. In silico validation, fabrication and evaluation of nano-liposomes of Bistorta amplexicaulis extract for improved anticancer activity against hepatoma cell line (HepG2). Curr. Drug Deliv. 2021, 18, 910–922. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, Y.M.; Shi, L.; Wang, Z.R. Suppression of human hepatocellular cancer cell proliferation by Brucea javanica oil-loaded liposomes via induction of apoptosis. Arch. Med. Sci. 2015, 11, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Lazuardi, M.; Suharjomo, S.; Chien, C.H.; He, J.L.; Lee, C.W.; Peng, C.K.; Hermanto, B.; Sukmanadi, M.; Sugihartuti, R.; Maslachah, L. Encapsulation of progesterone-like compounds in 10% liposome increases their concentration in rats administered an injectable dosage form of these compounds. Kafkas Univ. Vet. Fak. Derg. 2022, 28, 27–34. [Google Scholar]
- Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics 2022, 14, 1886. [Google Scholar] [CrossRef]
- Muller, R.H.; Shegokar, R.; Keck, C.M. 20 Years of lipid nanoparticles (SLN & NLC): Present state of development & industrial applications. Curr. Drug Discov. Technol. 2011, 8, 207–227. [Google Scholar]
- Parhi, R.; Suresh, P. Preparation and characterization of solid lipid nanoparticles—A review. Curr. Drug Discov. Technol. 2012, 9, 2–16. [Google Scholar] [CrossRef]
- Gupta, S.; Tejavath, K.K. Nano phytoceuticals: A step forward in tracking down paths for therapy against pancreatic ductal adenocarcinoma. J. Clust. Sci. 2022. [Google Scholar] [CrossRef]
- Vergallo, C. Nutraceutical vegetable oil nanoformulations for prevention and management of diseases. Nanomaterials 2020, 10, 1232. [Google Scholar] [CrossRef]
- Yap, K.M.; Sekar, M.; Fuloria, S.; Wu, Y.S.; Gan, S.H.; Rani, N.N.I.M.; Subramaniyan, V.; Kokare, C.; Lum, P.T.; Begum, M.Y.; et al. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomed. 2021, 16, 7891–7941. [Google Scholar] [CrossRef]
- Ghiasi, F.; Eskandari, M.H.; Golmakani, M.T.; Gahruie, H.H.; Zarei, R.; Naghibalhossaini, F.; Hosseini, S.M.H. A novel promising delivery system for cuminaldehyde using gelled lipid nanoparticles: Characterization and anticancer, antioxidant, and antibacterial activities. Int. J. Pharm. 2021, 610, 121274. [Google Scholar] [CrossRef]
- Rodenak-Kladniew, B.; Islan, G.A.; de Bravo, M.G.; Duran, N.; Castro, G.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf. B Biointerfaces 2017, 154, 123–132. [Google Scholar] [CrossRef]
- Sharifalhoseini, M.; Es-Haghi, A.; Vaezi, G.; Shajiee, H. Biosynthesis and characterisation of solid lipid nanoparticles and investigation of toxicity against breast cancer cell line. IET Nanobiotechnol. 2021, 15, 654–663. [Google Scholar] [CrossRef]
- Khadem, F.S.; Es-Haghi, A.; Tabrizi, M.H.; Shabestarian, H. The loaded Ferula assa-foetida seed essential oil in solid lipid nanoparticles (FSEO-SLN) as the strong apoptosis inducer agents in human NTERA-2 embryocarcinoma cells. Mater. Technol. 2022, 37, 1120–1128. [Google Scholar] [CrossRef]
- Kelidari, H.R.; Alipanah, H.; Roozitalab, G.; Ebrahimi, M.; Osanloo, M. Anticancer effect of solid-lipid nanoparticles containing Mentha longifolia and Mentha pulegium essential oils: In vitro study on human melanoma and breast cancer cell lines. Biointerface Res. Appl. Chem. 2022, 12, 2128–2137. [Google Scholar]
- Valizadeh, A.; Khaleghi, A.A.; Roozitalab, G.; Osanloo, M. High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines. BMC Pharmacol. Toxicol. 2021, 22, 52. [Google Scholar] [CrossRef]
- Tabatabaeain, S.F.; Karimi, E.; Hashemi, M. Satureja khuzistanica essential oil-loaded solid lipid nanoparticles modified with chitosan-folate: Evaluation of encapsulation efficiency, cytotoxic and pro-apoptotic properties. Front. Chem. 2022, 10, 904973. [Google Scholar] [CrossRef]
- Dousti, M.; Sari, S.; Saffari, M.; Kelidari, H.; Asare-Addo, K.; Nokhodchi, A. Loading Pistacia atlantica essential oil in solid lipid nanoparticles and its effect on apoptosis of breast cancer cell line MDA-MB-231. Pharm Dev. Technol. 2022, 27, 63–71. [Google Scholar] [CrossRef]
- Das, S.; Ng, W.K.; Tan, R.B. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci. 2012, 47, 139–151. [Google Scholar] [CrossRef]
- van Gent, M.E.; Ali, M.; Nibbering, P.H.; Klodzinska, S.N. Current advances in lipid and polymeric antimicrobial peptide delivery systems and coatings for the prevention and treatment of bacterial infections. Pharmaceutics 2021, 13, 1840. [Google Scholar] [CrossRef]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, M.; Al-Sanea, M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J. 2021, 29, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol. 2013, 7, 41–55. [Google Scholar] [CrossRef]
- Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Samad, N.A.; Alitheen, N.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomed. 2020, 15, 2439–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izham, M.N.M.; Hussin, Y.; Rahim, N.F.C.; Aziz, M.N.M.; Yeap, S.K.; Rahman, H.S.; Masarudin, M.J.; Mohamad, N.E.; Abdullah, R.; Alitheen, N.B. Physicochemical characterization, cytotoxic effect and toxicity evaluation of nanostructured lipid carrier loaded with eucalyptol. BMC Complement. Med. Ther. 2021, 21, 254. [Google Scholar] [CrossRef]
- Geronimo, G.; da Silva, G.H.R.; de Moura, L.D.; Ribeiro, L.N.M.; Guilherme, V.A.; Mendonca, T.C.; Castro, S.R.; Breitkreitz, M.C.; de Paula, E. Development of S75:R25 bupivacaine-loaded lipid nanoparticles functionalized with essential oils for treating melanoma. J. Chem. Technol. Biotechnol. 2021, 96, 2197–2207. [Google Scholar] [CrossRef]
- Najjari, N.; Sari, S.; Saffari, M.; Kelidari, H.; Nokhodchi, A. Formulation optimization and characterization of Pistacia atlantica Desf. essential oil-loaded nanostructured lipid carriers on the proliferation of human breast cancer cell line SKBR3 (in vitro studies). J. Herb. Med. 2022, 36, 100600. [Google Scholar] [CrossRef]
Formulation | Plant EO or Constituent of EO | Tested Human Cancer Cell Lines | Refs. |
---|---|---|---|
NEs | carvacrol | lung adenocarcinoma A549 cells | [104] |
carvacrol | doxorubicin resistant-A549 cells | [106] | |
Carum carvi EO | HT-29 colorectal adenocarcinoma cells | [111] | |
Cuminum cyminum seed EO | SAS tongue carcinoma cells | [112] | |
Anethum graveolens EO | lung adenocarcinoma A549 cells | [114] | |
Ferula assa-foetida EO | MCF-7 breast cancer cells, mammary cancer tissue | [116] | |
Ferula gummosa EO | HT-29 colorectal adenocarcinoma cells | [117] | |
Heracleum persicum EO | MDA-MB-231 breast cancer cells | [118] | |
Apium graveolens EO | SAS tongue carcinoma cells | [119] | |
Origanum vulgare EO | PC3 prostate cancer cells | [120] | |
Origanum glandulosum Desf. EO | HepG2 liver cancer cells | [121] | |
Mentha piperita EO | MCF-7, MDA-MB-231, MDA-MB-468 breast cancer cells | [122] | |
Mentha arvensis EO | HTh-7 thyroid cancer cells | [123] | |
Mentha spicata EO | KON oral squamous carcinoma cells | [124] | |
Lavandin EO | MCF-7 breast cancer cells, CCRF-CEM lymphoblastic leukemia cells, Caco-2 colorectal adenocarcinoma cells | [125] | |
Zataria EO | MCF-7, MDA-MB-231 breast cancer cells | [126] | |
Zataria multiflora EO | MCF-7, MDA-MB-231 and T47D breast cancer cells | [127] | |
Saccocalyx satureioides Coss. et Durieu EO | HepG2 liver cancer cells | [128] | |
Teucrium polium L. EO | HCT 116 and HT-29 colorectal adenocarcinoma cells | [129] | |
Jasminum humile EO | HepG2 liver cancer cells, MCF-7 breast cancer cells | [131] | |
Jasminum grandiflorum EO | HepG2 liver cancer cells, MCF-7 breast cancer cells | [131] | |
Santolina chamaecyparissus EO | MCF-7 breast cancer cells, HepG2 liver cancer cells, Caco-2 colorectal adenocarcinoma cells | [132] | |
Pulicaria crispa EO | MCF-7 breast cancer cells, HepG2 liver cancer cells | [133] | |
Linum usitatissimum seed EO | A2780 ovarian cancer cells | [134] | |
Artemisia vulgaris EO | MCF-7 breast cancer cells | [135] | |
Artemisia cina EO | lung adenocarcinoma A549 cells | [136] | |
Myrtus communis EO | A-375 melanoma cells | [137] | |
Syzygium aromaticum EO | HT-29 colorectal adenocarcinoma cells | [138] | |
Syzygium aromaticum buds EO | HTh-7 thyroid cancer cells | [139] | |
frankincense resin | lung adenocarcinoma A549 cells | [140] | |
Zingiber ottensi EO | MCF-7 breast cancer cells | [141] | |
Nigella sativa EO | MCF-7 breast cancer cells. | [143] | |
Nigella sativa EO | HepG2 and Huh-7 liver cancer cells | [144] | |
Pistacia atlantica EO | lung adenocarcinoma A549 cells | [147] | |
Pinus morrisonicola needle EO | HT-29 colorectal adenocarcinoma cells | [148] | |
Citrus aurantium bloom EO | lung adenocarcinoma A549 cells | [149] | |
Drimys angustifolia EO | U-138 MG glioblastoma cells, T24 bladder carcinoma cells | [150] | |
Ricinus communis EO | HepG2 liver cancer cells | [151] | |
Liposomes | Curcuma wenyujin EO | HeLa cervical cancer cells, laryngocarcinoma Hep-2 cells, HL-60 promyelocytic leukemia cells, U251 human glioma cells | [158] |
Curcuma longa EO | Lewis lung cancer cells | [159] | |
Citrus bergamia EO | SH-SY5Y neuroblastoma cells | [160] | |
Achillea millefolium EOs | MCF-7 breast cancer cells | [161] | |
Origanum vulgare L. EO | MCF-7 breast cancer cells | [162] | |
Rosmarinus officinalis EO | MCF-7 breast cancer cells | [163] | |
Brucea javanica EO | HepG2 liver cancer cells | [166] | |
SLNPs | cuminaldehyde | lung adenocarcinoma A549 cells, HCT 116 colorectal adenocarcinoma cells | [174] |
linalool | HepG2 liver cancer cells, lung adenocarcinoma A549 cells | [175] | |
Foeniculum vulgare EO | MCF-7 breast cancer cells | [176] | |
Ferula assa-foetida seed EO | NTERA-2 embryocarcinoma cells | [177] | |
Mentha longifolia EO | MDA-MB-468 and MCF-7 breast cancer cells | [178] | |
Mentha pulegium EO | MDA-MB-468 and MCF-7 breast cancer cells | [178] | |
Zataria multiflora EO | MDA-MB-468 breast cancer cells, A-375 melanoma cells | [179] | |
Satureja khuzistanica EO | MCF-7 breast cancer cells | [180] | |
Pistacia atlantica EO | MDA-MB-231 breast cancer cells | [181] | |
NLCs | eucalyptol | MDA MB-231 breast cancer cells | [188] |
lavender EOs | SK-MEL-25 melanoma cells | [189] | |
Pistacia atlantica Desf EO | SK-BR-3 breast cancer cells | [190] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jampilek, J.; Kralova, K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022, 14, 2681. https://doi.org/10.3390/pharmaceutics14122681
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics. 2022; 14(12):2681. https://doi.org/10.3390/pharmaceutics14122681
Chicago/Turabian StyleJampilek, Josef, and Katarina Kralova. 2022. "Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems" Pharmaceutics 14, no. 12: 2681. https://doi.org/10.3390/pharmaceutics14122681