Selective Induction of Intrinsic Apoptosis in Retinoblastoma Cells by Novel Cationic Antimicrobial Dodecapeptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Peptides
2.2. Antimicrobial Properties of CAPs
2.3. Cell Culture
2.4. Generation of Multi-Cellular Tumor Spheroids of WERI-Rb1 Cells
2.5. Cell Viability Assays
- (a)
- Trypan blue viability assay:
- (b)
- MTS [3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] cell viability assay:
2.6. Annexin V/PI
2.7. High Content Imaging of Tumor Spheroids
2.8. Peptide/Drug Synergy Testing
2.9. Western Blot Analysis
2.10. Immunofluorescence Microscopy
2.11. Cytochrome C Release Assay
2.12. Statistical Analysis
3. Results
3.1. Design and Antimicrobial Screening of Novel CAPs
3.2. CAPs Display Anticancer Activities on Rb Cells
3.3. CAPs Reduce Rb Tumor Spheroid Assembly and Growth
3.4. CAPs Induce DNA Damage and Direct WERI-Rb1 Cells towards Apoptosis
3.5. CAPs Selectively Disrupt the Pro-Apoptotic and Anti-Apoptotic Balance in WERI-Rb1 Cells
3.6. CAPs Localize to Mitochondria of WERI-Rb1 Cells and Initiate Programmed Cell Death
3.7. CAPs Drive Apoptosis through the Intrinsic Pathway
3.8. CAPs Exhibit Synergism with Topotecan
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta 2006, 1758, 1184–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- Bobone, S.; Stella, L. Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. Adv. Exp. Med. Biol. 2019, 1117, 175–214. [Google Scholar] [PubMed]
- Zavascki, A.P.; Goldani, L.Z.; Li, J.; Nation, R.L. Polymyxin B for the treatment of multidrug-resistant pathogens: A critical review. J. Antimicrob. Chemother. 2007, 60, 1206–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogi, T.; Kita, K. Gramicidin S and polymyxins: The revival of cationic cyclic peptide antibiotics. Cell. Mol. Life Sci. CMLS 2009, 66, 3821–3826. [Google Scholar] [CrossRef] [PubMed]
- Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S.T.; Mixson, A.J. Peptide-based Antifungal Therapies against Emerging Infections. Drugs Future 2010, 35, 197. [Google Scholar] [CrossRef] [Green Version]
- Baxter, A.A.; Lay, F.T.; Poon, I.K.H.; Kvansakul, M.; Hulett, M.D. Tumor cell membrane-targeting cationic antimicrobial peptides: Novel insights into mechanisms of action and therapeutic prospects. Cell. Mol. Life Sci. CMLS 2017, 74, 3809–3825. [Google Scholar] [CrossRef]
- Chu, H.L.; Yip, B.S.; Chen, K.H.; Yu, H.Y.; Chih, Y.H.; Cheng, H.T.; Chou, Y.T.; Cheng, J.W. Novel antimicrobial peptides with high anticancer activity and selectivity. PLoS ONE 2015, 10, e0126390. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Aweya, J.J.; Zheng, L.; Zheng, Z.; Huang, H.; Wang, F.; Yao, D.; Ou, T.; Zhang, Y. LvHemB1, a novel cationic antimicrobial peptide derived from the hemocyanin of Litopenaeus vannamei, induces cancer cell death by targeting mitochondrial voltage-dependent anion channel 1. Cell Biol. Toxicol. 2021, 38, 87–110. [Google Scholar] [CrossRef]
- He, J.F.; Jin, D.X.; Luo, X.G.; Zhang, T.C. LHH1, a novel antimicrobial peptide with anti-cancer cell activity identified from Lactobacillus casei HZ1. AMB Express 2020, 10, 204. [Google Scholar] [CrossRef]
- Domalaon, R.; Findlay, B.; Ogunsina, M.; Arthur, G.; Schweizer, F. Ultrashort cationic lipopeptides and lipopeptides: Evaluation and mechanistic insights against epithelial cancer cells. Peptides 2016, 84, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Bremner, R.; Sage, J. Cancer: The origin of human retinoblastoma. Nature 2014, 514, 312–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabian, I.D.; Onadim, Z.; Karaa, E.; Duncan, C.; Chowdhury, T.; Scheimberg, I.; Ohnuma, S.I.; Reddy, M.A.; Sagoo, M.S. The management of retinoblastoma. Oncogene 2018, 37, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Khetan, V.; Gopal, L.; Shanmugam, M.P.; Gupta, A.; Sharma, T.; Bhende, P.; Muthukumar, S.; Subramaniam, R.; Kuppuswamy, T.; Saxena, S.K.; et al. Brachytherapy of intra ocular tumors using ‘BARC I-125 Ocu-Prosta seeds’: An Indian experience. Indian J. Ophthalmol. 2014, 62, 158–162. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kim, M.S.; Yoo, S.; Cho, C.; Ji, Y.; Kim, K.; Seo, Y.; Park, K.D.; Lee, J.; Lee, T.W. Long term follow-up results of external beam radiotherapy as primary treatment for retinoblastoma. J. Korean Med. Sci. 2010, 25, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Frenkel, S.; Weintraub, M.; Rot, I.; Shoshani, N.; Pe’er, J. Advances in the Treatment of Retinoblastoma at Hadassah in the Last Three Decades. Harefuah 2018, 157, 149–153. [Google Scholar]
- Mendoza, P.R.; Grossniklaus, H.E. Therapeutic Options for Retinoblastoma. Cancer Control J. Moffitt Cancer Cent. 2016, 23, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Shields, C.L.; Mashayekhi, A.; Cater, J.; Shelil, A.; Meadows, A.T.; Shields, J.A. Chemoreduction for retinoblastoma: Analysis of tumor control and risks for recurrence in 457 tumors. Trans. Am. Ophthalmol. Soc. 2004, 102, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Abramson, D.H.; Ji, X.; Francis, J.H.; Catalanotti, F.; Brodie, S.E.; Habib, L. Intravitreal chemotherapy in retinoblastoma: Expanded use beyond intravitreal seeds. Br. J. Ophthalmol. 2019, 103, 488–493. [Google Scholar] [CrossRef]
- Manjandavida, F.P.; Stathopoulos, C.; Zhang, J.; Honavar, S.G.; Shields, C.L. Intra-arterial chemotherapy in retinoblastoma-A paradigm change. Indian J. Ophthalmol. 2019, 67, 740–754. [Google Scholar] [CrossRef]
- Daniels, A.B.; Froehler, M.T.; Nunnally, A.H.; Pierce, J.M.; Bozic, I.; Stone, C.A.; Santapuram, P.R.; Tao, Y.K.; Boyd, K.L.; Himmel, L.E.; et al. Rabbit Model of Intra-Arterial Chemotherapy Toxicity Demonstrates Retinopathy and Vasculopathy Related to Drug and Dose, Not Procedure or Approach. Investig. Ophthalmol. Vis. Sci. 2019, 60, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Honavar, S.G.; Shields, J.A.; Demirci, H.; Meadows, A.T.; Naduvilath, T.J. Factors predictive of recurrence of retinal tumors, vitreous seeds, and subretinal seeds following chemoreduction for retinoblastoma. Arch. Ophthalmol. 2002, 120, 460–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, C.L.; Mashayekhi, A.; Au, A.K.; Czyz, C.; Leahey, A.; Meadows, A.T.; Shields, J.A. The International Classification of Retinoblastoma predicts chemoreduction success. Ophthalmology 2006, 113, 2276–2280. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, K.M.; Federico, S.; Carcaboso, A.M.; Shen, Y.; Schaiquevich, P.; Zhang, J.; Egorin, M.; Stewart, C.; Dyer, M.A. Subconjunctival carboplatin and systemic topotecan treatment in preclinical models of retinoblastoma. Cancer 2011, 117, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Brennan, R.C.; Federico, S.; Bradley, C.; Zhang, J.; Flores-Otero, J.; Wilson, M.; Stewart, C.; Zhu, F.; Guy, K.; Dyer, M.A. Targeting the p53 pathway in retinoblastoma with subconjunctival Nutlin-3a. Cancer Res. 2011, 71, 4205–4213. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, E.M.; Dyer, M.A.; Guy, R.K. Progress in Small Molecule Therapeutics for the Treatment of Retinoblastoma. Mini Rev. Med. Chem. 2016, 16, 430–454. [Google Scholar] [CrossRef]
- Zhang, J.; Benavente, C.A.; McEvoy, J.; Flores-Otero, J.; Ding, L.; Chen, X.; Ulyanov, A.; Wu, G.; Wilson, M.; Wang, J.; et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 2012, 481, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Suresh Babu, V.; Dudeja, G.; Sa, D.; Bisht, A.; Shetty, R.; Heymans, S.; Guha, N.; Ghosh, A. Lack of Retinoblastoma Protein Shifts Tumor Metabolism from Glycolysis to OXPHOS and Allows the Use of Alternate Fuels. Cells 2022, 11, 3182. [Google Scholar] [CrossRef]
- Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis.Exp. JoVE 2011, 2720. [Google Scholar] [CrossRef]
- Crowley, L.C.; Marfell, B.J.; Christensen, M.E.; Waterhouse, N.J. Measuring Cell Death by Trypan Blue Uptake and Light Microscopy. Cold Spring Harb. Protoc. 2016, 2016. [Google Scholar] [CrossRef]
- Mayandi, V.; Xi, Q.; Leng, E.T.; Koh, S.K.; Jie, T.Y.; Barathi, V.A.; Urf Turabe Fazil, M.H.; Somaraju Chalasani, M.L.; Varadarajan, J.; Ting, D.S.J.; et al. Rational Substitution of epsilon-Lysine for alpha-Lysine Enhances the Cell and Membrane Selectivity of Pore-Forming Melittin. J. Med. Chem. 2020, 63, 3522–3537. [Google Scholar] [CrossRef] [PubMed]
- Orhan, G.; Bayram, A.; Zer, Y.; Balci, I. Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J. Clin. Microbiol. 2005, 43, 140–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, M.J.; Middleton, R.F.; Westmacott, D. The fractional inhibitory concentration (FIC) index as a measure of synergy. J. Antimicrob. Chemother. 1983, 11, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Meletiadis, J.; Pournaras, S.; Roilides, E.; Walsh, T.J. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2010, 54, 602–609. [Google Scholar] [PubMed] [Green Version]
- Venkatesh, M.; Barathi, V.A.; Goh, E.T.L.; Anggara, R.; Fazil, M.; Ng, A.J.Y.; Harini, S.; Aung, T.T.; Fox, S.J.; Liu, S.; et al. Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers. Antimicrob. Agents Chemother. 2017, 61, e00469-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shima, S.; Matsuoka, H.; Iwamoto, T.; Sakai, H. Antimicrobial action of epsilon-poly-L-lysine. J. Antibiot. (Tokyo) 1984, 37, 1449–1455. [Google Scholar] [CrossRef] [Green Version]
- Hristova, K.; Wimley, W.C. A look at arginine in membranes. J. Membr. Biol. 2011, 239, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Sueke, H.; Kaye, S.; Neal, T.; Murphy, C.; Hall, A.; Whittaker, D.; Tuft, S.; Parry, C. Minimum inhibitory concentrations of standard and novel antimicrobials for isolates from bacterial keratitis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2519–2524. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.J.; Kim, D.T.; Steinman, L.; Fathman, C.G.; Rothbard, J.B. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 2000, 56, 318–325. [Google Scholar] [CrossRef]
- Felicio, M.R.; Silva, O.N.; Goncalves, S.; Santos, N.C.; Franco, O.L. Peptides with Dual Antimicrobial and Anticancer Activities. Front. Chem. 2017, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, M.; Philippe, J.; De Sitter, S.; De Ridder, L. Annexin V expression in apoptotic peripheral blood lymphocytes: An electron microscopic evaluation. Apoptosis Int. J. Program. Cell Death 2002, 7, 41–47. [Google Scholar]
- Sinha, B.K.; Tokar, E.J.; Bushel, P.R. Elucidation of Mechanisms of Topotecan-Induced Cell Death in Human Breast MCF-7 Cancer Cells by Gene Expression Analysis. Front. Genet. 2020, 11, 775. [Google Scholar] [CrossRef] [PubMed]
- Dashzeveg, N.; Taira, N.; Lu, Z.G.; Kimura, J.; Yoshida, K. Palmdelphin, a novel target of p53 with Ser46 phosphorylation, controls cell death in response to DNA damage. Cell Death Dis. 2014, 5, e1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeenk, L.; van Heeringen, S.J.; Koeppel, M.; Gilbert, B.; Janssen-Megens, E.; Stunnenberg, H.G.; Lohrum, M. Role of p53 serine 46 in p53 target gene regulation. PLoS ONE 2011, 6, e17574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.L.; Wang, P.; Liu, Y.H.; Liu, L.B.; Liu, X.B.; Li, Z.; Xue, Y.X. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS ONE 2013, 8, e81815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006, 13, 1423–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulder, K.C.; Lima, L.A.; Miranda, V.J.; Dias, S.C.; Franco, O.L. Current scenario of peptide-based drugs: The key roles of cationic antitumor and antiviral peptides. Front. Microbiol. 2013, 4, 321. [Google Scholar] [CrossRef] [Green Version]
- Shields, C.L.; Shields, J.A. Diagnosis and management of retinoblastoma. Cancer Control J. Moffitt Cancer Cent. 2004, 11, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Yanik, O.; Gunduz, K.; Yavuz, K.; Tacyildiz, N.; Unal, E. Chemotherapy in Retinoblastoma: Current Approaches. Turk. J. Ophthalmol. 2015, 45, 259–267. [Google Scholar] [CrossRef]
- Shields, C.L.; Lally, S.E.; Leahey, A.M.; Jabbour, P.M.; Caywood, E.H.; Schwendeman, R.; Shields, J.A. Targeted retinoblastoma management: When to use intravenous, intra-arterial, periocular, and intravitreal chemotherapy. Curr. Opin. Ophthalmol. 2014, 25, 374–385. [Google Scholar] [CrossRef]
- Buitrago, E.; Del Sole, M.J.; Torbidoni, A.; Fandino, A.; Asprea, M.; Croxatto, J.O.; Chantada, G.L.; Bramuglia, G.F.; Schaiquevich, P. Ocular and systemic toxicity of intravitreal topotecan in rabbits for potential treatment of retinoblastoma. Exp. Eye Res. 2013, 108, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Susskind, D.; Hagemann, U.; Schrader, M.; Januschowski, K.; Schnichels, S.; Aisenbrey, S. Toxic effects of melphalan, topotecan and carboplatin on retinal pigment epithelial cells. Acta Ophthalmol. 2016, 94, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, S.; Lakshminarayanan, R.; Bai, Y.; Pervushin, K.; Verma, C.; Beuerman, R.W. Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability. Biochim. Biophys. Acta 2013, 1828, 1112–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollmannsberger, C.; Mross, K.; Jakob, A.; Kanz, L.; Bokemeyer, C. Topotecan-A novel topoisomerase I inhibitor: Pharmacology and clinical experience. Oncology 1999, 56, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ralph, S.J.; Rodriguez-Enriquez, S.; Neuzil, J.; Saavedra, E.; Moreno-Sanchez, R. The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation-why mitochondria are targets for cancer therapy. Mol. Asp. Med. 2010, 31, 145–170. [Google Scholar] [CrossRef] [PubMed]
- Ray Chaudhuri, A.; Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 2017, 18, 610–621. [Google Scholar] [CrossRef]
Peptide | Sequence |
---|---|
HC1 | KRKRKRKRKRKR |
HC2 | KRKRKRKRKRKR |
HC3 | KrKrKrKrKrKr |
HC4 | KrKrKrKrKrKr |
HC5 | kRkRkRkRkRkR |
HC6 | kRkRkRkRkRkR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suresh Babu, V.; Kizhakeyil, A.; Dudeja, G.; Chaurasia, S.S.; Barathi, V.A.; Heymans, S.; Verma, N.K.; Lakshminarayanan, R.; Ghosh, A. Selective Induction of Intrinsic Apoptosis in Retinoblastoma Cells by Novel Cationic Antimicrobial Dodecapeptides. Pharmaceutics 2022, 14, 2507. https://doi.org/10.3390/pharmaceutics14112507
Suresh Babu V, Kizhakeyil A, Dudeja G, Chaurasia SS, Barathi VA, Heymans S, Verma NK, Lakshminarayanan R, Ghosh A. Selective Induction of Intrinsic Apoptosis in Retinoblastoma Cells by Novel Cationic Antimicrobial Dodecapeptides. Pharmaceutics. 2022; 14(11):2507. https://doi.org/10.3390/pharmaceutics14112507
Chicago/Turabian StyleSuresh Babu, Vishnu, Atish Kizhakeyil, Gagan Dudeja, Shyam S. Chaurasia, Veluchami Amutha Barathi, Stephane Heymans, Navin Kumar Verma, Rajamani Lakshminarayanan, and Arkasubhra Ghosh. 2022. "Selective Induction of Intrinsic Apoptosis in Retinoblastoma Cells by Novel Cationic Antimicrobial Dodecapeptides" Pharmaceutics 14, no. 11: 2507. https://doi.org/10.3390/pharmaceutics14112507
APA StyleSuresh Babu, V., Kizhakeyil, A., Dudeja, G., Chaurasia, S. S., Barathi, V. A., Heymans, S., Verma, N. K., Lakshminarayanan, R., & Ghosh, A. (2022). Selective Induction of Intrinsic Apoptosis in Retinoblastoma Cells by Novel Cationic Antimicrobial Dodecapeptides. Pharmaceutics, 14(11), 2507. https://doi.org/10.3390/pharmaceutics14112507