An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of NMR Samples
2.2. NMR Spectroscopy Acquisition
2.3. NMR Data Analysis
3. Results and Discussion
3.1. Chemical Shift Attribution
3.2. Hydration of Phytantriol/Water LCP
3.3. Isotropy and Anisotropy of LCP
3.4. Intermolecular Interactions by 1H-1H 2D-NOESY
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbar, S.; Anwar, A.; Ayish, A.; Elliott, J.M.; Squires, A.M. Phytantriol based smart nano-carriers for drug delivery applications. Eur. J. Pharm. Sci. 2017, 101, 31–42. [Google Scholar] [CrossRef] [PubMed]
- AMF Neto, S.S. The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties; OUP Oxford: Oxford, UK, 2005. [Google Scholar]
- Pan, X.Q.; Gong, Y.C.; Li, Z.L.; Li, Y.P.; Xiong, X.Y. Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel. Int. J. Biol. Macromol. 2019, 139, 377–386. [Google Scholar] [CrossRef]
- Wan, J.; Wang, S.; Gui, Z.; Yang, Z.; Shan, Q.; Chu, X.; Gui, S.; Yang, Y. Phytantriol-based lyotropic liquid crystal as a transdermal delivery system. Eur. J. Pharm. Sci. 2018, 125, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Pan, X.; Chen, M.; Wang, R.; Xu, Y.; Feng, M.; Li, G.; Huang, M.; Wu, C. Phytantriol-based inverted type bicontinuous cubic phase for vascular embolization and drug sustained release. Eur. J. Pharm. Sci. 2010, 41, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Mei, L.; Shan, Z.; Huang, Y.; Pan, X.; Li, G.; Gu, Y.; Wu, C. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent. Drug Dev. Ind. Pharm. 2016, 42, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Bessone, C.D.V.; Akhlaghi, S.P.; Tártara, L.I.; Quinteros, D.A.; Loh, W.; Allemandi, D.A. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur. J. Pharm. Sci. 2021, 160, 105748. [Google Scholar] [CrossRef]
- Nguyen, T.; Hanley, T.; Porter, C.J.H.; Larson, I.; Boyd, B.J. Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water soluble drugs I. Phase behaviour in physiologically-relevant media. J. Pharm. Pharmacol. 2010, 62, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Meikle, T.G.; Keizer, D.W.; Babon, J.J.; Drummond, C.J.; Separovic, F.; Conn, C.E.; Yao, S. Chemical Exchange of Hydroxyl Groups in Lipidic Cubic Phases Characterized by NMR. J. Phys. Chem. B 2021, 125, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Söderman, O.; Henriksson, U. NMR Studies of Bicontinuous Liquid Crystalline Phases of Cubic Symmetry: Interpretation of Frequency-Dependent Relaxation Rates. Langmuir 2020, 36, 5927–5934. [Google Scholar] [CrossRef]
- Otting, G.; Liepinsh, E.; Wüthrich, K. Protein Hydration in Aqueous Solution. Science 1991, 5034, 974–980. [Google Scholar] [CrossRef]
- Pampel, A.; Strandberg, E.; Lindblom, G.; Volke, F. High-resolution NMR on cubic lyotropic liquid crystalline phases. Chem. Phys. Lett. 1998, 287, 468–474. [Google Scholar] [CrossRef]
- Volke, F.; Pampel, A. Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance: POPC and POPC/C12EO4 model membranes. Biophys. J. 1995, 68, 1960–1965. [Google Scholar] [CrossRef]
- Monduzzi, M.; Ljusberg-Wahren, H.; Larsson, K. A 13C NMR Study of Aqueous Dispersions of Reversed Lipid Phases. Langmuir 2000, 16, 7355–7358. [Google Scholar] [CrossRef]
- Gater, D.L.; Réat, V.; Czaplicki, G.; Saurel, O.; Milon, A.; Jolibois, F.; Cherezov, V. Hydrogen Bonding of Cholesterol in the Lipidic Cubic Phase. Langmuir 2013, 29, 8031–8038. [Google Scholar] [CrossRef] [PubMed]
- Nylander, T.; Lindman, B. Lipid and Polymer-Lipid Systems; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Boyle-Roden, E.; Hoefer, N.; Dey, K.K.; Grandinetti, P.J.; Caffrey, M. High resolution 1H NMR of a lipid cubic phase using a solution NMR probe. J. Magn. Reson. 2007, 1, 13–19. [Google Scholar] [CrossRef]
- Rajput, S.; Yao, S.; Keizer, D.W.; Sani, M.A.; Separovic, F. NMR spectroscopy of lipidic cubic phases. Biophys. Rev. 2022, 14, 67–74. [Google Scholar] [CrossRef]
- Meikle, T.G.; Keizer, D.W.; Babon, J.J.; Drummond, C.J.; Separovic, F.; Conn, C.E.; Yao, S. Physiochemical Characterization and Stability of Lipidic Cubic Phases by Solution NMR. Langmuir 2020, 36, 6254–6260. [Google Scholar] [CrossRef]
- Chen, Z.J.; Van Gorkom, L.C.; Epand, R.M.; Stark, R.E. Nuclear magnetic resonance studies of lipid hydration in monomethyldioleoylphosphatidylethanolamine dispersions. Biophys. J. 1996, 3, 1412–1418. [Google Scholar] [CrossRef][Green Version]
- Landh, J.B.A.T. Phase Behavior of the Phytantriol/Water System. Langmuir 2003, 23, 9562–9565. [Google Scholar]
- Gater, D.L.; Saurel, O.; Iordanov, I.; Liu, W.; Cherezov, V.; Milon, A. Two Classes of Cholesterol Binding Sites for the β2AR Revealed by Thermostability and NMR. Biophys. J. 2013, 10, 2305–2312. [Google Scholar]
- Gonzalez-Horta, A.; Andreu, D.; Morrow, M.R.; Perez-Gil, J. Effects of Palmitoylation on Dynamics and Phospholipid-Bilayer-Perturbing Properties of the N-Terminal Segment of Pulmonary Surfactant Protein SP-C as Shown by 2H-NMR. Biophys. J. 2008, 5, 2308–2317. [Google Scholar] [CrossRef]
- Davis, J.H.; Schmidt, M.L. Critical Behaviour in DOPC/DPPC/Cholesterol Mixtures: Static 2H NMR Line Shapes Near the Critical Point. Biophys. J. 2014, 106, 1970–1978. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Davis, J.H.; Clair, J.J.; Juhasz, J. Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures. Biophys. J. 2009, 96, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Larson, I.; Hanley, T.; Boyd, B.J. Bulk and Dispersed Aqueous Phase Behavior of Phytantriol: Effect of Vitamin E Acetate and F127 Polymer on Liquid Crystal Nanostructure. Langmuir 2006, 22, 9512–9518. [Google Scholar] [CrossRef]
- Fu, Y.; Kasinath, V.; Moorman, V.R.; Nucci, N.V.; Hilser, V.J.; Wand, A.J. Coupled Motion in Proteins Revealed by Pressure Perturbation. J. Am. Chem. Soc. 2012, 134, 8543–8550. [Google Scholar] [CrossRef]
- Groth, C.; Nydén, M.; Persson, K.C. Interactions between Benzyl Benzoate and Single- and Double-Chain Quaternary Ammonium Surfactants. Langmuir 2007, 23, 3000–3008. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, Y.; Wu, Q.; Xu, T. New Insights into the Interactions between Dendrimers and Surfactants by Two Dimensional NOE NMR Spectroscopy. J. Phys. Chem. B 2008, 112, 12674–12680. [Google Scholar] [CrossRef] [PubMed]
- Shaikhullina, M.; Khaliullina, A.; Gimatdinov, R.; Butakov, A.; Chernov, V.; Filippov, A. NMR relaxation and self-diffusion in aqueous micellar gels of pluronic F-127. J. Mol. Liq. 2020, 306, 112898. [Google Scholar] [CrossRef]
- Geil, B.; Feiweier, T.; Pospiech, E.M.; Eisenblatter, J.; Fujara, F.; Winter, R. Relating structure and translational dynamics in aqueous dispersions of monoolein. Chem. Phys. Lipids 2000, 106, 115–126. [Google Scholar] [CrossRef]
- Erlksson, P.; Khan, A.; Lindblom, G. Nuclear Magnetic Resonance Studies of Molecular Motion and Structure of Cubic Liquid Crystalline Phases. J. Phys. Chem. A 1982, 86, 387–393. [Google Scholar] [CrossRef]
- Xie, H.; Asad Ayoubi, M.; Lu, W.; Wang, J.; Huang, J.; Wang, W. A unique thermo-induced gel-to-gel transition in a pH-sensitive small-molecule hydrogel. Sci. Rep. 2017, 7, 8459. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, Z.; Huang, Y.; YaotianTao; Liang, X.; Chu, X.; He, N.; Gui, S.; Li, Z. Additives-directed lyotropic liquid crystals architecture: Simulations and experiments. Int. J. Pharmaceut. 2021, 600, 120353. [Google Scholar] [CrossRef] [PubMed]
- Mus-Veteau, I. Membrane Proteins Production For Structural Analysis; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Khodov, I.A.; Musabirova, G.S.; Klochkov, V.V.; Karataeva, F.K.; Huster, D.; Scheidt, H.A. Structural details on the interaction of fenamates with lipid membranes. J. Mol. Liq. 2022, 367, 120502. [Google Scholar] [CrossRef]
- Nikitina, L.E.; Pavelyev, R.S.; Startseva, V.A.; Kiselev, S.V.; Galiullina, L.F.; Aganova, O.V.; Timerova, A.F.; Boichuk, S.V.; Azizova, Z.R.; Klochkov, V.V.; et al. Structural details on the interaction of biologically active sulfur-containing monoterpenoids with lipid membranes. J. Mol. Liq. 2020, 301, 112366. [Google Scholar] [CrossRef]
- Scheidt, H.A.; Sickert, A.; Meier, T.; Castellucci, N.; Tomasini, C.; Huster, D. The interaction of lipid modified pseudopeptides with lipid membranes. Org. Biomol. Chem. 2011, 9, 6998–7006. [Google Scholar] [CrossRef]
- Vieler, A.; Scheidt, H.A.; Schmidt, P.; Montag, C.; Nowoisky, J.F.; Lohr, M.; Wilhelm, C.; Huster, D.; Goss, R. The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase. Biochim. Biophys. Acta (BBA) Biomembr. 2008, 1778, 1027–1034. [Google Scholar] [CrossRef]
Atoms | 1H (ppm) | 13C (ppm) |
---|---|---|
1 | 1OH 5.24; 1H 3.72; 1′H 3.55 | 62.76 |
2 | 2OH 5.18; 2H 3.49 | 77.92 |
3 | 3OH 4.50 | 74.14 |
4 | 1.15 | 28.09 |
5 | 1.09 | 22.78 |
6 | 1.43 | 33.05 |
7 | 1.53 | 28.09 |
8 | 1.38 | 37.92 |
9 | 1.15 | 25.03 |
10 | 1.09 | 37.92 |
11 | 1.53 | 28.09 |
12 | 1.09 | 37.92 |
13 | 1.15 | 27.06 |
14 | 1.15 | 39.59 |
15 | 1.53 | 22.78 |
16 | 0.87 | 22.78 |
17 | 0.87 | 19.80 |
18 | 0.87 | 19.68 |
19 | 1.29 | 25.03 |
Time | Integrals | |
---|---|---|
Peak I (4.00–3.45 ppm) | Peak II (3.45–3.00 ppm) | |
1 | 1 | 0 |
14 | 1 | 0.03 |
28 | 1 | 0.14 |
36 | 1 | 1.08 |
42 | 1 | 1.82 |
49 | 1 | 1.89 |
56 | 1 | 2.49 |
63 | 1 | 471.66 |
90 | 0 | 1.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Zhu, D.; Le, Q.; Wang, Y.; Wang, W. An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals. Pharmaceutics 2022, 14, 2312. https://doi.org/10.3390/pharmaceutics14112312
Lu Y, Zhu D, Le Q, Wang Y, Wang W. An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals. Pharmaceutics. 2022; 14(11):2312. https://doi.org/10.3390/pharmaceutics14112312
Chicago/Turabian StyleLu, Yu, Di Zhu, Quynh Le, Yuji Wang, and Wei Wang. 2022. "An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals" Pharmaceutics 14, no. 11: 2312. https://doi.org/10.3390/pharmaceutics14112312
APA StyleLu, Y., Zhu, D., Le, Q., Wang, Y., & Wang, W. (2022). An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals. Pharmaceutics, 14(11), 2312. https://doi.org/10.3390/pharmaceutics14112312