Effect of the Interrelation between CYP3A5 Genotype, Concentration/Dose Ratio and Intrapatient Variability of Tacrolimus on Kidney Graft Function: Monte Carlo Simulation Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Immunosuppressive Protocol
2.4. Pharmacokinetic Data
2.5. Genotyping CYP3A5
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shuker, N.; van Gelder, T.; Hesselink, D.A. Intra-patient variability in tacrolimus exposure: Causes, consequences for clinical management. Transpl. Rev. 2015, 29, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Hansrivijit, P.; Kovvuru, K.; Kanduri, S.R.; Bathini, T.; Pivovarova, A.; Smith, J.R.; Cheungpasitporn, W. Impacts of High Intra- and Inter-Individual Variability in Tacrolimus Pharmacokinetics and Fast Tacrolimus Metabolism on Outcomes of Solid Organ Transplant Recipients. J. Clin. Med. 2020, 9, 2193. [Google Scholar] [CrossRef] [PubMed]
- Jouve, T.; Fonrose, X.; Noble, J.; Janbon, B.; Fiard, G.; Malvezzi, P.; Stanke-Labesque, F.; Rostaing, L. The TOMATO Study (Tacrolimus Metabolization in Kidney Transplantation): Impact of the Concentration-Dose Ratio on Death-censored Graft Survival. Transplantation 2020, 104, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.A.; He, Y.; Swen, J.J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanović, N.Z.; Cvetković, T.P.; Jevtović-Stoimenov, T.M.; Ignjatović, A.M.; Paunović, G.J.; Veličković, R.M. Investigation of CYP 3A5 and ABCB1 gene polymorphisms in the long-term following renal transplantation: Effects on tacrolimus exposure and kidney function. Exp. Ther. Med. 2015, 10, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Thölking, G.; Fortmann, C.; Koch, R.; Gerth, H.U.; Pabst, D.; Pavenstädt, H.; Kabar, I.; Hüsing, A.; Wolters, H.; Reuter, S.; et al. The tacrolimus metabolism rate influences renal function after kidney transplantation. PLoS ONE 2014, 9, e111128. [Google Scholar]
- Shuker, N.; Shuker, L.; van Rosmalen, J.; Roodnat, J.I.; Borra, L.C.; Weimar, W.; Hesselink, D.A.; van Gelder, T. A high intrapatient variability in tacrolimus exposure is associated with poor long-term outcome of kidney transplantation. Transpl. Int. 2016, 29, 1158–1167. [Google Scholar] [CrossRef]
- Stefanović, N.Z.; Veličković-Radovanović, R.M.; Danković, K.S.; Catić-Djordjević, A.K.; Damnjanović, I.D.; Mitić, B.P.; Cvetković, M.B.; Cvetković, T.P. Insight into the potential influence of inter- and intra-individual variability of tacrolimus exposure on graft function decline in three-year period following kidney transplantation. Farmacia 2020, 68, 1036–1046. [Google Scholar] [CrossRef]
- Bonate, P.L. A brief introduction to Monte Carlo simulation. Clin. Pharmacokinet. 2001, 40, 15–22. [Google Scholar] [CrossRef]
- Catić-Đorđević, A.; Pavlović, I.; Pavlović, D.; Stefanović, N.; Mikov, M.; Cvetković, T.; Veličković-Radovanović, R. Evaluation of gender-based limited sampling methods for tacrolimus exposure after renal transplantation using the Monte Carlo simulation. Pharmazie 2018, 73, 482–485. [Google Scholar]
- Law, J.P.; Borrows, R.; McNulty, D.; Sharif, A.; Ferro, C.J. Early renal function trajectories, cytomegalovirus serostatus and long-term graft outcomes in kidney transplant recipients. BMC Nephrol. 2021, 22, 102. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Hart, A.; Smith, J.M.; Skeans, M.A.; Gustafson, S.K.; Wilk, A.R.; Castro, S.; Foutz, J.; Wainright, J.L.; Snyder, J.J.; Kasiske, B.L.; et al. OPTN/SRTR 2018 Annual Data Report: Kidney. Am. J. Transplant. 2020, 20, 20–130. [Google Scholar] [CrossRef]
- Borra, L.C.; Roodnat, J.I.; Kal, J.A.; Mathot, R.A.; Weimar, W.; van Gelder, T. High within-patient variability in the clearance of tacrolimus is a risk factor for poor long-term outcome after kidney transplantation. Nephrol. Dial. Transplant. 2010, 25, 2757–2763. [Google Scholar] [CrossRef] [Green Version]
- Larpparisuth, N.; Pongnatcha, T.; Panprom, P.; Promraj, R.; Premasathian, N.; Vongwiwatana, A. High Intra-Patient Variability in Tacrolimus Exposure Calculated over a Long Period Is Associated with De Novo Donor-Specific Antibody Development and/or Late Rejection in Thai Kidney Transplant Patients Receiving Concomitant CYP3A4/5 Inhibitors. Ther. Drug Monit. 2021, 43, 624–629. [Google Scholar] [CrossRef]
- Gonzales, H.M.; McGillicuddy, J.W.; Rohan, V.; Chandler, J.L.; Nadig, S.N.; Dubay, D.A.; Taber, D.J. A comprehensive review of the impact of tacrolimus intrapatient variability on clinical outcomes in kidney transplantation. Am. J. Transplant. 2020, 20, 1969–1983. [Google Scholar] [CrossRef]
- Schütte-Nütgen, K.; Thölking, G.; Steinke, J.; Pavenstädt, H.; Schmidt, R.; Suwelack, B.; Reuter, S. Fast Tacrolimus Metabolizers at Risk—It is Time for a C/D Ratio Calculation. J. Clin. Med. 2019, 8, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuypers, D.R.J. Intrapatient Variability of Tacrolimus Exposure in Solid Organ Transplantation: A Novel Marker for Clinical Outcome. Clin. Pharmacol. Ther. 2020, 107, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, G.; Tan, L.; Li, J. Current progress of tacrolimus dosing in solid organ transplant recipients: Pharmacogenetic considerations. Biomed. Pharmacother. 2018, 102, 107–114. [Google Scholar] [CrossRef] [PubMed]
- van Gelder, T.; Meziyerh, S.; Swen, J.J.; de Vries, A.P.J.; Moes, D.J.A.R. The Clinical Impact of the C0/D Ratio and the CYP3A5 Genotype on Outcome in Tacrolimus Treated Kidney Transplant Recipients. Front. Pharmacol. 2020, 11, 1142. [Google Scholar] [CrossRef]
- Morris, T.P.; White, I.R.; Crowther, M.J. Using simulation studies to evaluate statistical methods. Stat. Med. 2019, 38, 2074–2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sablik, K.A.; Clahsen-van Groningen, M.C.; Hesselink, D.A.; van Gelder, T.; Betjes, M.G.H. Tacrolimus intra-patient variability is not associated with chronic active antibody mediated rejection. PLoS ONE. 2018, 13, e0196552. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Kim, S.J.; Huh, K.H.; Kim, B.S.; Kim, M.S.; Kim, S.I.; Kim, Y.S.; Lee, J. Clinical significance of tacrolimus intra-patient variability on kidney transplant outcomes according to pre-transplant immunological risk. Sci. Rep. 2021, 11, 12114. [Google Scholar] [CrossRef] [PubMed]
- Thölking, G.; Schmidt, C.; Koch, R.; Schuette-Nuetgen, K.; Pabst, D.; Wolters, H.; Kabar, I.; Hüsing, A.; Pavenstädt, H.; Reuter, S.; et al. Influence of tacrolimus metabolism rate on BKV infection after kidney transplantation. Sci. Rep. 2016, 6, 32273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowicka, M.; Górska, M.; Nowicka, Z.; Edyko, K.; Edyko, P.; Wiślicki, S.; Zawiasa-Bryszewska, A.; Strzelczyk, J.; Matych, J.; Kurnatowska, I. Tacrolimus: Influence of the Posttransplant Concentration/Dose Ratio on Kidney Graft Function in a Two-Year Follow-Up. Kidney Blood Press Res. 2019, 44, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, D.A.; Bouamar, R.; Elens, L.; van Schaik, R.H.; van Gelder, T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin. Pharmacokinet. 2014, 53, 123–139. [Google Scholar] [CrossRef]
- Brunet, M.; van Gelder, T.; Åsberg, A.; Haufroid, V.; Hesselink, D.A.; Langman, L.; Lemaitre, F.; Marquet, P.; Seger, C.; Shipkova, M.; et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther. Drug Monit. 2019, 41, 261–307. [Google Scholar] [CrossRef]
- Khan, A.R.; Raza, A.; Firasat, S.; Abid, A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: A systematic review and meta-analysis. Pharm. J. 2020, 20, 553–562. [Google Scholar] [CrossRef]
- Rodrigo, E.; Segundo, D.S.; Fernández-Fresnedo, G.; López-Hoyos, M.; Benito, A.; Ruiz, J.C.; de Cos, M.A.; Arias, M. Within-Patient Variability in Tacrolimus Blood Levels Predicts Kidney Graft Loss and Donor-Specific Antibody Development. Transplantation 2016, 100, 2479–2485. [Google Scholar] [CrossRef] [PubMed]
- Mendoza Rojas, A.; Hesselink, D.A.; van Besouw, N.M.; Baan, C.C.; van Gelder, T. Impact of low tacrolimus exposure and high tacrolimus intra-patient variability on the development of de novo anti-HLA donor-specific antibodies in kidney transplant recipients. Expert Rev. Clin. Immunol. 2019, 15, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhove, T.; Vermeulen, T.; Annaert, P.; Lerut, E.; Kuypers, D.R.J. High Intrapatient Variability of Tacrolimus Concentrations Predicts Accelerated Progression of Chronic Histologic Lesions in Renal Recipients. Am. J. Transplant. 2016, 16, 2954–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thölking, G.; Schütte-Nütgen, K.; Schmitz, J.; Rovas, A.; Dahmen, M.; Bautz, J.; Jehn, U.; Pavenstädt, H.; Heitplatz, B.; Van Marck, V.; et al. A Low Tacrolimus Concentration/Dose Ratio Increases the Risk for the Development of Acute Calcineurin Inhibitor-Induced Nephrotoxicity. J. Clin. Med. 2019, 8, 1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whalen, H.R.; Glen, J.A.; Harkins, V.; Stevens, K.K.; Jardine, A.G.; Geddes, C.C.; Clancy, M.J. High Intrapatient Tacrolimus Variability Is Associated With Worse Outcomes in Renal Transplantation Using a Low-Dose Tacrolimus Immunosuppressive Regime. Transplantation 2017, 101, 430–436. [Google Scholar] [CrossRef]
- Stefanović, N.Z.; Veličković-Radovanović, R.M.; Danković, K.S.; Mitić, B.P.; Paunović, G.J.; Cvetković, M.B.; Cvetković, T.P. Combined Effect of Inter- and Intrapatient Variability in Tacrolimus Exposure on Graft Impairment Within a 3-Year Period Following Kidney Transplantation: A Single-Center Experience. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, S.; McBride, M.A.; Cherikh, W.S.; Tolleris, C.B.; Bresnahan, B.A.; Johnson, C.P. Post-transplant renal function in the first year predicts long-term kidney transplant survival. Kidney Int. 2002, 62, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Knight, R. Intrapatient variability in tacrolimus exposure—A useful tool for clinical practice. Transpl. Int. 2016, 29, 1155–1157. [Google Scholar] [CrossRef]
- Giza, P.; Ficek, R.; Dwulit, T.; Chudek, J.; Woźniak, I.; Więcek, A.; Kolonko, A. Number of Regularly Prescribed Drugs and Intrapatient Tacrolimus Trough Levels Variability in Stable Kidney Transplant Recipients. J. Clin. Med. 2020, 9, 1926. [Google Scholar] [CrossRef]
- Stifft, F.; Stolk, L.M.; Undre, N.; van Hooff, J.P.; Christiaans, M.H. Lower variability in 24-h exposure during once-daily compared to twice-daily tacrolimus formulation in kidney transplantation. Transplantation 2014, 97, 775–780. [Google Scholar] [CrossRef]
- Wu, M.J.; Cheng, C.Y.; Chen, C.H.; Wu, W.P.; Cheng, C.H.; Yu, D.M.; Chuang, Y.W.; Shu, K.H. Lower variability of tacrolimus trough concentration after conversion from prograf to advagraf in stable kidney transplant recipients. Transplantation 2011, 92, 648–652. [Google Scholar] [CrossRef]
Gender recipient (Male/Female) | 66/37 (64%/36%) |
Age of recipient (years) * | 39 (31–47) |
Donor type (Living/Deceased) | 74/29 (72%/28%) |
Body mass (kg) at 6th month | 72.0 (62.5–80.0) |
BMI (kg/m2) at 6th month | 23.73 (22.21–26.11) |
CRE (µmol/L) at 6th month | 134 (113–162) |
eGFR (mL/min/1.73 m2) at 6th month | 47.48 (40.32–57.09) |
BUN (mmol/L) at 6th month | 7.60 (5.80–9.80) |
Dialysis vintage (months) | 7.00 (2–21.5) |
CYP3A5 genotype: *1/*1;*1/*3;*3/*3; | 0/15/88 |
Acute graft rejection (yes) | 5 (4.9%) |
Delayed graft function (yes) | 13 (12.6%) |
Diabetes mellitus (yes) | 17 (16.5%) |
Hypertension (yes) | 83 (80.6%) |
Ischemic heart disease (yes) | 4 (3.9%) |
Tac IPV (%) | 22.51 ± 9.71 21.21 (15.03–27.67) |
Parameter of Interest | Tac-TD (n = 78) | Tac-OD (n = 25) | Test and Significance |
---|---|---|---|
eGFR (mL/min/1.73 m2) at 6th month | 49.90 ± 16.67 | 47.77 ± 11.58 | Z = −1.766; p = 0.077 |
eGFR (mL/min/1.73 m2) during 13–36 months | 50.14 ± 16.80 | 48.28 ± 16.43, | Z = −1.337; p = 0.181 |
Acute graft rejection (yes) | 4/78 | 1/25 | χ2 = 0.052, p = 0.819 |
CYP3A5*1/*3 genotype | 11/78 | 4/25 | χ2 = 0.055, p = 0.815 |
Mean Tac C0/D during 6–12 months (ng/mL/mg) | 1.91 ± 1.07 | 1.81 ± 1.00 | Z = −0.604; p = 0.546 |
Tac IPV (%) | 22.49 ± 9.5521.29 (14.26–28.17) | 22.57 ± 10.4020.44 (17.96–25.26) | Z = −0.192; p = 0.848 |
MODEL* | B (CI for B) | Std. Error | Beta | Sig. 1 | R 2 (%) | Sig. 2 |
---|---|---|---|---|---|---|
Multivariate Analysis/ Predicators | ||||||
Constant | 11.256 (8.205–14.306) | 1.555 | / | <0.001 | 57.4 | <0.001 |
eGFR at 6 months (mL/min/1.73 m2) | 0.764 (0.729–0.799) | 0.018 | 0.706 | <0.001 | ||
Tac IPV% (absolute value) | −0.103 (−0.165–(−)0.040) | 0.032 | −0.054 | 0.001 | ||
Sex (male) | 1.439 (0.297–2.581) | 0.582 | 0.042 | 0.014 | ||
Age (years) | −0.011 (−0.062–0.040) | 0.026 | −0.007 | 0.664 | ||
Mean C0/D from 6–12 months (ng mL−1/mg) | 1.676 (1.061–2.290) | 0.313 | 0.096 | <0.001 | ||
Acute graft rejection (yes) | −10.112 (−12.664–(−)7.559) | 1.301 | −0.133 | <0.001 |
Parameter | Values |
---|---|
eGFR at 6th month post-transplantation (base value for eGFR) | 30–44 mL/min/1.73 m2 |
45–59 mL/min/1.73 m2 | |
Tac IPV | 15–29.99% |
30–59.99% | |
CYP3A5 genotype (as mean C0/D during 6–12 months) | CYP3A5*1*/3 = 1.30 ± 0.54 ng/mL/mg |
CYP3A5*3*/3 = 1.92 ± 0.98 ng/mL/mg | |
Sex | Male = 1 |
Female = 0 | |
Acute rejection episode within the first post-transplantation year | Yes = 1 |
No = 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanović, N.; Veličković-Radovanović, R.; Danković, K.; Pavlović, I.; Catić-Đorđević, A.; Bašić, J.; Despotović, M.; Jevtović-Stoimenov, T.; Mitić, B.; Cvetković, T. Effect of the Interrelation between CYP3A5 Genotype, Concentration/Dose Ratio and Intrapatient Variability of Tacrolimus on Kidney Graft Function: Monte Carlo Simulation Approach. Pharmaceutics 2021, 13, 1970. https://doi.org/10.3390/pharmaceutics13111970
Stefanović N, Veličković-Radovanović R, Danković K, Pavlović I, Catić-Đorđević A, Bašić J, Despotović M, Jevtović-Stoimenov T, Mitić B, Cvetković T. Effect of the Interrelation between CYP3A5 Genotype, Concentration/Dose Ratio and Intrapatient Variability of Tacrolimus on Kidney Graft Function: Monte Carlo Simulation Approach. Pharmaceutics. 2021; 13(11):1970. https://doi.org/10.3390/pharmaceutics13111970
Chicago/Turabian StyleStefanović, Nikola, Radmila Veličković-Radovanović, Katarina Danković, Ivan Pavlović, Aleksandra Catić-Đorđević, Jelena Bašić, Milena Despotović, Tatjana Jevtović-Stoimenov, Branka Mitić, and Tatjana Cvetković. 2021. "Effect of the Interrelation between CYP3A5 Genotype, Concentration/Dose Ratio and Intrapatient Variability of Tacrolimus on Kidney Graft Function: Monte Carlo Simulation Approach" Pharmaceutics 13, no. 11: 1970. https://doi.org/10.3390/pharmaceutics13111970