You are currently viewing a new version of our website. To view the old version click .
Pharmaceutics
  • Review
  • Open Access

2 January 2022

The Role of Natural Products on Diabetes Mellitus Treatment: A Systematic Review of Randomized Controlled Trials

,
,
,
,
,
,
and
1
School of Medicine and Health Sciences, Department of Nutrition, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain
2
SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue The Role of Natural Products on Diabetes Mellitus Treatment

Abstract

The present study was carried out to relate the role of natural products in the metabolism of an increasingly prevalent disease, type 2 diabetes mellitus. At present, in addition to the pharmacological resources, an attempt is being made to treat diabetes mellitus with natural products. We carried out a systematic review of studies focusing on the role of natural products on diabetes mellitus treatment. The bibliographic search was done through Medline (Pubmed) and Web of Science. From 193 records, the title and summary of each were examined according to the criteria and whether they met the selection criteria. A total of 15 articles were included; after reviewing the literature, it is apparent that the concept of natural products is ambiguous as no clear boundary has been established between what is natural and what is synthetic, therefore we feel that a more explicit definition of the concept of “natural product” is needed. Gut microbiota is a promising therapeutic target in the treatment of diabetes. Therefore, it would be necessary to work on the relationship between the microbiome and the benefits in the treatment of diabetes mellitus. Treatment based solely on these natural products is not currently recommended as more studies are needed.

1. Introduction

The rapid development of society over the 21st century has brought about a complete change in lifestyle of the population in both a positive and negative way; new risk factors have emerged that have conditioned an increase in the prevalence of chronic diseases worldwide, such as type 2 diabetes mellitus (T2D), which in turn increases the morbidity and mortality of the world population [].
Type 2 diabetes is a multifactorial metabolic pathology. The WHO puts its prevalence at over 422 million subjects, and a total of 1.6 million die per year. It is estimated that eight out of every 1000 inhabitants suffer from it and its prevalence increases in the elderly; however, it is becoming increasingly common in children and adolescents []. The constant increase in the population diagnosed with T2D, together with its associated complications, makes it a first-order healthcare and economic problem whose impact is reflected in its treatment and complications that cause poor quality of life. In fact, annual healthcare costs are calculated to be between 121.97–141.6 million euros, which is why it is estimated that people with T2D generate twice the healthcare costs of persons who do not suffer from this pathology. Type 2 diabetes is currently deemed one of the pandemics of the 21st century [,].
The development of T2D is frequently associated with a combination of a failure in the functioning of the β cells of the pancreas and insulin resistance in various target tissues, such as liver, muscle and adipocytes []. Healthy β cells compensate for insulin resistance with an increase in insulin secretion, but a failure in this compensatory mechanism leads to glucose intolerance. Once hyperglycemia occurs, β-cell function deteriorates and insulin resistance worsens, a process known as glucose toxicity []. Prior to the onset of diabetes, there is a stage known as pre-diabetes; as it progresses, alterations occur in the cells of the pancreas that make up the islets of Langerhans [,].
A sedentary lifestyle, being overweight and malnutrition generate an increase in the production of different reactive oxygen species which produce a chronic state of oxidative stress. This alters the secretion of insulin by the pancreas and the action of hormones in target cells, generating a greater risk of macro- and microvascular complications []. There is scientific evidence showing that β cells have very low levels of antioxidant enzymes compared to other tissues and there lies their high vulnerability to oxidative stress. As mentioned, T2D is a chronic disease that combines different metabolic disorders that coexist in a positive feedback loop guided by inflammation. Therefore, reducing and fighting inflammation, as well as oxidative stress, is one of the main therapeutic objectives [].
There are numerous chemical compounds included in drugs that help control blood glucose levels, such as oral antidiabetics and preloaded insulins. At present, in addition to these pharmacological resources, an attempt is being made to treat this pathology with natural products []. Natural products started being used to control blood glucose levels ever since they took center stage in experimental investigations; some of these plants are Bauhinia forficata, Cecropia obtusifolia (Bertol), Equisetum myriochaetum and Cucurbita ficifolia bouche, among others [,,]. Treatment using them has a notable local connotation, since natural products generally vary depending on the country and its culture. An example of this can be seen in Latin America, where Bauhinia forficata is more often used, while in Sri Lanka Senna auriculata (L.) is used more routinely []. Other products, such as alfalfa, Ginkgo biloba, ginseng and turmeric are found more frequently. Familiarity with the properties of plants and scientific evidence are the starting point for using this type of product in the treatment of chronic diseases such as diabetes [].
Current drugs for treatment of diabetes employ antidiabetic mechanisms of action that include the inhibition of alpha-glucosidase and alpha-amylase in the digestive tract, decreasing the uptake of glucose through its transporters by stimulating the release of insulin []. However, there are also many others, especially the most recent ones, which try to imitate the mechanism of action of natural products by incorporating several of their active principles. At present, the most common drug on the market for glucose control is metformin, which comes from Galega officinalis, a guanidine-rich plant used in European folk medicine [,]. In an attempt to find a similar drug, the study of Ginkgo biloba, ginseng and turmeric, among many others, has been implemented. This shows the true importance of the investigation of plants that can be sources of new compounds with clinical activities for the treatment of chronic diseases, such as diabetes [,].
Although reviews on the use of natural products in T2D have previously been published [,,], these are works that analyze in depth the therapeutic effects and biochemical mechanisms of different natural products against T2D, reporting that most analyzed studies provide preliminary or inadequately documented results and that is necessary to continue working on their research and development. This review, focused exclusively on randomized clinical trials, tries to delve deeper into the work that has been carried out in recent years on the application of natural products to treat the disease.

2. Search Methodology

This systematic review was conducted in accordance with the criteria set out in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) []. The literature search was carried out in PubMed and Web of Science. The search strategy was carried out by combining the terms “Diabetes Mellitus”, “Type 2”, “Biological Products”, “Antioxidants”, “Plants”, “Therapeutics” and “Phenols”, combined with each other using Boolean operators. Randomized controlled trials from within the last five years were selected, giving a total of 15 to review. The flowchart in Figure 1 details the search and selection process.
Figure 1. PRISMA flowchart of study selection process.
The Joanna Briggs Institute (JBI) [] checklist for randomized controlled trials was used to assess study design and quality. One point was ascribed to each criterion achieved on the checklist. The quality of the studies was rated as a percentage of the total available points on the checklist.

3. Results

As shown in Figure 1, the literature search identified 193 records. After removing duplicates and screening titles and abstracts, 49 articles were selected for full-text review, of which 15 studies met the inclusion criteria [,,,,,,,,,,,,,,]. Table 1 shows the main characteristics of each study. Table 2 shows the quality assessment of the studies.
Table 1. Main characteristics of each study analyzed.
Table 2. Studies appraised using the Joanna Briggs Institute critical appraisal checklist for randomized controlled trials.

4. Discussion

The present study was carried out to relate the role of natural products in the metabolism of an increasingly prevalent disease, type 2 diabetes mellitus (T2D) [,]. After reviewing the literature, it is apparent that the concept of natural products is ambiguous as no clear boundary has been established between what is natural and what is synthetic, since a product can be synthesized from a natural extract. Metformin, for example, is obtained from a derivative of the guanidines of the French lilac, Galega officinalis []. Insulin can also be synthesized from bacterium E. coli, building or transforming an analogue of human insulin []. This has made it difficult to search bibliographies as it has not been possible to delimit some keywords to make an exact search.
The studies analyzed do not show enough scientific evidence to use the methods investigated in a population. More research is required to be able to observe possible side effects caused, in the short and long term, by the use of these treatments with natural products at the individual and collective level [,,,,,,]. Some studies [,,,] indicate that more research is required to determine evidence of beneficial effects through the use of natural products.
Studies show that natural products have more than one beneficial effect in addition to being insulin-sensitizing or hypoglycemic as they can be anti-inflammatory, antioxidant and cholesterol-lowering [,,,,,]. Zakerkish et al. [] used Iranian propolis collected from beehives and its use was found to provide various beneficial effects in patients with T2D. These results indicate that a promising treatment can be achieved with long-term studies since the use of natural products has good potential.
Insulin (SAR-Asp) has been shown to have an effective glycemic control effect very similar to the different insulins found on the market []. It is important to evaluate the significant effect of this insulin to implement a longer study time. In another study, the insulin-sensitizing effect of Scutellaria baicalensis (SB) was proposed as an adjunct to metformin in the treatment of type 2 diabetic patients and also indicates that SB improves metabolism and the number of microbial taxa, which suggests that this treatment can improve glucose metabolism through modulation of the gut microbiota in patients with T2D [].
The studies analyzed in this work presented some difficulties when deciding whether or not they should be part of the bibliographic review. As mentioned above, this was due to the indistinct boundary between the concepts of natural and synthetic products as well as the border between treatment and patient improvement. Another limitation is that the analysis of the action of natural products is restricted to an adjuvant action together with drugs in current use [,], which makes it difficult to define the benefits of natural compounds. However, it can be stated that as an adjunct to metformin, Gingko biloba extract [] as well as treatment with Scutellaria baicalensis extract [] present benefits compared to metformin therapy alone [,]. Among the outstanding natural products in the treatment for T2D, we can highlight Ginkgo biloba extract as an adjuvant to Metformin [], pinitol [], propolis [], live probiotic L. Reuteri ADR-1 and heat-killed probiotic L. reuteri ADR-3 [], mixed berries [], a Chinese plant extract [] and resveratrol [].
A limitation of this review is that the results of the studies were obtained over a short period of time, from three to six months, so these results may be affected if an increase in the temporality of the treatments is protocolized [,,,,,,]. Within the application of natural products as a treatment for patients with T2D, there are single products that can have effects at different levels, that is, a natural product can generate a modulating effect on glucose and lipid metabolism hypoglycemia, hypolipidemia, modulation of the microbiota and anti-inflammatory and antioxidant agents [,,,,,,]. Their multiple applicability and their effect in the short and long term must be evaluated and taken into account; consequently, studies are necessary in which the greatest number of these aspects are measured so that more significant results can be obtained.
The studies analyzed show the close relationship between the diversity of microorganisms in the intestinal microbiota and the functioning and metabolism of the host, as well as linking certain microorganisms with specific effects [,,]. The studies by Tong et al. [], Na Rae Shin et al. [] and Ming-Chia et al. [] show promising benefits for the treatment of T2D by increasing diversity and certain species in the intestinal microbiota, making it a promising therapeutic target for the disease in question. Specifically, it would be interesting to study in depth the benefits of the increase in microbiota of butyrate-producing species as well as Blautia spp. and Faecalibacterium spp. since they show an improvement in carbohydrate and lipid homeostasis []. By contrast, other studies reported no benefit for the treatment of T2D [,,,].
In general, it can be concluded that the most notable benefits of treatments and protocols using natural products in our review studies are the improvement in insulin resistance of the subjects [,,,,], improvement in biochemical parameters of glycosylated hemoglobin [,,,], improvement in the lipid profile in general [,,,,] and a reduction in glucose levels in pre-prandial blood [,].
In this context, it is also a source of discussion that the presence of environmental factors and factors specific to individuals can interfere with the results obtained, since, for example, when carrying out a therapy with natural products accompanied by adjuvant drugs, it is difficult to determine if the effect obtained is due to the use of the natural treatment or the drug. In addition, the presence of toxic habits such as an unbalanced diet, among other aspects, can be the cause of the possible negative effects that are associated with a natural product. The individuality of the patient makes the response to the treatments totally different, since individual factors, such as lifestyle, eating habits, genetic factors, underlying pathologies and treatments, can lead to totally different results. That is why when considering this type of study, it is necessary to evaluate the personal factor that characterizes each individual. This fact, together with the small sample size, can interfere with how results can be extrapolated to a larger population.

5. Conclusions

The purpose of this study was to analyze the effect of natural products as a therapy in T2D. After conducting this systematic review, we feel that a more explicit definition of both the concept of “natural product” and that of “treatment” is needed. This would make it easier to select and filter different studies based on whether they focus on therapeutic treatment, nutritional treatment or quality of life improvement.
Gut microbiota is a promising therapeutic target in the treatment of diabetes. We also observe that there is a correlation between the presence of specific species and therapeutic properties. Therefore, it would be necessary to work on the relationship between the microbiome and the benefits in the treatment of T2D.
Natural products that improve comorbidities related to metabolic syndrome and T2D, such as oxidative stress and chronic systemic inflammation, have beneficial effects on patients. However, treatment based solely on these natural products is not currently recommended as more studies are needed. Nonetheless, natural products favoring T2D treatment may be a promising adjunct to current therapies. However, the present review shows some limitations in the protocols of the different studies that make drawing conclusions difficult, which is why studies with more specific protocols are needed, such as long-term vision and larger samples to confirm the benefits and to standardize the results obtained.

Author Contributions

Conceptualization, M.J.R.-C., M.H.-G., L.V.-B., V.B.-S., A.P.-P., R.N.-S., J.P.-M. and M.P.-B.; methodology, M.J.R.-C., L.V.-B., M.H.-G., V.B.-S., A.P.-P., R.N.-S., J.P.-M. and M.P.-B.; formal analysis, M.J.R.-C., L.V.-B., V.B.-S., R.N.-S., J.P.-M. and M.P.-B.; writing—original draft preparation, M.J.R.-C., M.H.-G., L.V.-B., V.B.-S., A.P.-P., R.N.-S., J.P.-M. and M.P.-B.; writing—review and editing, M.P.-B.; supervision, M.P.-B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Acknowledgments

The authors thank the Catholic University of Valencia San Vicente Mártir for their contribution and help in the payment of the Open Access publication fee.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Mendoza Romo, M.A.; Padrón Salas, A.; Cossío Torres, P.E.; Soria Orozco, M. Global prevalence of type 2 diabetes mellitus and its relationship with the Human Development Index. Rev. Panam. Salud Pública 2017, 41, e103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Kaneto, H. Pathophysiology of type 2 diabetes mellitus. Nihon Rinsho Jpn. J. Clin. Med. 2015, 73, 2003–2007. [Google Scholar]
  3. Quinn, L. Type 2 diabetes: Epidemiology, pathophysiology, and diagnosis. Nurs. Clin. N. Am. 2001, 36, 175–192. [Google Scholar]
  4. Khalid, M.; Alkaabi, J.; Khan, M.A.B.; Adem, A. Insulin Signal Transduction Perturbations in Insulin Resistance. Int. J. Mol. Sci. 2021, 22, 8590. [Google Scholar] [CrossRef]
  5. Poblete-Aro, C.; Russell-Guzmán, J.; Parra, P.; Soto-Muñoz, M.; Villegas-González, B.; Cofré-BolaDos, C.; Herrera-Valenzuela, T. Exercise and oxidative stress in type 2 diabetes mellitus. Rev. Med. Chile 2018, 146, 362–372. [Google Scholar] [CrossRef] [PubMed]
  6. Yeung, A.W.K.; Tzvetkov, N.T.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A.; Gan, R.-Y.; Jozwik, A.; Grzybek, W.; Horbańczuk, J.O.; et al. Natural products in diabetes research: Quantitative literature analysis. Nat. Prod. Res. 2021, 35, 5813–5827. [Google Scholar] [CrossRef] [PubMed]
  7. Gori, M.; Campbell, R.K. Natural Products and Diabetes Treatment. Diabetes Educ. 1998, 24, 201–208. [Google Scholar] [CrossRef]
  8. Pepato, M.T.; Keller, E.H.; Baviera, A.M.; Kettelhut, I.C.; Vendramini, R.C.; Brunetti, I.L. Anti-diabetic activity of Bauhinia forficata decoction in streptozotocin-diabetic rats. J. Ethnopharmacol. 2002, 81, 191–197. [Google Scholar] [CrossRef]
  9. Patle, D.; Vyas, M.; Khatik, G.L. A Review on Natural Products and Herbs Used in the Management of Diabetes. Curr. Diabetes Rev. 2021, 17, 186–197. [Google Scholar] [CrossRef]
  10. Abu-Odeh, A.M.; Talib, W.H. Middle East Medicinal Plants in the Treatment of Diabetes: A Review. Molecules 2021, 26, 742. [Google Scholar] [CrossRef]
  11. Salehi, B.; Ata, A.; Kumar, N.V.A.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Ayatollahi, S.A.; Fokou, P.V.T.; Kobarfard, F.; Zakaria, Z.A.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
  12. Pereira, A.S.P.; Banegas-Luna, A.J.; Peña-García, J.; Pérez-Sánchez, H.; Apostolides, Z. Evaluation of the Anti-Diabetic Activity of Some Common Herbs and Spices: Providing New Insights with Inverse Virtual Screening. Molecules 2019, 24, 4030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Odeyemi, S.; Bradley, G. Medicinal Plants Used for the Traditional Management of Diabetes in the Eastern Cape, South Africa: Pharmacology and Toxicology. Molecules 2018, 23, 2759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Ríos, J.L.; Francini, F.; Schinella, G.R. Natural Products for the Treatment of Type 2 Diabetes Mellitus. Planta Med. 2015, 81, 975–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef] [PubMed]
  16. Bedekar, A.; Shah, K.; Koffas, M. Natural Products for Type II Diabetes Treatment. Adv. Appl. Microbiol. 2010, 71, 21–73. [Google Scholar] [CrossRef] [PubMed]
  17. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Joanna Briggs Institute. Critical Appraisal Tools. 2017. Available online: https://jbi.global/critical-appraisal-tools (accessed on 9 December 2021).
  19. Garg, S.K.; Wernicke-Panten, K.; Wardecki, M.; Kramer, D.; Delalande, F.; Franek, E.; Sadeharju, K.; Monchamp, T.; Mukherjee, B.; Shah, V.N. Efficacy and Safety of Insulin Aspart Biosimilar SAR341402 Versus Originator Insulin Aspart in People with Diabetes Treated for 26 Weeks with Multiple Daily Injections in Combination with Insulin Glargine: A Randomized Open-Label Trial (GEMELLI 1). Diabetes Technol. Ther. 2020, 22, 85–95. [Google Scholar] [CrossRef] [Green Version]
  20. Shin, N.R.; Gu, N.; Choi, H.-S.; Kim, H. Combined effects of Scutellaria baicalensis with metformin on glucose tolerance of patients with type 2 diabetes via gut microbiota modulation. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E52–E61. [Google Scholar] [CrossRef]
  21. Rabiei, K.; Ebrahimzadeh, M.A.; Saeedi, M.; Bahar, A.; Akha, O.; Kashi, Z. Effects of a hydroalcoholic extract of Juglans regia (walnut) leaves on blood glucose and major cardiovascular risk factors in type 2 diabetic patients: A double-blind, placebo-controlled clinical trial. BMC Complement. Altern. Med. 2018, 18, 206. [Google Scholar] [CrossRef]
  22. Tong, X.; Xu, J.; Lian, F.; Yu, X.; Zhao, Y.; Xu, L.; Zhang, M.; Zhao, X.; Shen, J.; Wu, S.; et al. Structural Alteration of Gut Microbiota during the Amelioration of Human Type 2 Diabetes with Hyperlipidemia by Metformin and a Traditional Chinese Herbal Formula: A Multicenter, Randomized, Open Label Clinical Trial. mBio 2018, 9, e02392-17. [Google Scholar] [CrossRef] [Green Version]
  23. Aziz, T.A.; Hussain, S.A.; Mahwi, T.O.; Ahmed, Z.A.; Rahman, H.S.; Rasedee, A. The efficacy and safety of Ginkgo biloba extract as an adjuvant in type 2 diabetes mellitus patients ineffectively managed with metformin: A double-blind, randomized, placebo-controlled trial. Drug Des. Dev. Ther. 2018, 12, 735–742. [Google Scholar] [CrossRef] [Green Version]
  24. Lambert, C.; Cubedo, J.; Padró, T.; Vilahur, G.; López-Bernal, S.; Rocha, M.; Hernández-Mijares, A.; Badimon, L. Effects of a Carob-Pod-Derived Sweetener on Glucose Metabolism. Nutrients 2018, 10, 271. [Google Scholar] [CrossRef] [Green Version]
  25. Khalili, N.; Fereydoonzadeh, R.; Mohtashami, R.; Mehrzadi, S.; Heydari, M.; Huseini, H.F. Silymarin, Olibanum, and Nettle, A Mixed Herbal Formulation in the Treatment of Type II Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. J. Evid.-Based Complementary Altern. Med. 2017, 22, 603–608. [Google Scholar] [CrossRef]
  26. Thota, R.N.; Acharya, S.H.; Garg, M.L. Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: A randomised controlled trial. Lipids Health Dis. 2019, 18, 31. [Google Scholar] [CrossRef] [Green Version]
  27. Zakerkish, M.; Jenabi, M.; Zaeemzadeh, N.; Hemmati, A.A.; Neisi, N. The Effect of Iranian Propolis on Glucose Metabolism, Lipid Profile, Insulin Resistance, Renal Function and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Clinical Trial. Sci. Rep. 2019, 9, 7289. [Google Scholar] [CrossRef]
  28. Talaei, B.; Amouzegar, A.; Sahranavard, S.; Hedayati, M.; Mirmiran, P.; Azizi, F. Effects of Cinnamon Consumption on Glycemic Indicators, Advanced Glycation End Products, and Antioxidant Status in Type 2 Diabetic Patients. Nutrients 2017, 9, 991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  29. Hsieh, M.-C.; Tsai, W.-H.; Jheng, Y.-P.; Su, S.-L.; Wang, S.-Y.; Lin, C.-C.; Chen, Y.-H.; Chang, W.-W. The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: A randomized, double-blinded, placebo-controlled trial. Sci. Rep. 2018, 8, 16791. [Google Scholar] [CrossRef] [PubMed]
  30. Funamoto, M.; Shimizu, K.; Sunagawa, Y.; Katanasaka, Y.; Miyazaki, Y.; Kakeya, H.; Yamakage, H.; Satoh-Asahara, N.; Wada, H.; Hasegawa, K.; et al. Effects of Highly Absorbable Curcumin in Patients with Impaired Glucose Tolerance and Non-Insulin-Dependent Diabetes Mellitus. J. Diabetes Res. 2019, 2019, 8208237. [Google Scholar] [CrossRef] [PubMed]
  31. Solverson, P.M.; Henderson, T.R.; Debelo, H.; Ferruzzi, M.G.; Baer, D.J.; Novotny, J.A. An Anthocyanin-Rich Mixed-Berry Intervention May Improve Insulin Sensitivity in a Randomized Trial of Overweight and Obese Adults. Nutrients 2019, 11, 2876. [Google Scholar] [CrossRef] [Green Version]
  32. Thazhath, S.S.; Wu, T.; Bound, M.J.; Checklin, H.L.; Standfield, S.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Administration of resveratrol for 5 wk has no effect on glucagon-like peptide 1 secretion, gastric emptying, or glycemic control in type 2 diabetes: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 66–70. [Google Scholar] [CrossRef]
  33. Shokoohi, R.; Kianbakht, S.; Faramarzi, M.; Rahmanian, M.; Nabati, F.; Mehrzadi, S.; Huseini, H.F. Effects of an Herbal Combination on Glycemic Control and Lipid Profile in Diabetic Women: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Evid.-Based Complementary Altern Med. 2017, 22, 798–804. [Google Scholar] [CrossRef]
  34. Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From Mechanisms of Action to Therapies. Cell Metab. 2014, 20, 953–966. [Google Scholar] [CrossRef] [Green Version]
  35. Hwang, H.-G.; Kim, K.-J.; Lee, S.-H.; Kim, C.-K.; Min, C.-K.; Yun, J.-M.; Lee, S.U.; Son, Y.-J. Recombinant Glargine Insulin Production Process Using Escherichia coli. J. Microbiol. Biotechnol. 2016, 26, 1781–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Moszak, M.; Szulińska, M.; Bogdański, P. You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients 2020, 12, 1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Rashad, H.; Metwally, F.M.; Ezzat, S.M.; Salama, M.M.; Hasheesh, A.; Motaal, A.A. Randomized double-blinded pilot clinical study of the antidiabetic activity of Balanites aegyptiaca and UPLC-ESI-MS/MS identification of its metabolites. Pharm. Biol. 2017, 55, 1954–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Qin, Q.; Chen, Y.; Li, Y.; Wei, J.; Zhou, X.; Le, F.; Hu, H.; Chen, T. Intestinal Microbiota Play an Important Role in the Treatment of Type I Diabetes in Mice with BefA Protein. Front. Cell. Infect. Microbiol. 2021, 11, 719542. [Google Scholar] [CrossRef] [PubMed]
  39. Merkevičius, K.; Kundelis, R.; Maleckas, A.; Veličkienė, D. Microbiome Changes after Type 2 Diabetes Treatment: A Systematic Review. Medicina 2021, 57, 1084. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.