An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of NMR Samples
2.2. NMR Spectroscopy Acquisition
2.3. NMR Data Analysis
3. Results and Discussion
3.1. Chemical Shift Attribution
3.2. Hydration of Phytantriol/Water LCP
3.3. Isotropy and Anisotropy of LCP
3.4. Intermolecular Interactions by 1H-1H 2D-NOESY
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbar, S.; Anwar, A.; Ayish, A.; Elliott, J.M.; Squires, A.M. Phytantriol based smart nano-carriers for drug delivery applications. Eur. J. Pharm. Sci. 2017, 101, 31–42. [Google Scholar] [CrossRef] [PubMed]
- AMF Neto, S.S. The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties; OUP Oxford: Oxford, UK, 2005. [Google Scholar]
- Pan, X.Q.; Gong, Y.C.; Li, Z.L.; Li, Y.P.; Xiong, X.Y. Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel. Int. J. Biol. Macromol. 2019, 139, 377–386. [Google Scholar] [CrossRef]
- Wan, J.; Wang, S.; Gui, Z.; Yang, Z.; Shan, Q.; Chu, X.; Gui, S.; Yang, Y. Phytantriol-based lyotropic liquid crystal as a transdermal delivery system. Eur. J. Pharm. Sci. 2018, 125, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Pan, X.; Chen, M.; Wang, R.; Xu, Y.; Feng, M.; Li, G.; Huang, M.; Wu, C. Phytantriol-based inverted type bicontinuous cubic phase for vascular embolization and drug sustained release. Eur. J. Pharm. Sci. 2010, 41, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Mei, L.; Shan, Z.; Huang, Y.; Pan, X.; Li, G.; Gu, Y.; Wu, C. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent. Drug Dev. Ind. Pharm. 2016, 42, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Bessone, C.D.V.; Akhlaghi, S.P.; Tártara, L.I.; Quinteros, D.A.; Loh, W.; Allemandi, D.A. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur. J. Pharm. Sci. 2021, 160, 105748. [Google Scholar] [CrossRef]
- Nguyen, T.; Hanley, T.; Porter, C.J.H.; Larson, I.; Boyd, B.J. Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water soluble drugs I. Phase behaviour in physiologically-relevant media. J. Pharm. Pharmacol. 2010, 62, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Meikle, T.G.; Keizer, D.W.; Babon, J.J.; Drummond, C.J.; Separovic, F.; Conn, C.E.; Yao, S. Chemical Exchange of Hydroxyl Groups in Lipidic Cubic Phases Characterized by NMR. J. Phys. Chem. B 2021, 125, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Söderman, O.; Henriksson, U. NMR Studies of Bicontinuous Liquid Crystalline Phases of Cubic Symmetry: Interpretation of Frequency-Dependent Relaxation Rates. Langmuir 2020, 36, 5927–5934. [Google Scholar] [CrossRef]
- Otting, G.; Liepinsh, E.; Wüthrich, K. Protein Hydration in Aqueous Solution. Science 1991, 5034, 974–980. [Google Scholar] [CrossRef]
- Pampel, A.; Strandberg, E.; Lindblom, G.; Volke, F. High-resolution NMR on cubic lyotropic liquid crystalline phases. Chem. Phys. Lett. 1998, 287, 468–474. [Google Scholar] [CrossRef]
- Volke, F.; Pampel, A. Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance: POPC and POPC/C12EO4 model membranes. Biophys. J. 1995, 68, 1960–1965. [Google Scholar] [CrossRef] [Green Version]
- Monduzzi, M.; Ljusberg-Wahren, H.; Larsson, K. A 13C NMR Study of Aqueous Dispersions of Reversed Lipid Phases. Langmuir 2000, 16, 7355–7358. [Google Scholar] [CrossRef]
- Gater, D.L.; Réat, V.; Czaplicki, G.; Saurel, O.; Milon, A.; Jolibois, F.; Cherezov, V. Hydrogen Bonding of Cholesterol in the Lipidic Cubic Phase. Langmuir 2013, 29, 8031–8038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nylander, T.; Lindman, B. Lipid and Polymer-Lipid Systems; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Boyle-Roden, E.; Hoefer, N.; Dey, K.K.; Grandinetti, P.J.; Caffrey, M. High resolution 1H NMR of a lipid cubic phase using a solution NMR probe. J. Magn. Reson. 2007, 1, 13–19. [Google Scholar] [CrossRef]
- Rajput, S.; Yao, S.; Keizer, D.W.; Sani, M.A.; Separovic, F. NMR spectroscopy of lipidic cubic phases. Biophys. Rev. 2022, 14, 67–74. [Google Scholar] [CrossRef]
- Meikle, T.G.; Keizer, D.W.; Babon, J.J.; Drummond, C.J.; Separovic, F.; Conn, C.E.; Yao, S. Physiochemical Characterization and Stability of Lipidic Cubic Phases by Solution NMR. Langmuir 2020, 36, 6254–6260. [Google Scholar] [CrossRef]
- Chen, Z.J.; Van Gorkom, L.C.; Epand, R.M.; Stark, R.E. Nuclear magnetic resonance studies of lipid hydration in monomethyldioleoylphosphatidylethanolamine dispersions. Biophys. J. 1996, 3, 1412–1418. [Google Scholar] [CrossRef] [Green Version]
- Landh, J.B.A.T. Phase Behavior of the Phytantriol/Water System. Langmuir 2003, 23, 9562–9565. [Google Scholar]
- Gater, D.L.; Saurel, O.; Iordanov, I.; Liu, W.; Cherezov, V.; Milon, A. Two Classes of Cholesterol Binding Sites for the β2AR Revealed by Thermostability and NMR. Biophys. J. 2013, 10, 2305–2312. [Google Scholar]
- Gonzalez-Horta, A.; Andreu, D.; Morrow, M.R.; Perez-Gil, J. Effects of Palmitoylation on Dynamics and Phospholipid-Bilayer-Perturbing Properties of the N-Terminal Segment of Pulmonary Surfactant Protein SP-C as Shown by 2H-NMR. Biophys. J. 2008, 5, 2308–2317. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.H.; Schmidt, M.L. Critical Behaviour in DOPC/DPPC/Cholesterol Mixtures: Static 2H NMR Line Shapes Near the Critical Point. Biophys. J. 2014, 106, 1970–1978. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.H.; Clair, J.J.; Juhasz, J. Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures. Biophys. J. 2009, 96, 521–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Larson, I.; Hanley, T.; Boyd, B.J. Bulk and Dispersed Aqueous Phase Behavior of Phytantriol: Effect of Vitamin E Acetate and F127 Polymer on Liquid Crystal Nanostructure. Langmuir 2006, 22, 9512–9518. [Google Scholar] [CrossRef]
- Fu, Y.; Kasinath, V.; Moorman, V.R.; Nucci, N.V.; Hilser, V.J.; Wand, A.J. Coupled Motion in Proteins Revealed by Pressure Perturbation. J. Am. Chem. Soc. 2012, 134, 8543–8550. [Google Scholar] [CrossRef] [Green Version]
- Groth, C.; Nydén, M.; Persson, K.C. Interactions between Benzyl Benzoate and Single- and Double-Chain Quaternary Ammonium Surfactants. Langmuir 2007, 23, 3000–3008. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, Y.; Wu, Q.; Xu, T. New Insights into the Interactions between Dendrimers and Surfactants by Two Dimensional NOE NMR Spectroscopy. J. Phys. Chem. B 2008, 112, 12674–12680. [Google Scholar] [CrossRef] [PubMed]
- Shaikhullina, M.; Khaliullina, A.; Gimatdinov, R.; Butakov, A.; Chernov, V.; Filippov, A. NMR relaxation and self-diffusion in aqueous micellar gels of pluronic F-127. J. Mol. Liq. 2020, 306, 112898. [Google Scholar] [CrossRef]
- Geil, B.; Feiweier, T.; Pospiech, E.M.; Eisenblatter, J.; Fujara, F.; Winter, R. Relating structure and translational dynamics in aqueous dispersions of monoolein. Chem. Phys. Lipids 2000, 106, 115–126. [Google Scholar] [CrossRef]
- Erlksson, P.; Khan, A.; Lindblom, G. Nuclear Magnetic Resonance Studies of Molecular Motion and Structure of Cubic Liquid Crystalline Phases. J. Phys. Chem. A 1982, 86, 387–393. [Google Scholar] [CrossRef]
- Xie, H.; Asad Ayoubi, M.; Lu, W.; Wang, J.; Huang, J.; Wang, W. A unique thermo-induced gel-to-gel transition in a pH-sensitive small-molecule hydrogel. Sci. Rep. 2017, 7, 8459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, Z.; Huang, Y.; YaotianTao; Liang, X.; Chu, X.; He, N.; Gui, S.; Li, Z. Additives-directed lyotropic liquid crystals architecture: Simulations and experiments. Int. J. Pharmaceut. 2021, 600, 120353. [Google Scholar] [CrossRef] [PubMed]
- Mus-Veteau, I. Membrane Proteins Production For Structural Analysis; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Khodov, I.A.; Musabirova, G.S.; Klochkov, V.V.; Karataeva, F.K.; Huster, D.; Scheidt, H.A. Structural details on the interaction of fenamates with lipid membranes. J. Mol. Liq. 2022, 367, 120502. [Google Scholar] [CrossRef]
- Nikitina, L.E.; Pavelyev, R.S.; Startseva, V.A.; Kiselev, S.V.; Galiullina, L.F.; Aganova, O.V.; Timerova, A.F.; Boichuk, S.V.; Azizova, Z.R.; Klochkov, V.V.; et al. Structural details on the interaction of biologically active sulfur-containing monoterpenoids with lipid membranes. J. Mol. Liq. 2020, 301, 112366. [Google Scholar] [CrossRef]
- Scheidt, H.A.; Sickert, A.; Meier, T.; Castellucci, N.; Tomasini, C.; Huster, D. The interaction of lipid modified pseudopeptides with lipid membranes. Org. Biomol. Chem. 2011, 9, 6998–7006. [Google Scholar] [CrossRef]
- Vieler, A.; Scheidt, H.A.; Schmidt, P.; Montag, C.; Nowoisky, J.F.; Lohr, M.; Wilhelm, C.; Huster, D.; Goss, R. The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase. Biochim. Biophys. Acta (BBA) Biomembr. 2008, 1778, 1027–1034. [Google Scholar] [CrossRef]
Atoms | 1H (ppm) | 13C (ppm) |
---|---|---|
1 | 1OH 5.24; 1H 3.72; 1′H 3.55 | 62.76 |
2 | 2OH 5.18; 2H 3.49 | 77.92 |
3 | 3OH 4.50 | 74.14 |
4 | 1.15 | 28.09 |
5 | 1.09 | 22.78 |
6 | 1.43 | 33.05 |
7 | 1.53 | 28.09 |
8 | 1.38 | 37.92 |
9 | 1.15 | 25.03 |
10 | 1.09 | 37.92 |
11 | 1.53 | 28.09 |
12 | 1.09 | 37.92 |
13 | 1.15 | 27.06 |
14 | 1.15 | 39.59 |
15 | 1.53 | 22.78 |
16 | 0.87 | 22.78 |
17 | 0.87 | 19.80 |
18 | 0.87 | 19.68 |
19 | 1.29 | 25.03 |
Time | Integrals | |
---|---|---|
Peak I (4.00–3.45 ppm) | Peak II (3.45–3.00 ppm) | |
1 | 1 | 0 |
14 | 1 | 0.03 |
28 | 1 | 0.14 |
36 | 1 | 1.08 |
42 | 1 | 1.82 |
49 | 1 | 1.89 |
56 | 1 | 2.49 |
63 | 1 | 471.66 |
90 | 0 | 1.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Zhu, D.; Le, Q.; Wang, Y.; Wang, W. An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals. Pharmaceutics 2022, 14, 2312. https://doi.org/10.3390/pharmaceutics14112312
Lu Y, Zhu D, Le Q, Wang Y, Wang W. An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals. Pharmaceutics. 2022; 14(11):2312. https://doi.org/10.3390/pharmaceutics14112312
Chicago/Turabian StyleLu, Yu, Di Zhu, Quynh Le, Yuji Wang, and Wei Wang. 2022. "An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals" Pharmaceutics 14, no. 11: 2312. https://doi.org/10.3390/pharmaceutics14112312
APA StyleLu, Y., Zhu, D., Le, Q., Wang, Y., & Wang, W. (2022). An NMR Study on Hydration and Molecular Interaction of Phytantriol-Based Liquid Crystals. Pharmaceutics, 14(11), 2312. https://doi.org/10.3390/pharmaceutics14112312