Inhibitory Effect of Apomorphine on Focal and Nonfocal Plasticity in the Human Motor Cortex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Monitoring of Corticospinal Excitability
2.3. Nonfocal Plasticity Induction by tDCS (Experiment 1)
2.4. Focal Plasticity Induction by PAS (Experiment 2)
2.5. Pharmacological Intervention
2.6. Experimental Procedures
2.7. Data Analysis and Statistics
3. Results
3.1. Effect of Apomorphine on Baseline Corticospinal Excitability
3.2. Effect of Apomorphine on tDCS-Induced Neuroplasticity
3.3. Effect of Apomorphine on PAS-Induced Neuroplasticity
4. Discussion
4.1. Impact of Apomorphine on LTP-Like Plasticity
4.2. Impact of Apomorphine on LTD-Like Plasticity
4.3. General Remarks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calabresi, P.; Picconi, B.; Tozzi, A.; Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 2007, 30, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Puig, M.V.; Rose, J.; Schmidt, R.; Freund, N. Dopamine modulation of learning and memory in the prefrontal cortex: Insights from studies in primates, rodents, and birds. Front. Neural Circuits 2014, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Jay, T.M.; Rocher, C.; Hotte, M.; Naudon, L.; Gurden, H.; Spedding, M. Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: Importance for psychiatric diseases. Neurotox. Res. 2004, 6, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Stefan, K.; Kunesch, E.; Cohen, L.G.; Benecke, R.; Classen, J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000, 123, 572–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolters, A.; Sandbrink, F.; Schlottmann, A.; Kunesch, E.; Stefan, K.; Cohen, L.G.; Benecke, R.; Classen, J. A Temporally Asymmetric Hebbian Rule Governing Plasticity in the Human Motor Cortex. J. Neurophysiol. 2003, 89, 2339–2345. [Google Scholar] [CrossRef]
- Liebetanz, D.; Nitsche, M.A.; Tergau, F.; Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002, 125, 2238–2247. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef]
- Stagg, C.J.; Nitsche, M.A. Physiological Basis of Transcranial Direct Current Stimulation. Neuroscience 2011, 17, 37–53. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Nitsche, M.S.; Klein, C.C.; Tergau, F.; Rothwell, J.C.; Paulus, W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin. Neurophysiol. 2003, 114, 600–604. [Google Scholar] [CrossRef]
- Stefan, K.; Kunesch, E.; Benecke, R.; Cohen, L.G.; Classen, J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J. Physiol. 2002, 543, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.-F.; Paulus, W.; Nitsche, M.A. Boosting Focally-Induced Brain Plasticity by Dopamine. Cereb. Cortex 2008, 18, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Lampe, C.; Antal, A.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur. J. Neurosci. 2006, 23, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Monte-Silva, K.; Ruge, D.; Teo, J.T.; Paulus, W.; Rothwell, J.C.; Nitsche, M.A. D2 Receptor Block Abolishes Theta Burst Stimulation-Induced Neuroplasticity in the Human Motor Cortex. Neuropsychopharmacology 2011, 36, 2097–2102. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Kuo, M.-F.; Grosch, J.; Bergner, C.; Monte-Silva, K.; Paulus, W. D1-Receptor Impact on Neuroplasticity in Humans. J. Neurosci. 2009, 29, 2648–2653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgante, F.; Espay, A.J.; Gunraj, C.; Lang, A.E.; Chen, R. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain 2006, 129, 1059–1069. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, A.; Voineskos, D.; Daskalakis, Z.J.; Rajji, T.K.; Blumberger, D.M. A Review of Impaired Neuroplasticity in Schizophrenia Investigated with Non-invasive Brain Stimulation. Front. Psychiatry 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Ueki, Y.; Mima, T.; Ali Kotb, M.; Sawada, H.; Saiki, H.; Ikeda, A.; Begum, T.; Reza, F.; Nagamine, T.; Fukuyama, H. Altered plasticity of the human motor cortex in Parkinson’s disease. Ann. Neurol. 2006, 59, 60–71. [Google Scholar] [CrossRef]
- Seamans, J.K.; Yang, C.R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 2004, 74, 1–58. [Google Scholar] [CrossRef]
- Monte-Silva, K.; Liebetanz, D.; Grundey, J.; Paulus, W.; Nitsche, M.A. Dosage-dependent non-linear effect of l-dopa on human motor cortex plasticity. J. Physiol. 2010, 588, 3415–3424. [Google Scholar] [CrossRef]
- Thirugnanasambandam, N.; Grundey, J.; Paulus, W.; Nitsche, M.A. Dose-Dependent Nonlinear Effect of l-DOPA on Paired Associative Stimulation-Induced Neuroplasticity in Humans. J. Neurosci. 2011, 31, 5294–5299. [Google Scholar] [CrossRef]
- Fresnoza, S.; Stiksrud, E.; Klinker, F.; Liebetanz, D.; Paulus, W.; Kuo, M.-F.; Nitsche, M.A. Dosage-Dependent Effect of Dopamine D2 Receptor Activation on Motor Cortex Plasticity in Humans. J. Neurosci. 2014, 34, 10701–10709. [Google Scholar] [CrossRef] [Green Version]
- Fresnoza, S.; Paulus, W.; Nitsche, M.A.; Kuo, M.-F. Nonlinear Dose-Dependent Impact of D1 Receptor Activation on Motor Cortex Plasticity in Humans. J. Neurosci. 2014, 34, 2744–2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.; Sandstrom, S.M.; Denenberg, V.H.; Palmiter, R.D. Distinguishing Whether Dopamine Regulates Liking, Wanting, and/or Learning About Rewards. Behav. Neurosci. 2005, 119, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Breitenstein, C.; Korsukewitz, C.; Floel, A.; Kretzschmar, T.; Diederich, K.; Knecht, S. Tonic Dopaminergic Stimulation Impairs Associative Learning in Healthy Subjects. Neuropsychopharmacology 2006, 31, 2552–2564. [Google Scholar] [CrossRef] [Green Version]
- Carbone, F.; Djamshidian, A.; Seppi, K.; Poewe, W. Apomorphine for Parkinson’s Disease: Efficacy and Safety of Current and New Formulations. CNS Drugs 2019, 33, 905–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunney, B.S.; Aghajanian, G.K.; Roth, R.H. Comparison of Effects of L-Dopa, Amphetamine and Apomorphine on Firing Rate of Rat Dopaminergic Neurones. Nat. New Biol. 1973, 245, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Kempster, P.A.; Frankel, J.P.; Stern, G.M.; Lees, A.J. Comparison of motor response to apomorphine and levodopa in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1990, 53, 1004–1007. [Google Scholar] [CrossRef]
- Costa, A.; Peppe, A.; Dell’Agnello, G.; Carlesimo, G.A.; Murri, L.; Bonuccelli, U.; Caltagirone, C. Dopaminergic Modulation of Visual-Spatial Working Memory in Parkinson’s Disease. Dement. Geriatr. Cogn. Disord. 2003, 15, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57. [Google Scholar] [CrossRef]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. BRAIN Stimul. Basic Transl. Clin. Res. Neuromodul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [Green Version]
- Grundey, J.; Freznosa, S.; Klinker, F.; Lang, N.; Paulus, W.; Nitsche, M.A. Cortical excitability in smoking and not smoking individuals with and without nicotine. Psychopharmacology 2013, 229, 653–664. [Google Scholar] [CrossRef]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.P. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 2014, 282, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Hosp, J.A.; Coenen, V.A.; Rijntjes, M.; Egger, K.; Urbach, H.; Weiller, C.; Reisert, M. Ventral tegmental area connections to motor and sensory cortical fields in humans. Brain Struct. Funct. 2019, 224, 2839–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosp, J.A.; Molina-Luna, K.; Hertler, B.; Atiemo, C.O.; Luft, A.R. Dopaminergic Modulation of Motor Maps in Rat Motor Cortex: An In Vivo Study. Neuroscience 2009, 159, 692–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Karain, B.; Brantley, E.; Shi, W.-X. Effects of l-DOPA on Nigral Dopamine Neurons and Local Field Potential: Comparison with Apomorphine and Muscimol. J. Pharmacol. Exp. Ther. 2011, 337, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Furukawa, T. Direct evidence for involvement of dopaminergic inhibition and cholinergic activation in yawning. Psychopharmacology 1980, 67, 39–43. [Google Scholar] [CrossRef]
- Harvey, J.; Lacey, M.G. A Postsynaptic Interaction between Dopamine D1 and NMDA Receptors Promotes Presynaptic Inhibition in the Rat Nucleus Accumbens via Adenosine Release. J. Neurosci. 1997, 17, 5271–5280. [Google Scholar] [CrossRef] [Green Version]
- Lacey, M.G.; Mercuri, N.B.; North, R.A. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J. Physiol. 1987, 392, 397–416. [Google Scholar] [CrossRef] [PubMed]
- Fasano, C.; Kortleven, C.; Trudeau, L.-E. Chronic activation of the D2 autoreceptor inhibits both glutamate and dopamine synapse formation and alters the intrinsic properties of mesencephalic dopamine neurons in vitro. Eur. J. Neurosci. 2010, 32, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Lisman, J.E. Three Ca2+ levels affect plasticity differently: The LTP zone, the LTD zone and no man’s land. J. Physiol. 2001, 532, 285. [Google Scholar] [CrossRef]
- Hjorth, S.; Engel, J.A.; Carlsson, A. Anticonflict effects of low doses of the dopamine agonist apomorphine in the rat. Pharmacol. Biochem. Behav. 1986, 24, 237–240. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, Y.; Wolf, M.E. Dopamine Receptor Stimulation Modulates AMPA Receptor Synaptic Insertion in Prefrontal Cortex Neurons. J. Neurosci. 2005, 25, 7342–7351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Echeagaray, E.; Starling, A.J.; Cepeda, C.; Levine, M.S. Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: Are dendrites necessary? Eur. J. Neurosci. 2004, 19, 2455–2463. [Google Scholar] [CrossRef]
- Hernández-López, S.; Tkatch, T.; Perez-Garci, E.; Galarraga, E.; Bargas, J.; Hamm, H.; Surmeier, D.J. D2 Dopamine Receptors in Striatal Medium Spiny Neurons Reduce L-Type Ca2+ Currents and Excitability via a Novel PLCβ1–IP3 –Calcineurin-Signaling Cascade. J. Neurosci. 2000, 20, 8987–8995. [Google Scholar] [CrossRef] [Green Version]
- Salgado, H.; Tecuapetla, F.; Perez-Rosello, T.; Perez-Burgos, A.; Perez-Garci, E.; Galarraga, E.; Bargas, J. A Reconfiguration of CaV2 Ca2+ Channel Current and Its Dopaminergic D2 Modulation in Developing Neostriatal Neurons. J. Neurophysiol. 2005, 94, 3771–3787. [Google Scholar] [CrossRef] [Green Version]
- Tritsch, N.X.; Sabatini, B.L. Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum. Neuron 2012, 76, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Higley, M.J.; Sabatini, B.L. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat. Neurosci. 2010, 13, 958–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wischnewski, M.; Schutter, D.J.L.G. Efficacy and time course of paired associative stimulation in cortical plasticity: Implications for neuropsychiatry. Clin. Neurophysiol. 2016, 127, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Monte-Silva, K.; Kuo, M.-F.; Thirugnanasambandam, N.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Dose-Dependent Inverted U-Shaped Effect of Dopamine (D2-Like) Receptor Activation on Focal and Nonfocal Plasticity in Humans. J. Neurosci. 2009, 29, 6124–6131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udupa, K.; Chen, R. Motor cortical plasticity in Parkinson’s disease. Front. Neurol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otani, S.; Auclair, N.; Desce, J.-M.; Roisin, M.-P.; Crépel, F. Dopamine Receptors and Groups I and II mGluRs Cooperate for Long-Term Depression Induction in Rat Prefrontal Cortex through Converging Postsynaptic Activation of MAP Kinases. J. Neurosci. 1999, 19, 9788–9802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.-X.; Yao, W.-D. D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex. Proc. Natl. Acad. Sci. USA 2010, 107, 16366–16371. [Google Scholar] [CrossRef] [Green Version]
- Bazzari, A.; Parri, H. Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci. 2019, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Flöel, A.; Breitenstein, C.; Hummel, F.; Celnik, P.; Gingert, C.; Sawaki, L.; Knecht, S.; Cohen, L.G. Dopaminergic influences on formation of a motor memory. Ann. Neurol. 2005, 58, 121–130. [Google Scholar] [CrossRef]
- Flöel, A.; Hummel, F.; Breitenstein, C.; Knecht, S.; Cohen, L.G. Dopaminergic effects on encoding of a motor memory in chronic stroke. Neurology 2005, 65, 472–474. [Google Scholar] [CrossRef]
- Knecht, S.; Breitenstein, C.; Bushuven, S.; Wailke, S.; Kamping, S.; Flöel, A.; Zwitserlood, P.; Ringelstein, E.B. Levodopa: Faster and better word learning in normal humans. Ann. Neurol. 2004, 56, 20–26. [Google Scholar] [CrossRef]
- Scheidtmann, K.; Fries, W.; Müller, F.; Koenig, E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: A prospective, randomised, double-blind study. Lancet 2001, 358, 787–790. [Google Scholar] [CrossRef]
- Schellekens, A.F.A.; Grootens, K.P.; Neef, C.; Movig, K.L.L.; Buitelaar, J.K.; Ellenbroek, B.; Verkes, R.J. Effect of apomorphine on cognitive performance and sensorimotor gating in humans. Psychopharmacology 2010, 207, 559–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montoya, A.; Lal, S.; Menear, M.; Duplessis, E.; Thavundayil, J.; Schmitz, N.; Lepage, M. Apomorphine effects on episodic memory in young healthy volunteers. Neuropsychologia 2008, 46, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Lera, G.; Vaamonde, J.; Luquin, M.R.; Obeso, J.A. Motor response to apomorphine and levodopa in asymmetric Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1994, 57, 562–566. [Google Scholar] [CrossRef] [Green Version]
- Pearson-Fuhrhop, K.M.; Minton, B.; Acevedo, D.; Shahbaba, B.; Cramer, S.C. Genetic Variation in the Human Brain Dopamine System Influences Motor Learning and Its Modulation by L-Dopa. PLoS ONE 2013, 8, e61197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Medication Condition | Baseline 1 | Baseline2 | Baseline 3 | |||
---|---|---|---|---|---|---|
MEP (mV) | MSO (%) | MEP (mV) | MSO (%) | MEP (mV) | MSO (%) | |
Anodal tDCS | ||||||
Placebo | 0.97 ± 0.12 | 47.08 ± 7.61 | 0.94 ± 0.21 | 47.08 ± 7.61 | 0.96 ± 0.14 | 47.75 ± 7.52 |
0.1 mg | 1.00 ± 0.11 | 48.92 ± 10.35 | 1.03 ± 0.28 | 48.92 ± 10.35 | 1.03 ± 0.11 | 49.00 ± 10.20 |
0.2 mg | 0.99 ± 0.10 | 48.75 ± 8.95 | 0.87 ± 0.26 | 48.75 ± 8.95 | 1.01 ± 0.13 | 49.42 ± 9.12 |
0.3 mg | 0.97 ± 0.10 | 49.58 ± 9.52 | 0.88 ± 0.54 | 49.58 ± 9.52 | 0.98 ± 0.09 | 50.42 ± 9.70 |
Cathodal tDCS | ||||||
Placebo | 1.00 ± 0.07 | 49.17 ± 10.50 | 0.90 ± 0.07 | 49.17 ± 10.50 | 0.95 ± 0.10 | 49.17 ± 9.78 |
0.1 mg | 1.00 ± 0.08 | 48.08 ± 8.06 | 0.82 ± 0.20 | 48.08 ± 8.06 | 0.96 ± 0.09 | 50.25 ± 8.74 |
0.2 mg | 0.99 ± 0.11 | 49.50 ± 9.66 | 1.01 ± 0.34 | 49.50 ± 9.66 | 1.02 ± 0.12 | 50.17 ± 10.03 |
0.3 mg | 1.02 ± 0.11 | 48.75 ± 9.55 | 1.02 ± 0.21 | 48.75 ± 9.55 | 1.01 ± 0.12 | 48.42 ± 9.98 |
PAS25 | ||||||
Placebo | 1.05 ± 0.13 | 48.83 ± 7.36 | 1.00 ± 0.15 | 48.83 ± 7.36 | 1.03 ± 0.13 | 49.33 ± 7.00 |
0.1 mg | 1.06 ± 0.15 | 48.08 ± 7.86 | 1.13 ± 0.36 | 48.08 ± 7.86 | 1.03 ± 0.07 | 47.58 ± 8.25 |
0.2 mg | 1.02 ± 0.08 | 47.67 ± 8.84 | 1.06 ± 0.23 | 47.67 ± 8.84 | 1.01 ± 0.09 | 48.42 ± 8.91 |
0.3 mg | 1.05 ± 0.06 | 47.08 ± 8.02 | 1.03 ± 0.16 | 47.08 ± 8.02 | 1.08 ± 0.14 | 46.75 ± 8.47 |
PAS10 | ||||||
Placebo | 1.01 ± 0.14 | 47.50 ± 7.43 | 1.05 ± 0.34 | 47.50 ± 7.43 | 1.05 ± 0.34 | 47.50 ± 7.40 |
0.1 mg | 1.06 ± 0.16 | 47.42 ± 6.47 | 1.02 ± 0.27 | 47.42 ± 6.47 | 1.02 ± 0.27 | 47.42 ± 6.47 |
0.2 mg | 0.93 ± 0.13 | 49.00 ± 7.93 | 0.94 ± 0.24 | 49.00 ± 7.93 | 0.94 ± 0.24 | 49.42 ± 7.86 |
0.3 mg | 1.00 ± 0.16 | 50.42 ± 8.59 | 1.01 ± 0.24 | 50.42 ± 8.59 | 1.06 ± 0.22 | 50.58 ± 8.32 |
Numerator df | Denominator df | F-Value | p-Value | ƞᵨ2 | |
---|---|---|---|---|---|
Experiment 1 (tDCS) | |||||
Stimulation | 1 | 22 | 0.763 | 0.392 | 0.034 |
Dose | 3 | 69 | 0.153 | 0.927 | 0.007 |
Time | 14 | 322 | 0.954 | 0.500 | 0.042 |
Stimulation × dose | 3 | 69 | 4.346 | 0.007 * | 0.165 |
Stimulation × time | 14 | 323 | 0.384 | 0.979 | 0.017 |
Dose × time | 42 | 966 | 0.935 | 0.590 | 0.041 |
Stimulation × dose × time | 42 | 966 | 2.053 | <0.001 * | 0.085 |
Experiment 2 (PAS) | |||||
Stimulation | 1 | 11 | 0.576 | 0.464 | 0.050 |
Dose | 3 | 33 | 0.228 | 0.876 | 00.020 |
Time | 14 | 154 | 1.405 | 0.157 | 0.113 |
Stimulation × dose | 3 | 33 | 8.420 | <0.001 * | 0.434 |
Stimulation × time | 14 | 154 | 2.319 | 0.006 * | 00.174 |
Dose × time | 42 | 462 | 0.438 | 0.999 | 0.038 |
Stimulation × dose × time | 42 | 462 | 0.993 | 0.487 | 0.083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fresnoza, S.M.; Batsikadze, G.; Müller, L.E.; Rost, C.; Chamoun, M.; Paulus, W.; Kuo, M.-F.; Nitsche, M.A. Inhibitory Effect of Apomorphine on Focal and Nonfocal Plasticity in the Human Motor Cortex. Pharmaceutics 2021, 13, 718. https://doi.org/10.3390/pharmaceutics13050718
Fresnoza SM, Batsikadze G, Müller LE, Rost C, Chamoun M, Paulus W, Kuo M-F, Nitsche MA. Inhibitory Effect of Apomorphine on Focal and Nonfocal Plasticity in the Human Motor Cortex. Pharmaceutics. 2021; 13(5):718. https://doi.org/10.3390/pharmaceutics13050718
Chicago/Turabian StyleFresnoza, Shane M., Giorgi Batsikadze, Lynn Elena Müller, Constanze Rost, Michael Chamoun, Walter Paulus, Min-Fang Kuo, and Michael A. Nitsche. 2021. "Inhibitory Effect of Apomorphine on Focal and Nonfocal Plasticity in the Human Motor Cortex" Pharmaceutics 13, no. 5: 718. https://doi.org/10.3390/pharmaceutics13050718
APA StyleFresnoza, S. M., Batsikadze, G., Müller, L. E., Rost, C., Chamoun, M., Paulus, W., Kuo, M.-F., & Nitsche, M. A. (2021). Inhibitory Effect of Apomorphine on Focal and Nonfocal Plasticity in the Human Motor Cortex. Pharmaceutics, 13(5), 718. https://doi.org/10.3390/pharmaceutics13050718